Environmental Monitoring and Research for Improved Resilience on Argos Farms

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Monitoring and Research for Improved Resilience on Argos Farms View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lincoln University Research Archive Environment Objective Rationale 1 of 136 ARGOS Working Paper No. 6. ENVIRONMENTAL MONITORING AND RESEARCH FOR IMPROVED RESILIENCE ON ARGOS FARMS Henrik Moller, Alex Wearing, Andrea Pearson, Chris Perley, David Steven, Grant Blackwell, Jeff Reid and Marion Johnson University of Otago, PO Box 56, Dunedin, New Zealand June 2005 Environment Objective Rationale EXECUTIVE SUMMARY This report outlines a rationale for proposed environmental monitoring on 136 farms participating in the Agriculture Research Group on Sustainability (ARGOS) project. A transdisciplinary research team of around 20 researchers, including sociologists, economists, farm management experts and ecologists will assess the sustainability and socio-ecological resilience of farms and orchards participating in organic, Integrated Management (IM), conventional farming systems and Mori farming systems. The farming sectors represented range from (i) high-input:high- output agriculture for dairy and kiwifruit production (mainly in North Island New Zealand), through (ii) medium-input:medium-output sheep and beef farming on the plains or rolling low hill country of South Island, to (iii) very low-input-low-output sheep/beef farming in the South Island High Country. A parallel study of Mori land use and sustainable development amongst Ngi Tahu Rnanga will include a variety of other farming approaches. A meta-analysis over all farm sectors and farming systems will attempt to identify key drivers of change and barriers to improved resilience. Researchers will monitor social, economic and environmental changes on farms over the next 20 to 30 years as part of an ‘independent assessor’ role, but they will also seek to help the participating farmers improve the sustainability and resilience of their enterprise by acting as ‘involved assistors’. This report identifies fundamental approaches and ecological processes to be researched mainly from an ecological point of view. Subsequent discussions amongst the whole ARGOS team are likely to adjust the priorities to get the maximum advantage from our expert sociological, economic, farm management and Mori colleagues. The fundamental stance of the research team is that a systems approach is needed to understand and help manage farming and farmscapes. This allows for transdisciplinarity, multiple scales, incorporates uncertainty, includes the farmer’s local knowledge and sees people as embedded within nature. Some of our specific research questions focus on understanding smaller parts of the problem, but the overall research project will be holistic in approach and application – otherwise we see no prospect of really helping farmers, their families and communities, their land or New Zealand. We prefer to guide the programme with ‘Resilience Theory’ rather than sustainability theory, because resilience shifts emphasis from study of ecosystem vulnerability to discovery of what makes socio-ecological systems strong enough to withstand perturbations by new threats. Rather than aiming for some mythical fixed goal of ‘sustainability’, which is defined very differently by different stakeholders, the goal is to aim for robust farming systems that can go with change or be taken in new directions by future generations of New Zealanders. The major opportunity for NZ biodiversity conservation in the new millennium is to extend conservation management to the two-thirds of its land area outside reserves, especially the production landscapes. Lowland landscapes are highly fragmented, but they are fertile and warm places where indigenous biota will flourish in greater variety and abundance than in upland national parks, provided they are appropriately managed in an integrated way with profitable and sustainable agriculture. There is every prospect that many threatened species, especially cryptic invertebrate taxa and rare plants can by nurtured on working farms. Ecological flows between reserves and production areas can either help or hinder national efforts to reverse the decline of indigenous biota. The aim of this research is to convert farmed landscapes from ‘sinks’ (areas where recruits from nursery areas can not survive long enough to replace themselves) into ‘sources’ (areas with viable populations that export excess offspring to surrounding areas). Current conservation research and management predominantly focuses on reserve areas, whereas for some species that effort may be undermined by unmanaged flows across reserves to the production part of the ecological matrix. The high level goal to reverse New Zealand’s declining biodiversity must therefore use complementary strategies for 2 Environment Objective Rationale stewardship of both ‘natural ecosystems’ and surrounding more modified landscapes. ARGOS seeks to water the biodiversity desert (production land) as the key means of supporting the vulnerable oases. A critical barrier to successful deployment of environmental restoration activities is the current barrier between multiple users of farmland and the actions of environmental scientists and environmental agencies. Our team wants to help farmers and kaitiaki assert their rightful place as stewards of the land and build their capacity to make a huge contribution to reducing the present decline of indigenous biota. ARGOS will also focus on defusing a damaging divide between some regulatory agencies and farmers by facilitating dialogue, sharing information and creating tools that build mutual respect and co-operation between land owners, regional councils and national