Observation of Predation by a Lycosid Spider on a Captive-Reared Salamander Larva (Ambystoma Annulatum)

Total Page:16

File Type:pdf, Size:1020Kb

Observation of Predation by a Lycosid Spider on a Captive-Reared Salamander Larva (Ambystoma Annulatum) Herpetology Notes, volume 8: 455-457 (published online on 12 August 2015) Observation of predation by a lycosid spider on a captive-reared salamander larva (Ambystoma annulatum) Adam Crane1,* and Alicia Mathis2 Salamanders in the family Ambystomatidae oviposit development in some amphibian species (Warkentin, in ponds where their offspring hatch and develop as 2011; Boone et al., 2002). The egg mass was placed in aquatic larvae for a period of weeks to years before a 19 L bucket containing 6 L of pond water. An airstone metamorphosizing and moving onto land (Wells, 2010). provided aeration at the surface of the water from a During their larval stage, individuals face a variety of battery powered pump. The eggs were transported by predators such as diving beetle larvae, wading birds, vehicle to our laboratory (Fig. 1A) where they were and other salamanders (Duellman and Trueb, 1986). held in an aerated plastic container (31×17.5×10.5 cm). Wolf spiders (Lycosidae) are known predators of some Upon hatching, larvae were fed by adding pond water frogs (Formanowicz et al., 1981) and terrestrial eggs of containing daphnia. As larvae grew over the winter, some salamanders (Villa et al., 1982). In experimental we switched their diet to live bloodworms (3 feedings trials, Rubbo et al. (2003) found that wolf spiders would of 5-10 worms per week) and moved larvae into feed on terrestrial spotted salamanders (Ambystoma individual plastic containers (10×10×9 cm; Fig. 1B) to maculatum) by envenomation with their chelicerae. prevent cannibalism. Water changes with dechlorinated However, we are not aware of any literature reporting tap water were also conducted three times per week. predation of ambystomatid salamanders by any spider During the spring, these larvae were used in behavioural in the wild. Herein, we report a novel observation of experiments where they were exposed to snake odours, predation by a wolf spider on a larval ringed salamander and their movement was quantified to assess innate (Ambystoma annulatum, Cope 1886) in its home pond predator recognition. Throughout their time in the after being raised in captivity (details below). Previously laboratory, the larvae were apparently healthy, showing known predators of this species include dragonfly larvae no signs of chytrid (Batrachochytrium dendrobatidis) (Crane et al., 2012) and cannibalistic conspecifics infection (e.g., redness, skin sloughing), while growing (Mathis et al., 2003). without deformity and feeding readily. During October 2010, we collected a clutch of On the afternoon of 11 May 2011, we released 20 ringed salamander eggs from a pond (36.5619°N, individual larvae (~8 cm in total length) back into 93.0802°W, WGS 84) at Bull Shoals Field Station in their home pond. This release was approved by the southwestern Missouri, U.S.A. The eggs were laid on local conservation authority (Missouri Department a small twig that we completely removed in order to of Conservation) because this salamander species is a minimize mechanical disturbance to the eggs which species of local conservation concern, being endemic to can affecting the timing of hatching and morphological the Ozarks region of Missouri, Arkansas, and Oklahoma, U.S.A. Following the release, we observed the larvae for about 20 min. In contrast to wild individuals, these larvae were much more active at the surface of the water (Fig. 1C), similar to their behaviour in the laboratory when expecting food. Within five minutes one individual was 1 Department of Biology, University of Saskatchewan, 112 ambushed by a wolf spider (Dolomedes sp.) that moved Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada 2 Biology Department, Missouri State University, 901 S. out onto the water’s surface to envenomate the larva in National, Springfield, Missouri 