Newsletter #30 (2017)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abundance, Distribution, Population Structure, and Substrate Use of Ambystoma Altamirani Along the Arroyo Los Axolotes, State of Mexico, Mexico
Herpetological Conservation and Biology 15(1):188–197. Submitted: 16 August 2019; Accepted: 23 February 2020; Published: 30 April 2020. ABUNDANCE, DISTRIBUTION, POPULATION STRUCTURE, AND SUBSTRATE USE OF AMBYSTOMA ALTAMIRANI ALONG THE ARROYO LOS AXOLOTES, STATE OF MEXICO, MEXICO VIRIDIANA VILLARREAL HERNÁNDEZ1, GEOFFREY R. SMITH2, RAYMUNDO MONTOYA AYALA3, AND JULIO A. LEMOS-ESPINAL1,4 1Laboratorio de Ecología - Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Avendina Los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México 2Department of Biology, Denison University, Granville, Ohio 43023, USA 3Laboratorio de Cómputo - Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Avenida Los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México 4Corresponding author: e-mail: [email protected] Abstract.—Ambystomatid salamanders in central Mexico are confronted by anthropogenic threats that can limit their distribution and abundance. Ambystoma altamirani (Mountain Stream Siredon) is listed as Endangered by the International Union for Conservation of Nature (IUCN) Red List and as Threatened by the Mexican government. We report on the distribution, abundance, occupancy, population structure, and substrate use of A. altamirani, a stream dwelling salamander, along the Arroyo los Axolotes, Sierra de las Cruces, Mexico. We observed A. altamirani at least once during repeated surveys between February 2018 to December 2018 in 24 of 25 permanent 5-m long reaches separated by 40 m. The best model for occupancy had constant occupancy, detection, extinction, and colonization probabilities. Sites that dried at some time during the study had fewer observed individuals than those that did not dry. Size structure was relatively constant throughout the year, except for the appearance of small larvae in May, June, and July. -
Ouachita Mountains Ecoregional Assessment December 2003
Ouachita Mountains Ecoregional Assessment December 2003 Ouachita Ecoregional Assessment Team Arkansas Field Office 601 North University Ave. Little Rock, AR 72205 Oklahoma Field Office 2727 East 21st Street Tulsa, OK 74114 Ouachita Mountains Ecoregional Assessment ii 12/2003 Table of Contents Ouachita Mountains Ecoregional Assessment............................................................................................................................i Table of Contents ........................................................................................................................................................................iii EXECUTIVE SUMMARY..............................................................................................................1 INTRODUCTION..........................................................................................................................3 BACKGROUND ...........................................................................................................................4 Ecoregional Boundary Delineation.............................................................................................................................................4 Geology..........................................................................................................................................................................................5 Soils................................................................................................................................................................................................6 -
Predation and Competition Among Larval Salamanders: The
PREDATION AND COMPETITION AMONG LARVAL SALAMANDERS: THE INFLUENCE OF DENSITY DEPENDENCE, PHENOLOGY, FOOD WEB STRUCTURE AND HABITAT COMPLEXITY A Dissertation Presented to the Faculty of the Graduate School at the University of Missouri-Columbia In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy by THOMAS LEE ANDERSON Dr. Raymond D. Semlitsch, Dissertation Advisor MAY 2016 Dedicated to Raymond D. Semlitsch and Rosemary S. Anderson ACKNOWLEDGEMENTS The number of people that contribute to someone completing a dissertation is innumerable. I owe a great of my development as a scientist to Ray Semlitsch, who pushed me to be better in every possible way. I would not be where I am today without your guidance, advice and support. I will miss the visits to your office to work out some complex problem and instead talking about hunting. Completing this work would not have been possible without the experiences I had prior to graduate school, made possible by Dr. Chris Floyd and the Rocky Mountain Biological Lab, Katie Derr, Dane Cramer and the E.B. Forsythe NWR, and Doug Tempel, Vince Berigan and Sheila Whitmore at Blodgett Forest Station. At Mizzou, this work would not have been possible or nearly as enjoyable without the help of an amazing lab group: Bill Peterman, Grant Connette, Mark Mackey, Britt Ousterhout, Dana Drake, Katie O’Donnell, Jake Burkhart, Freya Rowland, Arianne Messerman, Julia Earl, Rachelle Riegerix, Shannon Pittman, Tom Luhring, Mike Osbourn, and Holly Puglis. All of you made an office space that will be unmatched. I would like thank Ricardo Holdo, Matt Gompper, Debbie Finke and Rex Cocroft for always supporting projects that I was working on, and providing feedback on ideas and manuscripts. -