institutions (MAF, DoC, MfE). Ecological processes and biodiversity on New Zealand’s farmed landscapes has received very little study so far because most environmental endeavour has been focused on threatened species and Protected Natural Areas. We can not effectively manage a system that we do not understand. Therefore we need to invest time and resources into studying general ecological processes in agro-ecosystems rather than simply monitoring the effects of different farming systems. We propose that 20% of resources are dedicated to researching ecological processes in years 1 and 2; 30% in years 3 and 4; and 40% in years 5 and 6. This allows the basic monitoring systems for sustainability and resilience indicators to be tested and perfected, before gradual escalation of research into understanding why the indicators are or are not changing. Identifying the reasons for the observed changes or lack of them is the key to better advice on how to bring the desired improvements in sustainability and resilience. The first step is to complete baseline ecological surveys on the ARGOS farms to learn what we have to work with. A baseline survey of landforms and habitats will be supplemented by biodiversity surveys of bats, birds, lizards, frogs, fish, insects, soil biota and plants in the first two years. These surveys will also test monitoring methods, so that by year three we can select a small group of ‘focal species’ for efficient long-term monitoring. These will be species judged to be particularly important to farming and ecological processes in farmscapes, for example species that provide ecosystem services (pollination, soil formation, predator biocontrol, seed dispersal), ones that are important pests, or ones that are especially loved and valued by the farmers or kaitiaki (‘flagship’ or ‘taonga’ species). We can not possibly measure all the biodiversity on farms so it is important that we choose focal species that are practical to measure, reasonably common and widespread, and particularly sensitive indicators to ecological practice. Naturally we will focus on species that are most likely to respond to conversion from conventional to IM and organic farming. A check for threatened species is very unlikely to find any, but if they are present, special monitoring and management will be put in place to support the farmers to find ways to nurture the populations without undue disruption to normal farming practice. We will invest 70% of our monitoring and research on supporting ‘agricultural biodiversity’, i.e. the plants, microbes, fungi and animals that have some direct role in affecting crops or livestock. The remainder will focus on general biodiversity on farms. Initial surveys of landforms and habitats will create maps of each participating farm and key features (shelterbelts, fences, houses, drains and streams etc.). These will provide baselines from which to monitor future changes. Remote sensing imagery will be ‘ground-truthed’ and then used to derive long-term indices of habitat complexity and diversity. A Geographic Information System (GIS) and database of all ecological descriptors will be generated to facilitate consistent long-term monitoring and analysis of environmental changes of farms by a research team that is itself likely to change. Lizards will be monitored using directed searches, pitfall traps of use of ‘Lizard Lounges’ (tiles and overlayed corrugated sheets which we provide for the lizards take cover in). Birds and bats 3 Environment Objective Rationale will be surveyed in spring and early summer when most species breed so we can better distinguish residents from seasonal visitors to farms. Small introduced mammalian predators (cats, ferrets, stoats, weasels, rats, mice, hedgehogs) will also be monitored because they potentially reduce the numbers of some native animals on farms, or even eliminate some altogether. If our feasibility
Recommended publications
  • Acari: Mesostigmata: Ologamasidae) from Brazil, with a Key to the World Species of the Genus
    Zootaxa 3718 (1): 081–088 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3718.1.7 http://zoobank.org/urn:lsid:zoobank.org:pub:9B4A4306-A94F-4BF7-BFF2-CDDE88501FEF A new species of Hydrogamasellus (Acari: Mesostigmata: Ologamasidae) from Brazil, with a key to the world species of the genus JANDIR C. SANTOS1, RAPHAEL C. CASTILHO2, EDMILSON S. SILVA3 & GILBERTO J. DE MORAES4 1Departamento de Fitossanidade, FCAV-UNESP, 14884-900 Jaboticabal, São Paulo, Brazil. E-mail: [email protected] 2Departamento de Entomologia e Acarologia, ESALQ-Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil. E-mail: [email protected] 3Laboratório de Entomologia e Acarologia, Universidade Federal de Alagoas, 57309-005 Arapiraca, Alagoas, Brazil. E-mail: [email protected] 4CNPq Researcher, Departamento de Entomologia e Acarologia, ESALQ-Universidade de São Paulo, 13418-900 Piracicaba, São Paulo, Brazil. E-mail: [email protected] Abstract Hydrogamasellus alagoensis n. sp. is described based on the morphology of adult females and males collected from litter in the State of Alagoas, Brazil. Six new combinations are proposed, namely Acugamasus avium (Karg, 1976) n. comb., Ologamasus lanceolatus (Karg, 1976) n. comb., Ologamasus microcrinis (Karg, 1979) n. comb., Ologamasus testudinis (Karg, 1976) n. comb., Rykellus longopilus (Karg, 1976) n. comb. and Rykellus ubatubaensis (Hirschmann, 1966) n. comb., and a key for the separation of females of the eighteen recognizable world Hydrogamasellus species is provided. Key words: Rhodacaroidea, soil mites, taxonomy Introduction The family Ologamasidae Ryke (Rhodacaroidea) is a large and widely-distributed group of mites, with about 452 species that are found in soil, humus and compost world-wide (Lindquist et al., 2009; Beaulieu et al., 2011).