65897, USA the neck (Fig. 1D). * Corresponding author e-mail: [email protected] Because these salamanders were collected from the 456 Adam Crane & Alicia Mathis Figure 1. The collected clutch of Ambystoma annulatum (A), and a larva housed in the laboratory (B). Larval surface behaviour (C) might result in predation risk from lycosid spiders (D). pond as embryos, they had no larval experience in their from captivity may become easy targets because they natural habitat, although we cannot address the extent fail to recognize predation risk and have not learned to which this predation event resulted from the lack of critical antipredator responses (Gall and Mathis, 2010). experience of this individual. The naiveté of released A few programs have begun rearing salamanders for animals is of much interest to captive-rearing programs. release into the wild. In one study, 5-yr old salamanders Indeed, captive-reared animals can be poorly prepared (Cryptobranchus alleganiensis) were released and for challenges in their natural habitats (Huntingford, monitored with radio-telemetry, but overall survivorship 2004). Hatchery-raised fish have shown maladaptive after one year was lower than that estimated for wild behaviours such as poor motivation to feed (Crane et al., conspecifics (Bodinof et al., 2012). This was attributed 2015) and insufficient antipredator behaviour (Jackson to a variety of factors including naiveté. In our et al., 2011). While the idea of missing antipredator experimental work with this species (Crane and Mathis, behaviour is not new (Darwin, 1839), animals released 2011), and numerous studies on other taxa, captive- Predation by a lycosid spider on a captive-reared salamander larva 457 reared prey have been trained to recognize predators rearing conditions for the behaviour of cultivated fishes. Journal via classical conditioning (i.e., exposure to pairings of of Fish Biology 65: 122-142. novel predator cues with attack-released cues). While Formanowicz, D.R., Stewart, M.M., Townsend, K., Pough, F.H. , Brussard, P.F. (1981): Predation by giant crab spiders on the little research on released animals has been conducted, puerto rican frog Eleutherodactylus coqui. Herpetologica 37: predator training can increase post-release survival 125-129. (Shier and Owings, 2007; Polo-Cavia and Gomez- Gall, B.G. , Mathis, A. (2010): Innate predator recognition and the Mestre, 2014). problem of introduced trout. Ethology 116: 47-58. This report of the predation event upon a captive- Jackson, C.D., Brown, G.E. , Fleming, I. (2011): Differences in released salamander is a novel observation, but antipredator behaviour between wild and hatchery-reared determining whether it resulted from a deficiency in juvenile atlantic salmon (Salmo salar) under seminatural conditions. Canadian Journal of Fisheries and Aquatic Sciences captive rearing (developmental, morphological or 68: 2157-2166. behavioural) or is a typical occurrence for A. annulatum Mathis, A., Murray, K.L. , Hickman, C.R. (2003): Do experience in the wild would require controlled experimentation. and body size play a role in responses of larval ringed Captive-release programs should consider monitoring salamanders, Ambystoma annulatum, to predator kairomones? individuals that are raised under different hatchery Laboratory and field assays. Ethology 109: 159-170. conditions (e.g., predator trained or untrained) to Polo-Cavia, N. , Gomez-Mestre, I. (2014): Learned recognition pinpoint methods for improving post-release survival. of introduced predators determines survival of tadpole prey. Functional Ecology 28: 432-439. Rubbo, M.J., Townsend, V.R., Smyers, S.D. , Jaeger, R.G. Acknowledgements. We thank Brian Gall for critically reading (2003): An experimental assessment of invertebrate/vertebrate the manuscript. Support for our work came from the Bull predation: The interaction between wolf spiders (Gladicosa Shoals Field Station and the Biology Department at Missouri pulchra) and terrestrial salamanders (Ambystoma maculatum). State University. Animal use was