Finding the Genes That Direct Mammalian Development ENU Mutagenesis in the Mouse

Total Page:16

File Type:pdf, Size:1020Kb

Finding the Genes That Direct Mammalian Development ENU Mutagenesis in the Mouse ENU mutagenesis in the mouse COMMENT Outlook Finding the genes that direct mammalian development ENU mutagenesis in the mouse The genetic control of mammalian embryogenesis is not well understood. N-ethyl-N-nitrosourea (ENU) mutagenesis screens in the mouse provide a route to identify more of the genes that are required for mammalian development. The characterization of ENU-induced mutations can build on the resources provided by the mouse and human genome projects to help define the tissue interactions and signaling pathways that direct early mammalian development. he mouse has a rich tradition in developmental genetics. implantation, survival of the mammalian embryo depends TMany of the genes that have provided the special insights on the development of a series of physical connections into mammalian development were discovered on the basis between the developing embryo and maternal circulation, of the phenotypes of mutant mice1 (Table 1). For example, including the placenta, that have no counterpart in Brachyury, the founding member of the Tbox gene family, invertebrate or fish embryos. In addition, analysis of the was identified in the 1920s because Brachyury (T)/1 mice Zebrafish genome has led to the surprising finding that have short tails; shortly thereafter it was found that T/T there are seven Hox clusters in Zebrafish in contrast to the homozygotes die at midgestation and the posterior part of four clusters in mammals3, suggesting that there might the body axis is truncated2. have been an extra genome duplication in the teleost In the recent past, the strengths of classical mouse lineage4. Thus, there will be no simple relationship genetic studies have been overshadowed, both by targeted between the phenotypes of mouse and fish mutants in mutagenesis in the mouse and by model organism genetics. homologous genes. Targeted mutagenesis currently dominates mouse genetics Despite the major contributions of model organisms because of its extraordinary ability to reveal the function and gene targeting, mutations have been made in <5% of of cloned genes. At the same time, the ease of large-scale the genes in the mouse genome. Recent work suggests that genetic screens in Drosophila, Caenorhabditis elegans and ENU mutagenesis screens have the potential to return Zebrafish has made these organisms popular for phenotype- classical mouse genetics to the forefront of mammalian gene based gene discovery. However, mammalian development discovery. An arsenal of reagents to characterize mouse differs in fundamental respects from the development of genes identified by mutant phenotypes is now available, all these model organisms. For example, transcription including bacterial artificial chromosome (BAC) transgenics in mammalian embryonic nuclei begins days before for mutant complementation and integrated genetic and gastrulation, so the critical events of germ-layer determi- physical maps for positional cloning. This article focuses nation and early morphogenesis depend on zygotically on ENU-mutagenesis approaches to identify genes that transcribed genes rather than on maternal stores. After control mouse development. TABLE 1. Examples of mouse developmental regulatory genes identified on the basis of mutant phenotypes Gene Origin Phenotype Protein encoded Refs (cloning approach) brachypodism Spontaneous recessive Skeletal defects in limbs Gdf5 (candidate gene) 20 Brachyury (T ) Spontaneous dominant visible: Truncated axis T (positional cloning) 2, 21 short tail eed ENU-induced lethal over albino Lack of anterior development (null); esc homolog; Polycomb-group gene 10 deletion homeotic transformation (hypomorph) (positional cloning in region defined by deletion breakpoints) Extra-toes Spontaneous dominant visible: Neural tube and limb defects Gli3 (candidate gene) 22 polydactyly Fused/Axin Spontaneous dominant visible: Axis duplications Axin (transgene insertion allele) 23 kinked tail kreisler Spontaneous recessive Circling behavior; hindbrain abnormal Transcription factor (positional cloning) 24 Kathryn V. Anderson nodal Retroviral insertion-induced: No mesoderm produced Nodal (BMP family member) (retroviral 25 k-anderson@ recessive lethal insertion allele) ski.mskcc.org short ear Spontaneous recessive Skeletal defects Bmp5 (positional cloning within deletion region) 26 situs inversus viscerum (iv) Spontaneous recessive Randomization of left–right asymmetry Left–right dynein (transgene insertion allele) 27 Splotch Spontaneous dominant visible: Neural tube and neural crest defects Pax3 (candidate gene) 28 Molecular Biology white belly spot Program, Sloan-Kettering Institute, 1275 York Abbreviations: Bmp5, bone morphogenic protein 5; eed, embryonic ectoderm development; esc, extra sexcombs; Gdf5, growth differentiation factor 5; Gli3, Gli-Kruppel family member Gli3; Avenue, New York, Pax3, paired box gene 3 product. NY 10021, USA. 0168-9525/00/$ – see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0168-9525(99)01921-6 TIG March 2000, volume 16, No. 3 99 Outlook COMMENT ENU mutagenesis in the mouse TABLE 2. Examples of mouse developmental mutants identified the most efficient ENU dosage regime gave an average of one new mutation per gene in only 700 first-generation a in ENU mutagenesis screens (F1) progeny in seven loci that produce visible phenotypes (the specific locus test)5. Assuming that there are ~70 000 Screen Examples of mutations identified Refs genes in the mouse genome, each F1 animal is heterozygous Lethals in trans to albino deletions eed (3 alleles); five additional prenatal lethal loci 7 for ~100 new inactivating mutations. This high efficiency of Lethals in T/t region quaking (4 lethal alleles); new alleles of T; 29– 31 mutagenesis makes it possible to identify the small fraction nine additional prenatal lethal loci of genes that affects any particular biological process. For Failure to complement the behavioral kreisler allele 24 defect of a spontaneous example, in a screen of only 100 ENU-treated lines, kreisler allele ~10 000 different new mutations can be tested. Dominant behavioral mutants Wheels (inner ear defects) 14 Morphological abnormalities at 5 embryonic lethal mutants 11 Region-based screens midgestation (9.5 dpc) Forebrain defects at midgestation flat-top; 4 other mutants 12 The potency of ENU as a mutagen opens up a variety of (10.5 dpcb) approaches to identify genes that play important roles in mammalian development (Table 2). One strategy is to aN-ethyl-N-nitrosourea. look for mutations in a defined region of the genome. The b dpc: days post-coitum. simplest version of this type of screen is to identify lethal mutations that fail to complement a particular chromosomal ENU: an extraordinarily efficient mutagen in the deletion (Fig. 1a). For example, 24 ENU-induced mouse mutations that are lethal when in trans to particular albino Efficient chemical mutagenesis in the mouse using the point deletions have been identified in large-scale experiments6,7. mutagen ENU was developed more than 20 years ago. The It is interesting to note that only one of the genes defined unique strength of ENU mutagenesis is its great efficiency: in these screens (eed) is known to be homologous to a gene FIGURE 1. Two kinds of screens to identify recessive mutations that affect embryonic development of the mouse (a)ENU (b) ENU female male female male (wild-type coat) +/+ c /c (albino coat) +/+ +/+ ch F1 c */+ c / Deletion (c ) F1 */+ +/+ F1 female male (chinchilla coat) F1 male females G2 G2 */+ ch 50% c / Deletion (c) ch * c /c +/c and +/Deletion (c) * female (albino) (chinchilla) (wild-type coat) progeny 25% 25% 50% Viable? (carriers) G3 Embryos 25% */* Phenotype? trends in Genetics An asterisk represents a newly induced mutation. (a) A region-based screen6. The males that are treated with ENU are homozygous for a recessive point mutant allele of albino and hence have albino-colored coats. Single F1 animals, which are each heterozygous for a c chromosome that might carry new mutations, are mated with animals that are heterozygous for a weak allele of c (cch ) and an albino (c) deletion, which removes the albino locus and a set of flanking genes. Newly induced lethal mutations in genes near albino are identified in the G2 generation because there are no viable albino (pure white) mice, which would have been heterozygous for the c deletion and the mutagenized c chromosome. The surviving mice with chinchilla colored coats carry the mutagenized c chromosome in trans to the cch chromosome; these animals are carriers that