    [Show full text]
  • (Acari: Mesostigmata) Raphael De Campos Castilho
    Universidade de São Paulo Escola Superior de Agricultura “Luiz de Queiroz” Taxonomy of Rhodacaroidea mites (Acari: Mesostigmata) Raphael de Campos Castilho Thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Science. Area of concentration: Entomology Piracicaba 2012 2 Raphael de Campos Castilho Engenheiro Agrônomo Taxonomy of Rhodacaroidea mites (Acari: Mesostigmata) Adviser: Prof. Dr. GILBERTO JOSÉ DE MORAES Thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Science. Area of concentration: Entomology Piracicaba 2012 Dados Internacionais de Catalogação na Publicação DIVISÃO DE BIBLIOTECA - ESALQ/USP Castilho, Raphael de Campos Taxonomy of Rhodacaroidea mites (Acari: Mesostigmata) / Raphael de Campos Castilho. - - Piracicaba, 2012. 579 p. : il. Tese (Doutorado) - - Escola Superior de Agricultura “Luiz de Queiroz”, 2012. 1. Ácaros predadores 2. Classificação 3. Ácaros de solo 4. Controle biológico I. Título CDD 595.42 C352t “Permitida a cópia total ou parcial deste documento, desde que citada a fonte – O autor” 3 To GOD Source of perseverance and life, To my mother Sonia Regina de Campos For her love, tenderness and comprehension. To my partner Karina Cezarete Semençato for her love, patience and unfailing support to me Offer To Prof. Dr. Gilberto José de Moraes For his valuable guidance, friendship and recognition of my work Special thanks 4 5 Ackanowledgements To Escola Superior de Agricultura ―Luiz de Queiroz‖ (ESALQ), Universidade de São Paulo (USP), and especially to ―Departamento de Entomologia e Acarologia‖ for providing all intellectual and material support necessary for the proper development of this work; I am especially grateful to Carlos H. W.
    [Show full text]
  • Mesostigmata No
    16 (1) · 2016 Christian, A. & K. Franke Mesostigmata No. 27 ............................................................................................................................................................................. 1 – 41 Acarological literature .................................................................................................................................................... 1 Publications 2016 ........................................................................................................................................................................................... 1 Publications 2015 ........................................................................................................................................................................................... 9 Publications, additions 2014 ....................................................................................................................................................................... 17 Publications, additions 2013 ....................................................................................................................................................................... 18 Publications, additions 2012 ....................................................................................................................................................................... 20 Publications, additions 2011 ......................................................................................................................................................................
