Section 8. Appendices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Notropis Girardi) and Peppered Chub (Macrhybopsis Tetranema)
Arkansas River Shiner and Peppered Chub SSA, October 2018 Species Status Assessment Report for the Arkansas River Shiner (Notropis girardi) and Peppered Chub (Macrhybopsis tetranema) Arkansas River shiner (bottom left) and peppered chub (top right - two fish) (Photo credit U.S. Fish and Wildlife Service) Arkansas River Shiner and Peppered Chub SSA, October 2018 Version 1.0a October 2018 U.S. Fish and Wildlife Service Region 2 Albuquerque, NM This document was prepared by Angela Anders, Jennifer Smith-Castro, Peter Burck (U.S. Fish and Wildlife Service (USFWS) – Southwest Regional Office) Robert Allen, Debra Bills, Omar Bocanegra, Sean Edwards, Valerie Morgan (USFWS –Arlington, Texas Field Office), Ken Collins, Patricia Echo-Hawk, Daniel Fenner, Jonathan Fisher, Laurence Levesque, Jonna Polk (USFWS – Oklahoma Field Office), Stephen Davenport (USFWS – New Mexico Fish and Wildlife Conservation Office), Mark Horner, Susan Millsap (USFWS – New Mexico Field Office), Jonathan JaKa (USFWS – Headquarters), Jason Luginbill, and Vernon Tabor (Kansas Field Office). Suggested reference: U.S. Fish and Wildlife Service. 2018. Species status assessment report for the Arkansas River shiner (Notropis girardi) and peppered chub (Macrhybopsis tetranema), version 1.0, with appendices. October 2018. Albuquerque, NM. 172 pp. Arkansas River Shiner and Peppered Chub SSA, October 2018 EXECUTIVE SUMMARY ES.1 INTRODUCTION (CHAPTER 1) The Arkansas River shiner (Notropis girardi) and peppered chub (Macrhybopsis tetranema) are restricted primarily to the contiguous river segments of the South Canadian River basin spanning eastern New Mexico downstream to eastern Oklahoma (although the peppered chub is less widespread). Both species have experienced substantial declines in distribution and abundance due to habitat destruction and modification from stream dewatering or depletion from diversion of surface water and groundwater pumping, construction of impoundments, and water quality degradation. -
32 Annual Meeting 23-25 January 2018 UAPB & Pine Bluff
32nd Annual Meeting 23-25 January 2018 UAPB & Pine Bluff *ON THE COVER: Artwork by Olaf Nelson. Redhorse ID cheatsheets can be downloaded from moxostoma.com. Art prints are also available. ARKANSAS CHAPTER OF THE AMERICAN FISHERIES SOCIETY EXECUTIVE COMMITTEE – 2017-2018 ERIC BRINKMAN, PRESIDENT MIKE EGGLETON, PRESIDENT-ELECT TATE WENTZ, PAST-PRESIDENT CASEY COX, TREASURER JESSIE GREEN, SECRETARY FOR ASSISTING WITH PLANNING OF THE 2018 MEETING, THE CHAPTER GREATLY APPRECIATES: ETHEL CREGGETT, UAPB FACILITIES MANAGEMENT RICHARD REDUS, UAPB TECHNICAL SUPPORT FRED FRAZER, UAPB-AQFI TECHNICAL SUPPORT ROSSIA BROUGHTON-BROWN AND AVERY SHELTON, UAPB FOOD SERVICES UAPB SCHOOL OF AGRICULTURE FISHERIES AND HUMAN SCIENCES UAPB DEPARTMENT OF AQUACULTURE AND FISHERIES UAPB AQUACULTURE/FISHERIES CLUB THE EXECUTIVE COMMITTEE WOULD LIKE TO THANK OUR SPONSORS! January 10, 2018 Dear Chapter Membership: Welcome to the 32nd Annual Meeting of the Arkansas Chapter of the American Fisheries Society. Please make full use of this opportunity to reconnect with our fisheries colleagues from around the state, network with new ones, and learn about the excellent aquatic research that is occurring throughout Arkansas. For some, this will be an opportunity to visit a part of the state you have never seen. Take time to see Bayou Bartholomew, “The World’s Longest Bayou” and one of Arkansas’s most diverse stream communities that flows through Pine Bluff. You will also have the opportunity to learn more about the Arkansas Delta at the Arkansas Game and Fish Commission’s Mike Huckabee Delta Rivers Nature Center during the Welcome Social Tuesday evening. The Chapter’s Conference Organizing Committee has planned an excellent meeting. -
Register Now for Williamsburg Gathering