Winter Breeding As a Common Occurrence in the Ringed
Journal of the Arkansas Academy of Science Volume 54 Article 31 2000 Winter Breeding as a Common Occurrence in the Ringed Salamander, Ambystoma annulatum (Caudata: Ambystomatidae), in the Ozark National Forest of Northcentral Arkansas Stanley E. Trauth Arkansas State University Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Trauth, Stanley E. (2000) "Winter Breeding as a Common Occurrence in the Ringed Salamander, Ambystoma annulatum (Caudata: Ambystomatidae), in the Ozark National Forest of Northcentral Arkansas," Journal of the Arkansas Academy of Science: Vol. 54 , Article 31. Available at: http://scholarworks.uark.edu/jaas/vol54/iss1/31 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This General Note is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 54 [2000], Art. 31 Winter Breeding as a Common Occurrence in the Ringed Salamander, Ambystoma annulatum (Caudata: -
Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles & Crocodilians
STANDARD COMMON AND CURRENT SCIENTIFIC NAMES FOR NORTH AMERICAN AMPHIBIANS, TURTLES, REPTILES & CROCODILIANS Sixth Edition Joseph T. Collins TraVis W. TAGGart The Center for North American Herpetology THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY www.cnah.org Joseph T. Collins, Director The Center for North American Herpetology 1502 Medinah Circle Lawrence, Kansas 66047 (785) 393-4757 Single copies of this publication are available gratis from The Center for North American Herpetology, 1502 Medinah Circle, Lawrence, Kansas 66047 USA; within the United States and Canada, please send a self-addressed 7x10-inch manila envelope with sufficient U.S. first class postage affixed for four ounces. Individuals outside the United States and Canada should contact CNAH via email before requesting a copy. A list of previous editions of this title is printed on the inside back cover. THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY BO A RD OF DIRE ct ORS Joseph T. Collins Suzanne L. Collins Kansas Biological Survey The Center for The University of Kansas North American Herpetology 2021 Constant Avenue 1502 Medinah Circle Lawrence, Kansas 66047 Lawrence, Kansas 66047 Kelly J. Irwin James L. Knight Arkansas Game & Fish South Carolina Commission State Museum 915 East Sevier Street P. O. Box 100107 Benton, Arkansas 72015 Columbia, South Carolina 29202 Walter E. Meshaka, Jr. Robert Powell Section of Zoology Department of Biology State Museum of Pennsylvania Avila University 300 North Street 11901 Wornall Road Harrisburg, Pennsylvania 17120 Kansas City, Missouri 64145 Travis W. Taggart Sternberg Museum of Natural History Fort Hays State University 3000 Sternberg Drive Hays, Kansas 67601 Front cover images of an Eastern Collared Lizard (Crotaphytus collaris) and Cajun Chorus Frog (Pseudacris fouquettei) by Suzanne L. -
Seasonal Migration by a Terrestrial Salamander, Plethodon Websteri (Webster’S Salamander)
Herpetological Conservation and Biology 12:96–108. Submitted: 6 August 2016; Accepted: 4 January 2017; Published: 30 April 2017. Seasonal Migration by a Terrestrial Salamander, Plethodon websteri (Webster’s Salamander) Thomas M. Mann1,3 and Debora L. Mann2,3,4 1Mississippi Natural Heritage Program, Mississippi Department of Wildlife, Fisheries and Parks, Mississippi Museum of Natural Science, 2148 Riverside Drive, Jackson, Mississippi 39202, USA 2Millsaps College, 1701 North State Street, Jackson, Mississippi 39210, USA 3Authors contributed equally 4Corresponding author, e-mail: [email protected] Abstract.—We report seasonal, horizontal migration by a winter-active, terrestrial salamander, Plethodon websteri, away from a limestone outcrop upon their emergence in the fall and toward the outcrop in spring. We made 3,597 captures (including recaptures) using a series of three drift fences erected at 9 m, 65 m, and 84 m from the outcrop. Peak months for travel were November, when 98% of captures were on the sides of the fences facing the outcrop, and March, when 96% of captures were on the sides facing away from the outcrop, as expected if salamanders were moving away from the outcrop in fall and returning in spring. Recapture of salamanders that we marked with visual implant elastomer confirmed that animals move from the outcrop in fall and initiated movement toward the outcrop in spring from as much as 150 m. To our knowledge this is the third report of horizontal migration in a Plethodon species and the first to be confirmed by mark-recapture. We suggest that crevices in rocks provide refugia and oviposition sites deep enough to afford protection from heat and desiccation in summer forP. -