    [Show full text]
  • Phylogeny, Biogeography, and Host Specificity
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.443311; this version posted May 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Cryptic diversity within the Poecilochirus carabi mite 2 species complex phoretic on Nicrophorus burying 3 beetles: phylogeny, biogeography, and host specificity 4 Julia Canitz1, Derek S. Sikes2, Wayne Knee3, Julia Baumann4, Petra Haftaro1, 5 Nadine Steinmetz1, Martin Nave1, Anne-Katrin Eggert5, Wenbe Hwang6, Volker 6 Nehring1 7 1 Institute for Biology I, University of Freiburg, Hauptstraße 1, Freiburg, Germany 8 2 University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, 9 99775, USA 10 3 Canadian National Collection of Insects, Arachnids, and Nematodes, Agriculture and 11 Agri-Food Canada, 960 Carling Avenue, K.W. Neatby Building, Ottawa, Ontario, 12 K1A 0C6, Canada 13 4 Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria 14 5 School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA 15 6 Department of Ecology and Environmental Resources, National Univ. of Tainan, 33 16 Shulin St., Sec. 2, West Central Dist, Tainan 70005, Taiwan 17 Correspondence: [email protected] 1 1/50 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.20.443311; this version posted May 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Part 4 Appendices
    Part 4 Appendices HEARD ISLAND AND MCDONALD ISLANDS MARINE RESERVE 139 Appendix 1. Proclamation of Heard Island and McDonald Islands Marine Reserve 140 MANAGEMENT PLAN HEARD ISLAND AND MCDONALD ISLANDS MARINE RESERVE 141 142 MANAGEMENT PLAN Appendix 2. Native Fauna of the HIMI Marine Reserve Listed Under the EPBC Act Scientific Name Common Name Birds recorded as breeding Aptenodytes patagonicus king penguin S Catharacta lonnbergi subantarctic skua S Daption capense cape petrel S Diomeda exulans wandering albatross V S M B J A Diomeda melanophrys black–browed albatross S M B A Eudyptes chrysocome southern rockhopper penguin S Eudyptes chrysolophus macaroni penguin S Larus dominicanus kelp gull S Macronectes giganteus southern giant petrel E S M B A Oceanites oceanicus Wilson’s storm petrel S M J Pachyptila crassirostris fulmar prion S Pachyptila desolata Antarctic prion S Pelecanoides georgicus South Georgian diving petrel S Pelecanoides urinatrix common diving petrel S Phalacrocorax atriceps (e) Heard Island cormorant V S Phoebetria palpebrata light mantled sooty albatross S M B A Pygoscelis papua gentoo penguin S Sterna vittata Antarctic tern V S Non–breeding birds Catharacta maccormicki south polar skua S M J Diomedea epomophora southern royal albatross V S M B A Fregetta grallaria white–bellied storm petrel S Fregetta tropica black–bellied storm petrel S Fulmarus glacialoides southern fulmar S Garrodia nereis grey–backed storm petrel S Halobaena caerulea blue petrel V S Macronectes halli northern giant petrel V S M B A Pachyptila belcheri
    [Show full text]
  • Volume 36, No 1 Summer 2017
    Newsletter of the Biological Survey of Canada Vol. 36(1) Summer 2017 The Newsletter of the BSC is published twice a year by the Biological Survey of Canada, an incorporated not-for-profit In this issue group devoted to promoting biodiversity science in Canada. From the editor’s desk......2 Information on Student Corner: Membership ....................3 The Application of President’s Report ...........4 Soil Mesostigmata as Bioindicators and a Summer Update ...............6 Description of Common BSC on facebook & twit- Groups Found in the ter....................................5 Boreal Forest in Northern Alberta..........................9 BSC Student Corner ..........8 Soil Mesostigmata..........9 Matthew Meehan, MSc student, University of Alberta, Department of Biological Sciences Bioblitz 2017..................13 Book announcements: BSC BioBlitz 2017 - A Handbook to the Bioblitzing the Cypress Ticks of Canada (Ixo- Hills dida: Ixodidae, Argasi- Contact: Cory Sheffield.........13 dae)..............................15 -The Biological Survey of Canada: A Personal History..........................16 BSC Symposium 2017 Canadian Journal of Canada 150: Canada’s Insect Diversity in Arthropod Identification: Expected and Unexpected Places recent papers..................17 Contact: Cory Sheffield .....................................14 Wild Species 2015 Report available ........................17 Book Announcements: Handbook to the Ticks of Canada..................15 Check out the BSC The Biological Survey of Canada: A personal Website: Publications