can be bred to perpetuate the new recessive lethal mutation. Once a line of animals that are heterozygous for the lethal mutation is established, whether the lethal mutation produces an interesting developmental phenotype can be tested. (b) A genome-wide screen for recessive embryonic lethal mutations that produce a clear morphological phenotype9. Single F1 males, which are each heterozygous for many different newly induced mutations distributed throughout the genome, are mated to produce a number of G2 females. Each G2 female has a 50% chance of inheriting any single mutation carried by the F1 male. If she does carry a particular mutation, then 25% of the embryos from the cross between that G2 female with her father will be homozygous for the mutation. In this scheme, mutations are identified on the basis of abnormal morphology at a particular developmental stage, rather than being first identified on the basis of homozygous lethality. Mapping of mutations using polymorphic simple sequence
Recommended publications
  • Detailed Review Paper on Retinoid Pathway Signalling
    1 1 Detailed Review Paper on Retinoid Pathway Signalling 2 December 2020 3 2 4 Foreword 5 1. Project 4.97 to develop a Detailed Review Paper (DRP) on the Retinoid System 6 was added to the Test Guidelines Programme work plan in 2015. The project was 7 originally proposed by Sweden and the European Commission later joined the project as 8 a co-lead. In 2019, the OECD Secretariat was added to coordinate input from expert 9 consultants. The initial objectives of the project were to: 10 draft a review of the biology of retinoid signalling pathway, 11 describe retinoid-mediated effects on various organ systems, 12 identify relevant retinoid in vitro and ex vivo assays that measure mechanistic 13 effects of chemicals for development, and 14 Identify in vivo endpoints that could be added to existing test guidelines to 15 identify chemical effects on retinoid pathway signalling. 16 2. This DRP is intended to expand the recommendations for the retinoid pathway 17 included in the OECD Detailed Review Paper on the State of the Science on Novel In 18 vitro and In vivo Screening and Testing Methods and Endpoints for Evaluating 19 Endocrine Disruptors (DRP No 178). The retinoid signalling pathway was one of seven 20 endocrine pathways considered to be susceptible to environmental endocrine disruption 21 and for which relevant endpoints could be measured in new or existing OECD Test 22 Guidelines for evaluating endocrine disruption. Due to the complexity of retinoid 23 signalling across multiple organ systems, this effort was foreseen as a multi-step process.
    [Show full text]
  • Mice Exposed to N-Ethyl-N-Nitrosourea T
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 7866-7870, September 1992 Genetics Mutational spectrum at the Hprt locus in splenic T cells of B6C3F1 mice exposed to N-ethyl-N-nitrosourea T. R. SKOPEK*tt, V. E. WALKER*, J. E. COCHRANEt, T. R. CRAFTt, AND N. F. CARIELLO* *Department of Pathology and tDepartment of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Communicated by Kenneth M. Brinkhous, May 26, 1992 ABSTRACT We have determined the mutational spectrum quences for analysis. DGGE is based on the fact that the of N-ethyl-N-nitrosourea (ENU) in exon 3 of the hypoxanthine electrophoretic mobility of a DNA molecule in a polyacryl- guanine) phosphoribosyltransferase gene (Hprt) in splenic T amide gel is considerably reduced as the molecule becomes cells following in vivo exposure ofmale B6C3F1 mice (5-7 weeks partially melted (denatured). Mismatched heteroduplexes old) to ENU. Hpir mutants were isolated by culturing splenic formed by annealing wild-type and mutant DNA sequences T cells in microtiter dishes containing medium supplemented are always less stable than the corresponding perfectly base- with interleukin 2, concanavalin A, and 6-thiouanine. DNA paired homoduplexes and consequently melt at a lower was extracted from 6-thoa ne-sistant colonies and ampli- concentration of denaturant. Therefore, any mutant/wild- fied by the polymerase chain reaction (PCR) using primers type heteroduplex will always travel a shorter distance rel- flanking Hprt exon 3. Identification of mutant sequences and ative to wild-type homoduplexes in a gel containing a dient purification of mutant DNA from contaminating wild-type Hprt ofdenaturant.