approved by Missouri State Journal of Zoology 261: 1-5. University (IACUC # 10030) and the Missouri Department of Shier, D.M. , Owings, D.H. (2007): Effects of social learning on Conservation (permit # 14363). predator training and postrelease survival in juvenile black- tailed prairie dogs, Cynomys ludovicianus. Animal Behaviour References 73: 567-577. Villa, J., Mcdiarmid, R.W. , Gallardo, J.M. (1982): Arthropod Bodinof, C.M., Briggler, J.T., Junge, R.E., Mong, T., Beringer, predators of leptodactylid frog foam nests. Brenesia 19/20: 577- J., Wanner, M.D., Schuette, C.D., Ettling, J. , Millspaugh, J.J. 589. (2012): Survival and body condition of captive-reared juvenile Warkentin, K.M. (2011): Plasticity of hatching in amphibians: ozark hellbenders (Cryptobranchus alleganiensis bishopi) Evolution, trade-offs, cues and mechanisms. Integrative and following translocation to the wild. Copeia 2012: 150-159. Comparative Biology 51: 111-127. Boone, M.D., Scott, D.E., Niewiarowski, P.H. , Montgomery, Wells, K.D. (2010): The ecology and behavior of amphibians. W. (2002): Effects of hatching time for larval ambystomatid Chicago, University of Chicago Press. salamanders. Copeia 2002: 511-517. Crane, A.L., Lampe, M.J. , Mathis, A. (2015): Maladaptive behavioural phenotypes in captive-reared darters (Etheostoma caeruleum, storer 1845). Journal of Applied Ichthyology 31: 787-782. Crane, A.L. , Mathis, A. (2011): Predator-recognition training: A conservation strategy to increase postrelease survival of hellbenders in head-starting programs. Zoo Biology 30: 611- 622. Crane, A., Mathis, A. , Mcgrane, C. (2012): Socially facilitated antipredator behavior by ringed salamanders (Ambystoma annulatum). Behavioral Ecology and Sociobiology 66: 811- 817. Darwin, C. (1839): The voyage of the Beagle: Journal of researches into the natural history and geology of the countries visited during the voyage of HMS Beagle round the world. London, Henry Colburn. Duellman, W.E. , Trueb, L. (1986): Biology of amphibians. Accepted by Vaclav Gvozdik Baltimore, JHU Press. Huntingford, F.A. (2004): Implications of domestication and .
Recommended publications
  • Abundance and Community Composition of Arboreal Spiders: the Relative Importance of Habitat Structure
    AN ABSTRACT OF THE THESIS OF Juraj Halaj for the degree of Doctor of Philosophy in Entomology presented on May 6, 1996. Title: Abundance and Community Composition of Arboreal Spiders: The Relative Importance of Habitat Structure. Prey Availability and Competition. Abstract approved: Redacted for Privacy _ John D. Lattin, Darrell W. Ross This work examined the importance of structural complexity of habitat, availability of prey, and competition with ants as factors influencing the abundance and community composition of arboreal spiders in western Oregon. In 1993, I compared the spider communities of several host-tree species which have different branch structure. I also assessed the importance of several habitat variables as predictors of spider abundance and diversity on and among individual tree species. The greatest abundance and species richness of spiders per 1-m-long branch tips were found on structurally more complex tree species, including Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco and noble fir, Abies procera Rehder. Spider densities, species richness and diversity positively correlated with the amount of foliage, branch twigs and prey densities on individual tree species. The amount of branch twigs alone explained almost 70% of the variation in the total spider abundance across five tree species. In 1994, I experimentally tested the importance of needle density and branching complexity of Douglas-fir branches on the abundance and community structure of spiders and their potential prey organisms. This was accomplished by either removing needles, by thinning branches or by tying branches. Tying branches resulted in a significant increase in the abundance of spiders and their prey. Densities of spiders and their prey were reduced by removal of needles and thinning.
