Genetics: Published Articles Ahead of Print, published on September 9, 2008 as 10.1534/genetics.108.092437 Retention of induced mutations in a Drosophila reverse-genetic resource Jennifer L. Cooper*+, Elizabeth A. Greene*, Bradley J. Till*‡, Christine A. Codomo*, Barbara T. Wakimoto§ and Steven Henikoff*+ *Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA +Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98107, USA §Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA ‡Present address: FAO/IAEA Agricultural and Biotechnology Laboratory A-2444 Seibersdorf, Austria Running head: Retention of induced mutations Key words: mutagenesis, TILLING, balancer chromosomes, mutational spectrum, ethyl methanesulfonate Corresponding author: Steven Henikoff, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024; Phone: (206) 667-4515; FAX (206) 667-5889; Email:
[email protected] 2 ABSTRACT TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse-genetic method to identify point mutations in chemically mutagenized populations. For functional genomics, it is ideal to have a stable collection of heavily mutagenized lines that can be screened over an extended period of time. However, long-term storage is impractical for Drosophila, so mutant strains must be maintained by continual propagation of live cultures. Here we evaluate a strategy in which ethylmethane sulfonate (EMS) mutagenized chromosomes were maintained as heterozygotes with balancer chromosomes for over 100 generations before screening. The strategy yielded a spectrum of point mutations similar to those found in previous studies of EMS-induced mutations, as well as 2.4% indels (insertions and deletions). Our analysis of 1887 point mutations in 148 targets showed evidence for selection against deleterious lesions and differential retention of lesions among targets based on their position relative to balancer breakpoints, leading to a broad distribution of mutational densities.