i Sempervirens Summer 2018 The Quarterly of the Virginia Native Plant Society 2018 Annual Meeting Set for Sept. 14–16 Register now for Williamsburg gathering Article by Cortney Will, John Clayton Chapter e the members of the The conference opens Friday W John Clayton Chapter are evening with an interactive excited to be hosting this year’s presentation by the nonprofit Virginia annual meeting, “Sustaining Center for Inclusive Communities Nature, Sustaining Ourselves,” (VCIC). The center’s work has its over the weekend of Sept. 14–16 roots in the 1930s, when it was at the William & Mary School of organized as a grassroots movement Jessica Hawthorne Kevin Bryan Education in Williamsburg. responding to religious intolerance. environmental justice, and grassroots We have arranged roughly a It has evolved and expanded in the conservation organizations that dozen options for field trips and intervening 80 years, and today the pursue a shared vision of a more plant walks, in addition to excellent center provides programming that diverse and inclusive culture in food and innovative speakers. Walks helps Virginia’s schools, businesses, managing and preserving the will offer a diversity of habitats and communities achieve success nation’s public lands. and local features, including tidal through inclusion. We will welcome While the conference formally salt marshes, hardwood forests, Jessica Hawthorne, director of begins on Friday night, we’re hoping cypress swamps, vernal pools, and programs, who designs and facilitates you’ll join us beforehand for dinner at the William & Mary herbarium, VCIC’s assemblies, one-day youth the Corner Pocket before the program. greenhouse, and College Woods. -
Arthropod Diversity and Conservation in Old-Growth Northwest Forests'
AMER. ZOOL., 33:578-587 (1993) Arthropod Diversity and Conservation in Old-Growth mon et al., 1990; Hz Northwest Forests complex litter layer 1973; Lattin, 1990; JOHN D. LATTIN and other features Systematic Entomology Laboratory, Department of Entomology, Oregon State University, tural diversity of th Corvallis, Oregon 97331-2907 is reflected by the 14 found there (Lawtt SYNOPSIS. Old-growth forests of the Pacific Northwest extend along the 1990; Parsons et a. e coastal region from southern Alaska to northern California and are com- While these old posed largely of conifer rather than hardwood tree species. Many of these ity over time and trees achieve great age (500-1,000 yr). Natural succession that follows product of sever: forest stand destruction normally takes over 100 years to reach the young through successioi mature forest stage. This succession may continue on into old-growth for (Lattin, 1990). Fire centuries. The changing structural complexity of the forest over time, and diseases, are combined with the many different plant species that characterize succes- bances. The prolot sion, results in an array of arthropod habitats. It is estimated that 6,000 a continually char arthropod species may be found in such forests—over 3,400 different ments and habitat species are known from a single 6,400 ha site in Oregon. Our knowledge (Southwood, 1977 of these species is still rudimentary and much additional work is needed Lawton, 1983). throughout this vast region. Many of these species play critical roles in arthropods have lx the dynamics of forest ecosystems. They are important in nutrient cycling, old-growth site, tt as herbivores, as natural predators and parasites of other arthropod spe- mental Forest (HJ cies. -
Ecology of the Acalypta Species Occurring in Hungary (Insecta: Heteroptera: Tingidae) Data to the Knowledge on the Ground-Living Heteroptera of Hungary, № 3