    [Show full text]
  • Reflections on the Tapetum Lucidum and Eyeshine in Lycosoid Spiders
    2013. The Journal of Arachnology 41:43–52 Reflections on the tapetum lucidum and eyeshine in lycosoid spiders Kari Benson: School of Sciences, Lynchburg College, 1501 Lakeside Dr., Lynchburg, Virginia 24501, USA. E-mail: [email protected] Robert B. Suter: Department of Biology, Vassar College, 124 Raymond Avenue, Poughkeepsie, New York 12603, USA Abstract. In the lycosoid spiders, the secondary eyes possess a grate-shaped tapetum lucidum that reflects light, causing eyeshine when these spiders are viewed with approximately coaxial illumination. This guanine-based reflective surface is thought to increase visual capabilities in low light. We explored the eyeshine of the posterior medial eye in eight taxa of pisaurid and lycosid spiders. The taxa included four pisaurids: Dolomedes tenebrosus Hentz 1844, D. triton (Walckenaer 1837), D. scriptus Hentz 1845 and D. vittatus Walckenaer 1837; and four lycosids: Gladicosa pulchra (Keyserling 1877), Hogna sp. (cf. Lycosa lenta (Hentz 1844) sensu Wallace 1942), Rabidosa punctulata (Hentz 1844) and Varacosa avara (Keyserling 1877). We found that there were significant family- and species-level differences in both the reflected spectra and the intensity of reflection. Although the peaks of the reflected spectra were in the green range for all spiders, the mean peak was further toward the blue end of the spectrum for the lycosids than for the pisaurids. Variation among species (about 54% of the total variation) was dominated by G. pulchra (Lycosidae) and D. vittatus (Pisauridae), both of whose spectra peaked near yellow, vs. V. avara (Lycosidae), whose spectra peaked to the blue side of green. The lycosid spiders showed overall brighter eyeshine.
    [Show full text]
  • Estimating Spider Species Richness in a Southern Appalachian Cove Hardwood Forest
    1996. The Journal of Arachnology 24:111-128 ESTIMATING SPIDER SPECIES RICHNESS IN A SOUTHERN APPALACHIAN COVE HARDWOOD FOREST Jonathan A. Coddington: Dept. of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560 USA Laurel H. Young and Frederick A. Coyle: Dept. of Biology, Western Carolina University, Cullowhee, North Carolina 28723 USA ABSTRACT. Variation in species richness at the landscape scale is an important consideration in con- servation planning and natural resource management. To assess the ability of rapid inventory techniques to estimate local species richness, three collectors sampled the spider fauna of a "wilderness" cove forest in the southern Appalachians for 133 person-hours during September and early October 1991 using four methods: aerial hand collecting, ground hand collecting, beating, and leaf litter extraction. Eighty-nine species in 64 genera and 19 families were found. To these data we applied various statistical techniques (lognormal, Poisson lognormal, Chao 1, Chao 2, jackknife, and species accumulation curve) to estimate the number of species present as adults at this site. Estimates clustered between roughly 100-130 species with an outlier (Poisson lognormal) at 182 species. We compare these estimates to those from Bolivian tropical forest sites sampled in much the same way but less intensively. We discuss the biases and errors such estimates may entail and their utility for inventory design. We also assess the effects of method, time of day and collector on the number of adults, number of species and taxonomic composition of the samples and discuss the nature and importance of such effects. Method, collector and method-time of day interaction significantly affected the numbers of adults and species per sample; and each of the four methods collected clearly different sets of species.
    [Show full text]
  • Abundance, Distribution, Population Structure, and Substrate Use of Ambystoma Altamirani Along the Arroyo Los Axolotes, State of Mexico, Mexico
    Herpetological Conservation and Biology 15(1):188–197. Submitted: 16 August 2019; Accepted: 23 February 2020; Published: 30 April 2020. ABUNDANCE, DISTRIBUTION, POPULATION STRUCTURE, AND SUBSTRATE USE OF AMBYSTOMA ALTAMIRANI ALONG THE ARROYO LOS AXOLOTES, STATE OF MEXICO, MEXICO VIRIDIANA VILLARREAL HERNÁNDEZ1, GEOFFREY R. SMITH2, RAYMUNDO MONTOYA AYALA3, AND JULIO A. LEMOS-ESPINAL1,4 1Laboratorio de Ecología - Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Avendina Los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México 2Department of Biology, Denison University, Granville, Ohio 43023, USA 3Laboratorio de Cómputo - Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Avenida Los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México 4Corresponding author: e-mail: [email protected] Abstract.—Ambystomatid salamanders in central Mexico are confronted by anthropogenic threats that can limit their distribution and abundance. Ambystoma altamirani (Mountain Stream Siredon) is listed as Endangered by the International Union for Conservation of Nature (IUCN) Red List and as Threatened by the Mexican government. We report on the distribution, abundance, occupancy, population structure, and substrate use of A. altamirani, a stream dwelling salamander, along the Arroyo los Axolotes, Sierra de las Cruces, Mexico. We observed A. altamirani at least once during repeated surveys between February 2018 to December 2018 in 24 of 25 permanent 5-m long reaches separated by 40 m. The best model for occupancy had constant occupancy, detection, extinction, and colonization probabilities. Sites that dried at some time during the study had fewer observed individuals than those that did not dry. Size structure was relatively constant throughout the year, except for the appearance of small larvae in May, June, and July.