    [Show full text]
  • Molecular Analysis of Hprt Gene Mutations in Skin Fibroblasts of Rats Exposed in Vivo to N-Methyl-N-Nitrosourea Or N-Ethyl-N-Nitrosourea'
    ICANCER RESEARCH54, 2478-2485, May 1, 19941 Molecular Analysis of hprt Gene Mutations in Skin Fibroblasts of Rats Exposed in Vivo to N-Methyl-N-nitrosourea or N-Ethyl-N-nitrosourea' Jacob G. Jansen,2 George it Mohn, Harry Vrieling, Come M. M. van Teijlingen, Paul H. M. Lohman, and Albert A. van Zeeland MGC-Department ofRadiation Genetics and Chemical Mutagenesis, State University ofLeiden, Wassenaarseweg 72, 2333 AL Leiden (J. G. J., H. V., C. M. M. v. T., P. H. M. L, A. A. v. Z.J; Laboratory of Carcinogenesis and Mutagenesis, National Institute of Public Health and Environmental Protection, Bilthoven [C. R. M.]; and J. A. Cohen Institute, Interuniversity Research Institute for Radiopathology and Radiation Protection, Leiden (H. V., A. A. v. Z.J, the Netherlands ABSTRACT apart from 06-guanine alkylation, MNU methylates preferentially the N-7 position of guanine and at a lower frequency the N-3 The granuloma pouch assay in the rat is a model system in which position of adenine, while ENU alkylates mostly phosphodiesters; relative frequencies of genetic and (pro-) neoplastic changes induced in vivo by carcinogenic agents can be determined within the same target and at lower frequencies the @2position of thymine and the N-7 tissue. The target is granuloma pouch tissue and consists of a population position of guanine. Ethylation by ENU at the N-3 position of of (transient) proliferating fibroblasts which can be cultured in vitro.hprt adenine, the 0― position of thymine, and the @2position of gene mutations were studied in granuloma pouch tissue of rats treated cytosine occurs at much lower frequencies.
    [Show full text]
  • Sequencing Chemically Induced Mutations in the Mutamouse Lacz
    bioRxiv preprint doi: https://doi.org/10.1101/858159; this version posted November 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 SEQUENCING CHEMICALLY INDUCED MUTATIONS IN THE MUTAMOUSE LACZ 2 REPORTER GENE IDENTIFIES HUMAN CANCER MUTATIONAL SIGNATURES 3 4 Marc A. Beal1,4*, Matt J. Meier2*, Danielle LeBlanc1, Clotilde Maurice1, Jason O’Brien3, Carole L. 5 Yauk1, Francesco Marchetti1,5 6 7 *These authors contributed equally to this work. 8 1Environmental Health Science and Research Bureau, Healthy Environments and Consumer 9 Safety Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada. 10 2Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario, 11 K1A 0H3, Canada. 12 3National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, 13 K1A 0H3, Canada. 14 4Present address: Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, 15 Ontario, Canada 16 5Corresponding author: [email protected] 17 18 Other email addresses: [email protected], [email protected], 19 [email protected], [email protected], [email protected], 20 [email protected] 21 22 Running title: Induced lacZ mutations and human cancer signatures 1 bioRxiv preprint doi: https://doi.org/10.1101/858159; this version posted November 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • N-Nitroso-N-Ethylurea
    Right to Know Hazardous Substance Fact Sheet Common Name: N-NITROSO-N-ETHYLUREA Synonyms: ENU; N-Ethyl-N-Nitrosourea CAS Number: 759-73-9 Chemical Name: Urea, N-Ethyl-N-Nitroso- RTK Substance Number: 1410 Date: April 2002 Revision: October 2009 DOT Number: UN 3077 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE N-Nitroso-N-Ethylurea is a light yellow powder or yellow-pink Hazard Summary crystal. It is used in tumor research and to make other Hazard Rating NJDOH NFPA chemicals. HEALTH 3 - FLAMMABILITY 1 - REACTIVITY 1 - CARCINOGEN TERATOGEN POISONOUS GASES ARE PRODUCED IN FIRE Reasons for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; f N-Nitroso-N-Ethylurea is on the Right to Know Hazardous 4=severe Substance List because it is cited by DOT, NTP, DEP, IARC and EPA. f N-Nitroso-N-Ethylurea can affect you when inhaled. f This chemical is on the Special Health Hazard Substance f N-Nitroso-N-Ethylurea is a CARCINOGEN and MUTAGEN, List. and may be a TERATOGEN. HANDLE WITH EXTREME CAUTION. f Contact can irritate the skin and eyes. f Inhaling N-Nitroso-N-Ethylurea can irritate the nose and throat. f Exposure can cause headache, dizziness, and lightheadedness. SEE GLOSSARY ON PAGE 5. f N-Nitroso-N-Ethylurea may affect the liver and kidneys. FIRST AID Eye Contact Workplace Exposure Limits f Immediately flush with large amounts of water for at least 15 No occupational exposure limits have been established for minutes, lifting upper and lower lids. Remove contact N-Nitroso-N-Ethylurea.