Rédei et al.: Ground-living Heteroptera of Hungary, № 3. - 73 - ECOLOGY OF THE ACALYPTA SPECIES OCCURRING IN HUNGARY (INSECTA: HETEROPTERA: TINGIDAE) DATA TO THE KNOWLEDGE ON THE GROUND-LIVING HETEROPTERA OF HUNGARY, № 3. D. RÉDEI1,* – B. HARMAT2 – L. HUFNAGEL3 *e-mail: [email protected] 1 Department of Entomology, Corvinus University of Budapest, H-1118 Budapest, Ménesi út 44, Hungary (*phone / fax: +36-1-372-0125) 2 Natural History Museum of Bakony Mountains, H-8420 Zirc, Rákóczi tér 1., Hungary 3 Department of Mathematics and Informatics, Corvinus University of Budapest, H-1118 Budapest, Villányi út 29–33, Hungary (Received 4th August 2004; accepted 22nd October 2004) Abstract. As a third part of a series of papers on the ground-living true bugs of Hungary, the species belonging to the lace bug genus Acalypta Westwood, 1840 (Insecta: Heteroptera: Tingidae) were studied. Extensive materials collected with Berlese funnels during about 20 years all over Hungary were identified. Based on these sporadic data of many years, faunistic notes are given on some Hungarian species. The seasonal occurrence of the species are discussed. The numbers of specimens of different Acalypta species collected in diverse plant communities are compared with multivariate methods. Materials collected with pitfall traps between 1979–1982 at Bugac, Kiskunság National Park were also processed. In this area, only A. marginata and A. gracilis occurred, both in great number. The temporal changes of the populations are discussed. Significant differences could be observed between the microhabitat distribution of the two species: both species occurred in very low number in traps placed out in patches colonized by dune-slack purple moorgrass meadow; Acalypta gracilis preferred distinctly the Pannonic dune open grassland patches; A. -
Proceedings of the United States National Museum
Proceedings of the United States National Museum SMITHSONIAN INSTITUTION • WASHINGTON, D.C. Volume 112 I960 Number 3431 LACE-BUG GENERA OF THE WORLD (HEMIPTERA: TINGIDAE) « By Carl J. Drake and Florence A. Ruhoff Introduction A treatise of the generic names of the family Tingidae from a global standpoint embodies problems similar to those frequently encountered in corresponding studies in other animal groups. The more im- portant criteria, including such basic desiderata as fixation of type species, synonyms, priority, and dates of technical publications implicate questions concomitant with recent trends toward the clarification and stabilization of zoological nomenclature. Zoogeography, predicated and authenticated on the generic level by the distribution of genera and species, is portrayed here by means of tables, charts, and maps of the tingifauna of the world. This visual pattern of distribution helps one to form a more vivid concept of the family and its hierarchic levels of subfamilies and genera. To a limited extent the data indicate distributional concentrations and probable centers of evolution and dispersal paths of genera. The phylogenetic relationship of genera is not discussed. The present treatise recognizes 216 genera (plus 79 synonyms, homonyms, and emendations) of the Tingidae of the world and gives 1 Research for this paper was supported In part by the National Science Foundation, grant No. 4095. 2 PROCEEDINGS OF THE NATIONAL MUSEUM vol. 112 the figure of 1,767 as the approximate number of species now recog- nized. These figures, collated with similar categories in Lethierry and Severin (1896), show that there has been an increase of many genera and hundreds of species of Tingidae during the past three- quarters of a century. -
IN the KIAMICHI RIVER, OKLAHOMA PROJECTTITLE: Habitat Use and Reproductive Biology of Arkansia Whee/Eri (Mollusca: Unionidae) in the Kiamichi River, Oklahoma
W 2800.7 E56s No.E-12 1990/93 c.3 OKLAHOMA o HABITAT USE AND REPRODUCTIVE BIOLOGY OF ARKANSIA WHEELERI (MOLLUSCA: UNIONIDAE) IN THE KIAMICHI RIVER, OKLAHOMA PROJECTTITLE: Habitat use and reproductive biology of Arkansia whee/eri (Mollusca: Unionidae) in the Kiamichi River, Oklahoma. whee/eri is associated. In its optimal habitat, A. whee/eri is always rare: mean relative 2 abundance varies from 0.2 to 0.7% and the average density is 0.27 individuals/m • In addition, shell length data for live Amb/ema plicata, a dominant mussel species in the Kiamichi River, indicate reduced recruitment below Sardis Reservoir. Much of the Kiamichi River watershed remains forested and this probably accounts for the high diversity and general health of its mussel community in comparison to other nearby rivers. Program Narrative Objective To determine the distribution, abundance and reproductive biology of the freshwater mussel Arkansia whee/eri within different habitats in the Kiamichi River of Oklahoma. Job Procedures 1. Characterize microhabitats and determine the effects of impoundment. 