Identifying Priority Ecoregions for Amphibian Conservation in the U.S. and Canada
Acknowledgements This assessment was conducted as part of a priority setting effort for Operation Frog Pond, a project of Tree Walkers International. Operation Frog Pond is designed to encourage private individuals and community groups to become involved in amphibian conservation around their homes and communities. Funding for this assessment was provided by The Lawrence Foundation, Northwest Frog Fest, and members of Tree Walkers International. This assessment would not be possible without data provided by The Global Amphibian Assessment, NatureServe, and the International Conservation Union. We are indebted to their foresight in compiling basic scientific information about species’ distributions, ecology, and conservation status; and making these data available to the public, so that we can provide informed stewardship for our natural resources. I would also like to extend a special thank you to Aaron Bloch for compiling conservation status data for amphibians in the United States and to Joe Milmoe and the U.S. Fish and Wildlife Service, Partners for Fish and Wildlife Program for supporting Operation Frog Pond. Photo Credits Photographs are credited to each photographer on the pages where they appear. All rights are reserved by individual photographers. All photos on the front and back cover are copyright Tim Paine. Suggested Citation Brock, B.L. 2007. Identifying priority ecoregions for amphibian conservation in the U.S. and Canada. Tree Walkers International Special Report. Tree Walkers International, USA. Text © 2007 by Brent L. Brock and Tree Walkers International Tree Walkers International, 3025 Woodchuck Road, Bozeman, MT 59715-1702 Layout and design: Elizabeth K. Brock Photographs: as noted, all rights reserved by individual photographers. -
A Microhabitat Analysis for the Plethodon Dorsalis
WHERE THE ZIGZAGS GO: A MICROHABITAT ANALYSIS FOR THE PLETHODON DORSALIS COMPLEX WITHIN THE TENNESSEE RIVER GORGE By Tegan Childers Thomas P. Wilson A.K.M. Azad Hossain UC Foundation Professor of Assistant Professor of Biology, Biology, Geology, and Environmental Science Geology, and Environmental Science (Chair) (Committee Member) Sumith Gunasekera Bradley R. Reynolds Associate Professor, Mathematics Senior Lecturer of Biology, (Committee Member) Geology, and Environmental Science (Committee Member) WHERE THE ZIGZAGS GO: A MICROHABITAT ANALYSIS FOR THE PLETHODON DORSALIS COMPLEX WITHIN THE TENNESSEE RIVER GORGE By Tegan Childers A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements of the Degree of Master of Science: Environmental Science The University of Tennessee at Chattanooga Chattanooga, Tennessee June 2020 ii Copyright © 2020 By Tegan Childers All Rights Reserved iii ABSTRACT Northern Zigzag salamanders (Plethodon dorsalis) are an understudied bioindicator of many ecosystems in the southeastern United States. Population sampling is conducted within the Tennessee River Gorge by surveying three 2,000 m² sites from October 28, 2018 to June 8, 2019. Landscape data are mapped using ArcGIS. Salamanders are located using a time-based natural cover object survey method. Microhabitat is analyzed within 1 m² of each location using paired locations for presence and absence. This assessment attempts to identify differences in microhabitat preference based on selected versus available habitat using predictive geospatial models and AICc values. These AICс values demonstrate the performance of covariates measured and model fit in relation to salamander presence. Results support that different factors influence the distribution of P. -
Territorial Behavior of the Ozark Zigzag Salamander, Plethodon Angusticlavius, Altered by Mode of Predator Cue and Sex of Intruder
BearWorks MSU Graduate Theses Spring 2019 Territorial Behavior of the Ozark Zigzag Salamander, Plethodon angusticlavius, Altered by Mode of Predator Cue and Sex of Intruder Sarah E. Heimbach Missouri State University, [email protected] As with any intellectual project, the content and views expressed in this thesis may be considered objectionable by some readers. However, this student-scholar’s work has been judged to have academic value by the student’s thesis committee members trained in the discipline. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees. Follow this and additional works at: https://bearworks.missouristate.edu/theses Part of the Animal Studies Commons, Behavior and Ethology Commons, and the Biology Commons Recommended Citation Heimbach, Sarah E., "Territorial Behavior of the Ozark Zigzag Salamander, Plethodon angusticlavius, Altered by Mode of Predator Cue and Sex of Intruder" (2019). MSU Graduate Theses. 3371. https://bearworks.missouristate.edu/theses/3371 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. TERRITORIAL BEHAVIOR OF THE OZARK ZIGZAG SALAMANDER, PLETHODON ANGUSTICLAVIUS, ALTERED BY MODE OF PREDATOR CUE AND SEX OF INTRUDER A Master’s Thesis Presented to The Graduate College of Missouri State University TEMPLATE In Partial Fulfillment Of the Requirements for the Degree Master of Science, Biology By Sarah E. -