    [Show full text]
  • N-Ethyl-N-Nitrosourea Induced Leukaemia in a Mouse Model Through Upregulation of Vascular Endothelial Growth Factor and Evading Apoptosis
    cancers Article N-Ethyl-n-Nitrosourea Induced Leukaemia in a Mouse Model through Upregulation of Vascular Endothelial Growth Factor and Evading Apoptosis Abdullahi Aliyu 1,2,* , Mohd Rosly Shaari 3, Nurul Syahirah Ahmad Sayuti 1, Mohd Farhan Hanif Reduan 1, Shanmugavelu Sithambaram 3, Mustapha Mohamed Noordin 1, Khozirah Shaari 4 and Hazilawati Hamzah 1,* 1 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia; [email protected] (N.S.A.S.); [email protected] (M.F.H.R.); [email protected] (M.M.N.) 2 Department of Veterinary Pathology, Faculty of Veterinary Medicine, City Campus Complex, Usmanu Danfodiyo University, 840212 Sokoto, Sokoto State, Nigeria 3 Animal Science Research Centre, Malaysian Agricultural Research and Development Institute Headquarter, Serdang 43400, Selangor, Malaysia; [email protected] (M.R.S.); [email protected] (S.S.) 4 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia; [email protected] * Correspondence: [email protected] (A.A.); [email protected] (H.H.) Received: 17 December 2019; Accepted: 4 February 2020; Published: 13 March 2020 Abstract: Chemical carcinogens are commonly used to investigate the biology and prognoses of various cancers. This study investigated the mechanism of leukaemogenic effects of n-ethyl- n-nitrosourea (ENU) in a mouse model. A total of 14 3-week-old male Institute of Cancer Research (ICR)-mice were used for the study. The mice were divided into groups A and B with seven mice each. Group A served as the control while group B received intraperitoneal (IP) injections of 80 mg/kg ENU twice with a one-week interval and were monitored monthly for 3 months for the development of leukaemia via blood smear examination.
    [Show full text]
  • Retention of Induced Mutations in a Drosophila Reverse-Genetic Resource
    Genetics: Published Articles Ahead of Print, published on September 9, 2008 as 10.1534/genetics.108.092437 Retention of induced mutations in a Drosophila reverse-genetic resource Jennifer L. Cooper*+, Elizabeth A. Greene*, Bradley J. Till*‡, Christine A. Codomo*, Barbara T. Wakimoto§ and Steven Henikoff*+ *Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA +Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98107, USA §Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA ‡Present address: FAO/IAEA Agricultural and Biotechnology Laboratory A-2444 Seibersdorf, Austria Running head: Retention of induced mutations Key words: mutagenesis, TILLING, balancer chromosomes, mutational spectrum, ethyl methanesulfonate Corresponding author: Steven Henikoff, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024; Phone: (206) 667-4515; FAX (206) 667-5889; Email: [email protected] 2 ABSTRACT TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse-genetic method to identify point mutations in chemically mutagenized populations. For functional genomics, it is ideal to have a stable collection of heavily mutagenized lines that can be screened over an extended period of time. However, long-term storage is impractical for Drosophila, so mutant strains must be maintained by continual propagation of live cultures. Here we evaluate a strategy in which ethylmethane sulfonate (EMS) mutagenized chromosomes were maintained as heterozygotes with balancer chromosomes for over 100 generations before screening. The strategy yielded a spectrum of point mutations similar to those found in previous studies of EMS-induced mutations, as well as 2.4% indels (insertions and deletions). Our analysis of 1887 point mutations in 148 targets showed evidence for selection against deleterious lesions and differential retention of lesions among targets based on their position relative to balancer breakpoints, leading to a broad distribution of mutational densities.