2. Determine movement, growth, and survivorship of individuals. 3. Identify glochidia and fish host. 4. Examine impact of Sardis Reservoir on the populations. 5. Determine historic and current land use within the current range of Arkansia whee/eri in the Kiamichi River. A. Introduction Arkansia (syn. Arcidens) whee/eri, the Ouachita rock pocketbook, is a freshwater mussel. Originally named Arkansia whee/eri by Ortmann and Walker in 1912, Clarke (1981, 1985) recognized Arkansia as a subgenus of Arcidens. The species is considered by Clarke to be distinct. However, Turgeon et al (1988) have continued to use the binomial Arkansia whee/eri. -
Endangered Species
FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S. -
Fishes of South Dakota
MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, NO. 119 Fishes of South Dakota REEVE M. BAILEY AND MARVIN 0. ALLUM South Dakota State College ANN ARBOR MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN JUNE 5, 1962 MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY 01; MICHIGAN The publications of the Museum of Zoology, University of Michigan, consist of two series-the Occasional Papers and the Miscellaneous Publications. Both series were founded by Dr. Bryant Walker, Mr. Bradshaw H. Swales, and Dr. W. W. Newcomb. The Occasional Papers, publication of which was begun in 1913, serve as a medium for original studies based principally upon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to make a volume, a title page, table of contents, and an index are supplied to libraries and indi- viduals on the mailing list for the series. The Miscellaneous Publications, which include papers on field and museum tech- niques, monographic studies, and other contributions not within the scope of the Occasional Papers, are published separately. It is not intended that they be grouped into volumes. Each number has a title page and, when necessary, a table of contents. A conlplete list of publications on Birds, Fishes, Insects, Mammals, Mollusks, and Reptiles and Amphibians is available. Address inquiries to the Director, Museum of Zoology, Ann Arbor, Michigan No. 13. Studies of the fishes of the order Cyprinodontes. By CARL L. HUBBS. (1924) 23 pp., 4 pls. ............................................. No. 15. A check-list of the fishes of the Great Lakes and tributary waters, with nomenclatorial notes and analytical keys. -
ECOLOGY of NORTH AMERICAN FRESHWATER FISHES
ECOLOGY of NORTH AMERICAN FRESHWATER FISHES Tables STEPHEN T. ROSS University of California Press Berkeley Los Angeles London © 2013 by The Regents of the University of California ISBN 978-0-520-24945-5 uucp-ross-book-color.indbcp-ross-book-color.indb 1 44/5/13/5/13 88:34:34 AAMM uucp-ross-book-color.indbcp-ross-book-color.indb 2 44/5/13/5/13 88:34:34 AAMM TABLE 1.1 Families Composing 95% of North American Freshwater Fish Species Ranked by the Number of Native Species Number Cumulative Family of species percent Cyprinidae 297 28 Percidae 186 45 Catostomidae 71 51 Poeciliidae 69 58 Ictaluridae 46 62 Goodeidae 45 66 Atherinopsidae 39 70 Salmonidae 38 74 Cyprinodontidae 35 77 Fundulidae 34 80 Centrarchidae 31 83 Cottidae 30 86 Petromyzontidae 21 88 Cichlidae 16 89 Clupeidae 10 90 Eleotridae 10 91 Acipenseridae 8 92 Osmeridae 6 92 Elassomatidae 6 93 Gobiidae 6 93 Amblyopsidae 6 94 Pimelodidae 6 94 Gasterosteidae 5 95 source: Compiled primarily from Mayden (1992), Nelson et al. (2004), and Miller and Norris (2005). uucp-ross-book-color.indbcp-ross-book-color.indb 3 44/5/13/5/13 88:34:34 AAMM TABLE 3.1 Biogeographic