    [Show full text]
  • Longer-Term Effects of Selective Thinning on Microarthropod Communities in a Late-Successional Coniferous Forest
    COMMUN~TYAND ECOSYSEM ~UX:Y Longer-Term Effects of Selective Thinning on Microarthropod Communities in a Late-Successional Coniferous Forest ROBERT W. PECK'. 27 AND CHRISTINE G. NIWA' Environ. Entomol. 34 (3): 646-655 (2005) ABSTRACT Microarthropod densities within late-successional coniferous forests thinned 16-41 yr before sampling were compared with adjacent unthinned stands to identify longer term effects of thinning on this community. Soil and forest floor layers were sampled separately on eight paired sites. Within the forest floor oribatid, mesostigmatid, and to a marginal extent, prostigmatid mites, were reduced in thinned stands compared with unthinned stands. No differences were found for Collem- bola in the forest floor or for any mite suborder within the soil. Family level examination of mesostigmatid and prostigmatid mites revealed significant differences between stand types for both horizons. At the species level, thinning influenced numerous oribatid mites and Collembola. For oribatid mites, significant or marginally significant differences were found for seven of 15 common species in the forest floor and five of 16 common species in soil. Collembola were affected less, with differences found for one of 11 common species in the forest floor and three of 13 common species in soil. Multivariate analysis of variance and ordination indicated that forest thinning had little influence on the composition of oribatid mite and collembolan communities within either the forest floor or soil. Differences in microclimate or in the accumulation of organic matter on the forest floor were likely most responsible for the observed patterns of abundance. Considering the role that microarthropods play in nutrient cycling, determining the hnctional response of a wide range of taxa to thinning may be important to effective ecosystem management.
    [Show full text]
  • Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
    Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results ..............................................................................................................
    [Show full text]
  • Diversity of Edaphic Rhodacaroid Mites (Acari: Mesostigmata: Rhodacaroidea) in Natural Ecosystems in the State of São Paulo, Brazil
    547 ECOLOGY, BEHAVIOR AND BIONOMICS Diversity of Edaphic Rhodacaroid Mites (Acari: Mesostigmata: Rhodacaroidea) in Natural Ecosystems in the State of São Paulo, Brazil EDMILSON S. SILVA1, GILBERTO J. DE MORAES1 AND GERARD W. KRANTZ2 1Depto. Entomologia, Fitopatologia e Zoologia Agrícola, ESALQ/USP, C. postal 9, 13418-900, Piracicaba, SP, Brazil 2 Dept. Zoology, Oregon State University, Corvallis, OR 97331-2907, USA Neotropical Entomology 33(4):547-555 (2004) Diversidade de Ácaros Edáficos Rhodacaroidea (Acari: Mesostigmata) em Ecossistemas Naturais no Estado de São Paulo RESUMO - Avaliou-se neste estudo a diversidade de ácaros Rhodacaroidea em amostras de folhedo e solo coletadas em ecossistemas conhecidos como “Mata Atlântica” e “Cerrado” do estado de São Paulo. O total de 969 Rhodacaroidea adultos foi coletado, 913 na Mata Atlântica e 56 no Cerrado. Foram encontrados representantes de três famílias de Rhodacaroidea: Ologamasidae, Rhodacaridae e Digamasellidae. Ologamasidae foi a mais numerosa na Mata Atlântica, enquanto Rhodacaridae foi a mais numerosa no Cerrado. Os Rhodacaroidea de ambos ecossistemas representaram 12 gêneros de Ologamasidae, dois de Rhodacaridae e um de Digamasellidae. O total de 13 gêneros foi encontrado em amostras de folhedo e sete em amostras de solo da Mata Atlântica. Os gêneros mais comuns neste ecossistema foram Neogamasellevans Loots & Ryke e Ologamasus Berlese, em folhedo, e Rhodacarus Oudemans, em solo. Foram coletadas 31 morfoespécies, sendo Rhodacarus sp.1, Neogamasellevans sp.1 e Neogamasellevans sp.6 as mais abundantes. Foram encontrados três gêneros de Rhodacaroidea em cada substrato do Cerrado, Rhodacarus e Rhodacarellus Willman sendo os mais abundantes. Das cinco morfoespécies encontradas neste ecossistema, a mais abundante foi Rhodacarus sp.1.