Observation of Predation by a Lycosid Spider on a Captive-Reared Salamander Larva (Ambystoma Annulatum)
Herpetology Notes, volume 8: 455-457 (published online on 12 August 2015) Observation of predation by a lycosid spider on a captive-reared salamander larva (Ambystoma annulatum) Adam Crane1,* and Alicia Mathis2 Salamanders in the family Ambystomatidae oviposit development in some amphibian species (Warkentin, in ponds where their offspring hatch and develop as 2011; Boone et al., 2002). The egg mass was placed in aquatic larvae for a period of weeks to years before a 19 L bucket containing 6 L of pond water. An airstone metamorphosizing and moving onto land (Wells, 2010). provided aeration at the surface of the water from a During their larval stage, individuals face a variety of battery powered pump. The eggs were transported by predators such as diving beetle larvae, wading birds, vehicle to our laboratory (Fig. 1A) where they were and other salamanders (Duellman and Trueb, 1986). held in an aerated plastic container (31×17.5×10.5 cm). Wolf spiders (Lycosidae) are known predators of some Upon hatching, larvae were fed by adding pond water frogs (Formanowicz et al., 1981) and terrestrial eggs of containing daphnia. As larvae grew over the winter, some salamanders (Villa et al., 1982). In experimental we switched their diet to live bloodworms (3 feedings trials, Rubbo et al. (2003) found that wolf spiders would of 5-10 worms per week) and moved larvae into feed on terrestrial spotted salamanders (Ambystoma individual plastic containers (10×10×9 cm; Fig. 1B) to maculatum) by envenomation with their chelicerae. prevent cannibalism. Water changes with dechlorinated However, we are not aware of any literature reporting tap water were also conducted three times per week. -
Influences of Riparian Land-Uses on Habitat Use
Clemson University TigerPrints All Dissertations Dissertations 8-2013 INFLUENCES OF RIPARIAN LAND-USES ON HABITAT USE AND INTERSPECIFIC COMPETITION OF STREAM-DWELLING SALAMANDERS: EVIDENCE FROM BLUE RIDGE & PIEDMONT Thilina Surasinghe Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Ecology and Evolutionary Biology Commons Recommended Citation Surasinghe, Thilina, "INFLUENCES OF RIPARIAN LAND-USES ON HABITAT USE AND INTERSPECIFIC COMPETITION OF STREAM-DWELLING SALAMANDERS: EVIDENCE FROM BLUE RIDGE & PIEDMONT" (2013). All Dissertations. 1179. https://tigerprints.clemson.edu/all_dissertations/1179 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. INFLUENCES OF RIPARIAN LAND-USES ON HABITAT USE AND INTERSPECIFIC COMPETITION OF STREAM-DWELLING SALAMANDERS: EVIDENCE FROM BLUE RIDGE & PIEDMONT A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Wildlife and Fisheries Biology by Thilina Dilan Surasinghe August 2013 Accepted by: Dr. Robert F. Baldwin, Committee Chair Dr. Bryan L. Brown Dr. Mark C. Scott Dr. Michael J. Childress Dr. John J. Hains i ABSTRACT Human-induced disturbances can result in persistent influences on ecosystems, including habitat loss and -
Section 8. Appendices
Section 8. Appendices Appendix 1.1 — Acronyms Terminology AWAP – Arkansas Wildlife Action Plan BMP – Best Management Practice CWCS — Comprehensive Wildlife Conservation Strategy EO — Element Occurrence GIS — Geographic Information Systems SGCN — Species of Greatest Conservation Need LIP — Landowner Incentive Program MOA — Memorandum of Agreement ACWCS — Arkansas Comprehensive Wildlife Conservation Strategy SWG — State Wildlife Grant LTA — Land Type Association WNS — White-nose Syndrome Organizations ADEQ — Arkansas Department of Environmental Quality AGFC — Arkansas Game and Fish Commission AHTD — Arkansas Highway and Transportation Department ANHC — Arkansas Natural Heritage Commission ASU — Arkansas State University ATU — Arkansas Technical University FWS — Fish and Wildlife Service HSU — Henderson State University NRCS — Natural Resources Conservation Service SAU — Southern Arkansas University TNC — The Nature Conservancy UA — University of Arkansas (Fayetteville) UA/Ft. Smith — University of Arkansas at Fort Smith UALR — University of Arkansas at Little Rock UAM — University of Arkansas at Monticello UCA — University of Central Arkansas USFS — United States Forest Service 1581 Appendix 2.1. List of Species of Greatest Conservation Need by Priority Score. List of species of greatest conservation need ranked by Species Priority Score. A higher score implies a greater need for conservation concern and actions. Priority Common Name Scientific Name Taxa Association Score 100 Curtis Pearlymussel Epioblasma florentina curtisii Mussel 100