    [Show full text]
  • Ouachita Mountains Ecoregional Assessment December 2003
    Ouachita Mountains Ecoregional Assessment December 2003 Ouachita Ecoregional Assessment Team Arkansas Field Office 601 North University Ave. Little Rock, AR 72205 Oklahoma Field Office 2727 East 21st Street Tulsa, OK 74114 Ouachita Mountains Ecoregional Assessment ii 12/2003 Table of Contents Ouachita Mountains Ecoregional Assessment............................................................................................................................i Table of Contents ........................................................................................................................................................................iii EXECUTIVE SUMMARY..............................................................................................................1 INTRODUCTION..........................................................................................................................3 BACKGROUND ...........................................................................................................................4 Ecoregional Boundary Delineation.............................................................................................................................................4 Geology..........................................................................................................................................................................................5 Soils................................................................................................................................................................................................6
    [Show full text]
  • 1 CHECKLIST of ILLINOIS SPIDERS Over 500 Spider Species Have Been
    1 CHECKLIST OF ILLINOIS SPIDERS Over 500 spider species have been reported to occur in Illinois. This checklist includes 558 species, and there may be records in the literature that have eluded the author’s attention. This checklist of Illinois species has been compiled from sources cited below. The initials in parentheses that follow each species name and authorship in the list denote the paper or other source in which the species was reported. Locality data, dates of collection, and other information about each species can be obtained by referring to the indicated sources. (AAS) American Arachnological Society Spider Species List for North America, published on the web site of the American Arachnological Society: http://americanarachnology.org/AAS_information.html (B&N) Beatty, J. A. and J. M. Nelson. 1979. Additions to the Checklist of Illinois Spiders. The Great Lakes Entomologist 12:49-56. (JB) Beatty, J. A. 2002. The Spiders of Illinois and Indiana, their Geolographical Affinities, and an Annotated Checklist. Proc. Ind. Acad. Sci. 1:77-94. (BC) Cutler, B. 1987. A Revision of the American Species of the Antlike Jumping Spider Genus Synageles (Araneae: Salticidae). J. Arachnol.15:321-348. (G&P) Gertsch, W. J. And N. I. Platnick. 1980. A Revision of the American Spiders of the Family Atypidae (Araneae, Mygalomorphae). Amer. Mus. Novitates 2704:1-39. (BK) Kaston, B. J. 1955. Check List of Illinois Spiders. Trans. Ill. State Acad. Sci. 47: 165- 172. (SK) Kendeigh, S. C. 1979. Invertebrate Populations of the Deciduous Forest Fluctuations and Relations to Weather. Illinois Biol. Monog. 50:1-107.
    [Show full text]
  • Epigeic Spider (Araneae) Diversity and Habitat Distributions in Kings
    Clemson University TigerPrints All Theses Theses 5-2011 Epigeic Spider (Araneae) Diversity and Habitat Distributions in Kings Mountain National Military Park, South Carolina Sarah Stellwagen Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Entomology Commons Recommended Citation Stellwagen, Sarah, "Epigeic Spider (Araneae) Diversity and Habitat Distributions in Kings Mountain National Military Park, South Carolina" (2011). All Theses. 1091. https://tigerprints.clemson.edu/all_theses/1091 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. EPIGEIC SPIDER (ARANEAE) DIVERSITY AND HABITAT DISTRIBUTIONS IN KINGS MOUNTAIN NATIONAL MILITARY PARK, SOUTH CAROLINA ______________________________ A Thesis Presented to the Graduate School of Clemson University _______________________________ In Partial Fulfillment of the Requirements for the Degree Masters of Science Entomology _______________________________ by Sarah D. Stellwagen May 2011 _______________________________ Accepted by: Dr. Joseph D. Culin, Committee Chair Dr. Eric Benson Dr. William Bridges ABSTRACT This study examined the epigeic spider fauna in Kings Mountain National Military Park. The aim of this study is to make this information available to park management for use in the preservation of natural resources. Pitfall trapping was conducted monthly for one year in three distinct habitats: riparian, forest, and ridge-top. The study was conducted from August 2009 to July 2010. One hundred twenty samples were collected in each site. Overall, 289 adult spiders comprising 66 species were collected in the riparian habitat, 345 adult comprising 57 species were found in the forest habitat, and 240 adults comprising 47 species were found in the ridge-top habitat.