Relationships of Species from a Sample of Fishes from the Ouachita River, Arkansas, at the Confl uence with the Little Missouri River (Ross, pers. observ.) Origin/ Pre- Pleistocene Taxa distribution Source Highland Stoneroller, Campostoma spadiceum 2 Mayden 1987a; Blum et al. 2008; Cashner et al. 2010 Blacktail Shiner, Cyprinella venusta 3 Mayden 1987a Steelcolor Shiner, Cyprinella whipplei 1 Mayden 1987a Redfi n Shiner, Lythrurus umbratilis 4 Mayden 1987a Bigeye Shiner, Notropis boops 1 Wiley and Mayden 1985; Mayden 1987a Bullhead Minnow, Pimephales vigilax 4 Mayden 1987a Mountain Madtom, Noturus eleutherus 2a Mayden 1985, 1987a Creole Darter, Etheostoma collettei 2a Mayden 1985 Orangebelly Darter, Etheostoma radiosum 2a Page 1983; Mayden 1985, 1987a Speckled Darter, Etheostoma stigmaeum 3 Page 1983; Simon 1997 Redspot Darter, Etheostoma artesiae 3 Mayden 1985; Piller et al. -
Aquatic Fish Report
Aquatic Fish Report Acipenser fulvescens Lake St urgeon Class: Actinopterygii Order: Acipenseriformes Family: Acipenseridae Priority Score: 27 out of 100 Population Trend: Unknown Gobal Rank: G3G4 — Vulnerable (uncertain rank) State Rank: S2 — Imperiled in Arkansas Distribution Occurrence Records Ecoregions where the species occurs: Ozark Highlands Boston Mountains Ouachita Mountains Arkansas Valley South Central Plains Mississippi Alluvial Plain Mississippi Valley Loess Plains Acipenser fulvescens Lake Sturgeon 362 Aquatic Fish Report Ecobasins Mississippi River Alluvial Plain - Arkansas River Mississippi River Alluvial Plain - St. Francis River Mississippi River Alluvial Plain - White River Mississippi River Alluvial Plain (Lake Chicot) - Mississippi River Habitats Weight Natural Littoral: - Large Suitable Natural Pool: - Medium - Large Optimal Natural Shoal: - Medium - Large Obligate Problems Faced Threat: Biological alteration Source: Commercial harvest Threat: Biological alteration Source: Exotic species Threat: Biological alteration Source: Incidental take Threat: Habitat destruction Source: Channel alteration Threat: Hydrological alteration Source: Dam Data Gaps/Research Needs Continue to track incidental catches. Conservation Actions Importance Category Restore fish passage in dammed rivers. High Habitat Restoration/Improvement Restrict commercial harvest (Mississippi River High Population Management closed to harvest). Monitoring Strategies Monitor population distribution and abundance in large river faunal surveys in cooperation -
Water Quality Sampling, Analysis and Annual Load Determinations
University of Arkansas, Fayetteville ScholarWorks@UARK Technical Reports Arkansas Water Resources Center 6-1-2005 Water Quality Sampling, Analysis and Annual Load Determinations for Nutrients and Sediment at the Arkansas Highway 45 Bridge on the White River Just Above Beaver Lake Marc Nelson L. Wade Cash Keith Trost Jennifer Purtle Follow this and additional works at: http://scholarworks.uark.edu/awrctr Part of the Fresh Water Studies Commons, and the Water Resource Management Commons Recommended Citation Nelson, Marc; Cash, L. Wade; Trost, Keith; and Purtle, Jennifer. 2005. Water Quality Sampling, Analysis and Annual Load Determinations for Nutrients and Sediment at the Arkansas Highway 45 Bridge on the White River Just Above Beaver Lake. Arkansas Water Resources Center, Fayetteville, AR. MSC328. 9 This Technical Report is brought to you for free and open access by the Arkansas Water Resources Center at ScholarWorks@UARK. It has been accepted for inclusion in Technical Reports by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Arkansas Water Resources Center WATER SAMPLING, ANALYSIS AND ANNUAL LOAD DETERMINATIONS FOR NUTRIENTS AND SEDIMENT AT THE ARKANSAS HIGHWAY 45 BRIDGE ON THE WHITE RIVER JUST ABOVE BEAVER LAKE Submitted to the Arkansas Soil and Water Conservation Commission By Marc A. Nelson, Ph.D., P.E. L. Wade Cash, Research Specialist Keith Trost, Research Associate And Jennifer Purtle, Research Assistant Arkansas Water Resource Center Water Quality Lab