    [Show full text]
  • 1,3-Butadiene: Cancer, Mutations, and Adducts Part I: Carcinogenicity of 1,2,3,4-Diepoxybutane 955 Massachusetts Avenue Number 92 Cambridge MA 02139 USA Rogene F
    RESEARCH REPORT 1,3-Butadiene: Cancer, Mutations, and Adducts Part I: Carcinogenicity of 1,2,3,4-Diepoxybutane 955 Massachusetts Avenue Number 92 Cambridge MA 02139 USA Rogene F. Henderson et al March 2000 +1-617-876-6700 Part II: Roles of Two Metabolites of 1,3-Butadiene www.healtheffects.org in Mediating Its in Vivo Genotoxicity RESEARCH Leslie Recio et al REPORT Part III: In Vivo Mutation of the Endogenous hprt Genes of Mice and Rats by 1,3-Butadiene Number 92 March 2000 and Its Metabolites Vernon E. Walker and Quanxin Meng Part IV: Molecular Dosimetry of 1,3-Butadiene Ian A. Blair et al Part V: Hemoglobin Adducts as Biomarkers of 1,3-Butadiene Exposure and Metabolism James A. Swenberg et al Includes Commentaries by the Institute’s Health Review Committee BOARD OF DIRECTORS Archibald Cox Chair Alice Huang Carl M Loeb University Professor (Emeritus), Harvard Law School Senior Councilor for External Relations, California Institute of Technology Donald Kennedy Vice Chair Susan B King The Health Effects Institute, established HEALTH Editor-in-Chief, Science; President (Emeritus) and Bing Professor of Fellow, Sanford Institute of Public Policy, Duke University EFFECTS in 1980, is an independent and unbiased Biological Sciences, Stanford University Richard B Stewart INSTITUTE source of information on the health Douglas Costle Professor, New York University School of Law effects of motor vehicle emissions. HEI Chairman of the Board and Distinguished Senior Fellow, Institute Robert M White for Sustainable Communities President (Emeritus),
    [Show full text]
  • TASOR Is a Pseudo-PARP That Directs HUSH Complex Assembly and Epigenetic Transposon Control
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.09.974832; this version posted March 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. TASOR is a pseudo-PARP that directs HUSH complex assembly and epigenetic transposon control Christopher H. Douse1,‡, Iva A. Tchasovnikarova2,‡, Richard T. Timms2,‡, Anna V. Protasio2, Marta Seczynska2, Daniil M. Prigozhin1, Anna Albecka1,2, Jane Wagstaff3, James C. Williamson2, Stefan M.V. Freund3, Paul J. Lehner2*, Yorgo Modis1,2* 1 Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK 2 Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK 3 Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK Current addresses: Department of Experimental Medical Science, Lund University, Sölvegatan 19, Lund, Sweden (C.H.D.); The Gurdon Institute, Tennis Court Road, Cambridge, UK (I.A.T.); Department of Pathology, Tennis Court Road, Cambridge, UK (A.V.P.); Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (D.M.P.) ‡These authors contributed equally *co-corresponding authors Keywords: Transcriptional repression; epigenetic silencing; antiretroviral response; genome stability; histone H3 lysine 9 methylation (H3K9me3); transposable element (TE); long interspersed nuclear element-1 (LINE-1); poly-ADP ribose polymerase (PARP); RNA-binding protein; RNA-induced transcriptional silencing; CUT&RUN; CUT&Tag; genome profiling 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.09.974832; this version posted March 11, 2020.