    [Show full text]
  • Araneae, Lycosidae)
    1996 . The Journal of Arachnology 24:186—200 PATTERN AND DURATION OF COPULATION IN WOLF SPIDERS (ARANEAE, LYCOSIDAE) Gail E. Stratton'' 4, Eileen A. Hebets 2.5 , Patricia R. Miller3 and Gary L. Miller2: 'Albion College, Albion, Michigan 49221 USA ; University of Mississippi , University, Mississippi 38677 USA ; and Northwest Mississippi Community College , Senatobia, Mississippi 38668 US A ABSTRACT . The temporal patterns of insertion of male palps, expansion of the hematodocha an d duration of copulation are reported for 10 species of Schizocosa Chamberlin 1904, three species of Ra- bidosa Roewer 1955, one species of Gladicosa Brady 1986, one species of Hogna Simon 1885, two species of Isohogna Roewer 1960, one species of Trochosa C.L. Koch 1848, one species of Geolycosa Montgomery 1904, two species of Arctosa C.L. Koch 1848, three species of Alopecosa Simon 1885 and six species of Pardosa C.L. Koch 1847 . In all species of Schizocosa examined so far, males showed a pattern composed of a series of insertions with one palp followed by a switch to the opposite side and a separate series of insertions with the other palp . During each insertion there was a single expansion of the hematodocha . These copulations generally lasted from 1—4 hours . Males of Gladicosa bellamyi (Gertsch Wallace 1937) and Hogna georgicola (Walckenaer 1837) likewise showed a series of insertions on one side followed by insertions on the other side, with a single expansion of the hematodocha wit h each insertion . Males of Arctosa littoralis (Hentz 1844), A. sanctaerosae Gertsch Wallace 1935 and Geolycosa rogersi Wallace 1942 each copulated by alternating palps with a single insertion and singl e expansion of the hematodocha.
    [Show full text]
  • Predation and Competition Among Larval Salamanders: The
    PREDATION AND COMPETITION AMONG LARVAL SALAMANDERS: THE INFLUENCE OF DENSITY DEPENDENCE, PHENOLOGY, FOOD WEB STRUCTURE AND HABITAT COMPLEXITY A Dissertation Presented to the Faculty of the Graduate School at the University of Missouri-Columbia In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy by THOMAS LEE ANDERSON Dr. Raymond D. Semlitsch, Dissertation Advisor MAY 2016 Dedicated to Raymond D. Semlitsch and Rosemary S. Anderson ACKNOWLEDGEMENTS The number of people that contribute to someone completing a dissertation is innumerable. I owe a great of my development as a scientist to Ray Semlitsch, who pushed me to be better in every possible way. I would not be where I am today without your guidance, advice and support. I will miss the visits to your office to work out some complex problem and instead talking about hunting. Completing this work would not have been possible without the experiences I had prior to graduate school, made possible by Dr. Chris Floyd and the Rocky Mountain Biological Lab, Katie Derr, Dane Cramer and the E.B. Forsythe NWR, and Doug Tempel, Vince Berigan and Sheila Whitmore at Blodgett Forest Station. At Mizzou, this work would not have been possible or nearly as enjoyable without the help of an amazing lab group: Bill Peterman, Grant Connette, Mark Mackey, Britt Ousterhout, Dana Drake, Katie O’Donnell, Jake Burkhart, Freya Rowland, Arianne Messerman, Julia Earl, Rachelle Riegerix, Shannon Pittman, Tom Luhring, Mike Osbourn, and Holly Puglis. All of you made an office space that will be unmatched. I would like thank Ricardo Holdo, Matt Gompper, Debbie Finke and Rex Cocroft for always supporting projects that I was working on, and providing feedback on ideas and manuscripts.