    [Show full text]
  • Topicos Sobre Acarologia Y Aracnologia
    TOPICOS SOBRE ACAROLOGIA Y ARACNOLOGIA 1 EN MEMORIA DE UNA GRAN MUJER, MADRE, ABUELA, CIENTÍFICA, AMIGA Y MAESTRA, DRA ANITA HOFFMANN MENDIZABAL. In the memory of a great woman, mother, grandmother, scientist, friend and teacher, Dr. Anita Hoffman Mendizabal. Armando Sandoval Martínez, Armando Sandoval Hoffmann, M. Guadalupe López Campos y Edith G. Estrada Venegas. Dra. Anita Hoffmann Mendizabal (Marzo 3, 1919-Octubre 11, 2007) Armando F. Sandoval Martínez Hola, estoy muy orgulloso de estar ante ustedes en el homenaje a mi abuela ya que, por desgracia, no pude estar presente en su velorio. Hace casi ocho meses que falleció y hasta este momento me resulta muy difícil entender su muerte. Estando ante ustedes me doy cuenta de cuántas personas la querían, y cómo alguien que se dedicó a algo tan raro como los ácaros pudo lograr convencer a otras personas de que estudiaran lo mismo. Me duele sobre todo no haber estado al lado de mi padre, con el que ahora he tenido grandes conversaciones acerca de los logros de mi abuela. Me duele también no poder estar otra vez con ella y aprovechar las enormes pláticas llenas de anécdotas fantásticas y, a veces, hasta de chistes de color subido. Me gustaban, de niño, en especial las sobremesas, en donde después de comer algo delicioso que cocinaba mi padre, a mi abuela siempre le quedaba “un huequito para el postre”, razón por la cual yo salía beneficiado con una doble ración de pastel o helado; o bien, antes de la comida, mi abuela siempre se preparaba una cubita y me servía un vaso de refresco, que en mi casa me estaba negado.
    [Show full text]
  • Restoring Streams for Freshwater Fish
    Restoring streams for freshwater fish Jody Richardson Ian Jowett NIWA Science & Technology Series No. 53 2005 Published by NIWA Wellington 2005 Edited and produced by Science Communication, NIWA Private Bag 14901, Wellington, New Zealand ISSN 1173-0382 ISBN 0-478-23272-1 © NIWA 2005 Citation: Richardson, J.; Jowett, I.G. (2005). Restoring streams for freshwater fish. NIWA Science and Technology Series No. 53. 55 p. Cover photograph: Restored section of Okeover Stream, Christchurch, by Bob Spigel. The National Institute of Water and Atmospheric Research is New Zealand’s leading provider of atmospheric, marine, and freshwater science Visit NIWA’s website at http://www.niwa.co.nz Contents Abstract.....................................................................................................................5 Introduction...............................................................................................................5 Types of fish communities........................................................................................7 Data selection and analysis ...................................................................................7 Results...................................................................................................................9 River morphology ...................................................................................................12 River classification..............................................................................................12 Gravel-bed.......................................................................................................12
    [Show full text]
  • Quick Guide to New Zealand Galaxiidae
    Quick guide to New Zealand Galaxiidae by Jody Richardson and Bob McDowall + Note: identification of galaxiid species relies on accurate fin ray counts; users should refer to Northland mudfish McDowall, R.M. (1996) Water & Atmosphere 4(3): 27 for instructions on correct counting of Neochanna heleios principal caudal rays and others. Where fin ray counts are given, occasional variants should be expected and it may be necessary to perform counts on more than one specimen. NO For many species, the location and fish size may assist with identification. For such information, including photos of whole specimens and distribution maps, refer to McDowall, YES Brown mudfish R.M. (2000), The Reed field guide to New Zealand freshwater fishes, or this web site Is the caudal peduncle http://www.niwa.co.nz/rc/freshwater/fishatlas/. deeper than long? Neochanna apoda The taxonomy of the South Island non-migratory galaxiid group still requires work, with at least three distinct Otago/Southland species awaiting formal description and recognition. NO Recently G. vulgaris was split into a northern (undescribed) and southern (true vulgaris) species. Until these tasks are complete, it will not be possible to identify all the galaxiid species with this Does the dorsal fin have quick guide. less than 14 rays? YES Black mudfish Neochanna This guide may not provide for identification of small juveniles, but there is a separate quick guide specifically for juvenile galaxiids that comprise the whitebait catch. Start NO Continued on Are there any Page 2 Eldons galaxias
    [Show full text]