    [Show full text]
  • Relevance of N-Nitroso Compounds to Human Cancer: Exposures and Mechanisms
    WORLD HEALTH ORGANIZATION ' Ю INTERNATIONAL AGENCY FOR RESEARCH ON CANCER RELEVANCE OF N-NITROSO COMPOUNDS TO HUMAN CANCER: EXPOSURES AND MECHANISMS Proceedings of the IXth International Symposium on N-Nitroso Compounds, held in Baden, Austria, 1-5 SeptemЬеr 1986 Co-sponsored by: National Cancer Institute (USA) Dr M. Okada Giapan) and associated Japanese industrial sponsors Thermedics Inc. (USA) Ciba-Geigy (Switzerland) Imperial Chemical Industries (UK) EDITORS H. BARTSCH, T.K. 0 NЕILL & R. SCHULTE-HERMANN JAR SCIENTIFIC PUBLICATIONS NO. 84 INTERNATIONAL AGENCY FOR RESEARCH ON CANCER LYON 1987 CONTENTS Foreword.................................................................. 1 Introduction................................................................ 3 Overview................................................................... 5 Keynote address P.N. Magee ............................................................. 11 1. MOLECULAR AND BIOCHEMICAL MECHANISMS Biochemical events in nitrosamine-induced hepatocarcinogenesis: relevance of animal data to human carcinogenesis R.Schulte-Hermann .....................................................17 Biochemical and molecular effects of N-nitroso compounds in human cultured cells: an overview C.C. Harris .............................................................20 Activation of the human c-Ha-ras-1 proto-oncogene by in-vitro reaction with N-nitroso- methyl(acetoxymethyl)amine S. Hirani-Hojatti, J.R. Milligan & M.C. Archer ..............................26 Specificity of OЬ-alkylguanine-DNA
    [Show full text]
  • Mutational Analysis of N-Ethyl-N-Nitrosourea (ENU) In
    bioRxiv preprint doi: https://doi.org/10.1101/486266; this version posted December 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Mutational analysis of N-ethyl-N-nitrosourea (ENU) in 2 the fission yeast Schizosaccharomyces pombe. 3 Rafael Hoyos-Manchado1, Juan Jiménez1* and Víctor A. Tallada1* 4 1Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo 5 Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain. 6 *Corresponding authors 7 E-mail: [email protected] 8 9 10 11 12 13 14 15 16 17 1 bioRxiv preprint doi: https://doi.org/10.1101/486266; this version posted December 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 18 Abstract 19 Forward genetics has boosted our knowledge on genic function in a multitude of 20 biological models and it has significantly contributed to the understanding of genetic 21 bases of development, ageing and human diseases. With the advent of the next 22 generation sequencing and use of powerful bioinformatic tools, this traditional genetic 23 strategy has acquired a new impulse. At present, whole genome sequencing assisted by 24 in silico analysis allows the rapid and efficient identification of gene variants that are 25 responsible for a particular phenotype.
    [Show full text]
  • Ems) and N-Nitrose-N´-Ethyl Urea (Enu
    ORIGINAL PAPER EFFECT OF ETHYL METHANESULFONATE (EMS) AND N-NITROSE-N´-ETHYL UREA (ENU) ON CALLUS GROWTH OF COMMON BEAN ВЛИЯНИЕ НА ЕТИЛМЕТАН СУЛФОНАТА (EMС) И N-НИТРОЗО-N´-ETИЛ КАРБАМИДА (НEК) ВЪРХУ РАСТЕЖА НА КАЛУС ОТ ФАСУЛ Diana Lilova SVETLEVA1, Paola CRINÓ2 1Department of Genetics and Plant Breeding, Agricultural University, 4000 Plovdiv, Bulgaria 2ENEA C.R. Casaccia,UTS Biotecnologie, Protezione della Salute e degli Ecosistemi, 00060 Rome, Italy Manuscript received: October 14, 2005; Reviewed: February 16, 2005; Accepted for publication: March 12, 2005 ABSTRACT Infl uence of ethyl methanesulfonate (EMS) and N-nitrose-N´-ethyl urea (ENU) mutagenic treatments was investigated on three time sub-cultured calli obtained from leaf petiole explants of 7-day old sterile plants. Calibrated sterile seeds of the common bean Bulgarian variety Plovdiv 11M were pre-cultivated on MS basal medium supplemented with 1 µmM BAP. Then, both mutagens EMS and ENU were applied for different times such as 15, 30, 60 and 90 min on the explants at the concentrations of: 2.5 . 10-2 M and 6.2 . 10-3 M, respectively. Times of the mutagenic treatments infl uenced callus growth, calli from 30-min treatment with both mutagens showing the highest weights. In both cases, the 90-min mutagen application caused a too relevant effect either on callus browning or growth inhibition. In general, ENU showed a stronger effect than EMS. The effect of subcultures on callus growth was higher than mutagenic treatments. Interactions between these factors checked by by correlation ratio (η%) were quite low. KEY WORDS: Ethyl methanesulfonate (EMS), in vitro cultivation, mutagens, N-nitrose-N´-ethyl urea (ENU), Phaseolus vulgaris L.
    [Show full text]