    [Show full text]
  • Winter Breeding As a Common Occurrence in the Ringed
    Journal of the Arkansas Academy of Science Volume 54 Article 31 2000 Winter Breeding as a Common Occurrence in the Ringed Salamander, Ambystoma annulatum (Caudata: Ambystomatidae), in the Ozark National Forest of Northcentral Arkansas Stanley E. Trauth Arkansas State University Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Trauth, Stanley E. (2000) "Winter Breeding as a Common Occurrence in the Ringed Salamander, Ambystoma annulatum (Caudata: Ambystomatidae), in the Ozark National Forest of Northcentral Arkansas," Journal of the Arkansas Academy of Science: Vol. 54 , Article 31. Available at: http://scholarworks.uark.edu/jaas/vol54/iss1/31 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This General Note is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 54 [2000], Art. 31 Winter Breeding as a Common Occurrence in the Ringed Salamander, Ambystoma annulatum (Caudata:
    [Show full text]
  • Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles & Crocodilians
    STANDARD COMMON AND CURRENT SCIENTIFIC NAMES FOR NORTH AMERICAN AMPHIBIANS, TURTLES, REPTILES & CROCODILIANS Sixth Edition Joseph T. Collins TraVis W. TAGGart The Center for North American Herpetology THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY www.cnah.org Joseph T. Collins, Director The Center for North American Herpetology 1502 Medinah Circle Lawrence, Kansas 66047 (785) 393-4757 Single copies of this publication are available gratis from The Center for North American Herpetology, 1502 Medinah Circle, Lawrence, Kansas 66047 USA; within the United States and Canada, please send a self-addressed 7x10-inch manila envelope with sufficient U.S. first class postage affixed for four ounces. Individuals outside the United States and Canada should contact CNAH via email before requesting a copy. A list of previous editions of this title is printed on the inside back cover. THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY BO A RD OF DIRE ct ORS Joseph T. Collins Suzanne L. Collins Kansas Biological Survey The Center for The University of Kansas North American Herpetology 2021 Constant Avenue 1502 Medinah Circle Lawrence, Kansas 66047 Lawrence, Kansas 66047 Kelly J. Irwin James L. Knight Arkansas Game & Fish South Carolina Commission State Museum 915 East Sevier Street P. O. Box 100107 Benton, Arkansas 72015 Columbia, South Carolina 29202 Walter E. Meshaka, Jr. Robert Powell Section of Zoology Department of Biology State Museum of Pennsylvania Avila University 300 North Street 11901 Wornall Road Harrisburg, Pennsylvania 17120 Kansas City, Missouri 64145 Travis W. Taggart Sternberg Museum of Natural History Fort Hays State University 3000 Sternberg Drive Hays, Kansas 67601 Front cover images of an Eastern Collared Lizard (Crotaphytus collaris) and Cajun Chorus Frog (Pseudacris fouquettei) by Suzanne L.
    [Show full text]
  • 1 the RESTRUCTURING of ARTHROPOD TROPHIC RELATIONSHIPS in RESPONSE to PLANT INVASION by Adam B. Mitchell a Dissertation Submitt
    THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell 1 A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology and Wildlife Ecology Winter 2019 © Adam B. Mitchell All Rights Reserved THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell Approved: ______________________________________________________ Jacob L. Bowman, Ph.D. Chair of the Department of Entomology and Wildlife Ecology Approved: ______________________________________________________ Mark W. Rieger, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: ______________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Douglas W. Tallamy, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Charles R. Bartlett, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Jeffery J. Buler, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]