Novel Hepatitis D-Like Agents in Vertebrates and Invertebrates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Astrovirus 1–8 Seroprevalence Evaluation in a United States Adult Population
UC Santa Cruz UC Santa Cruz Previously Published Works Title Human Astrovirus 1-8 Seroprevalence Evaluation in a United States Adult Population. Permalink https://escholarship.org/uc/item/9nz336gs Journal Viruses, 13(6) ISSN 1999-4915 Authors Meyer, Lena Delgado-Cunningham, Kevin Lorig-Roach, Nicholas et al. Publication Date 2021-05-25 DOI 10.3390/v13060979 Peer reviewed eScholarship.org Powered by the California Digital Library University of California viruses Article Human Astrovirus 1–8 Seroprevalence Evaluation in a United States Adult Population Lena Meyer , Kevin Delgado-Cunningham, Nicholas Lorig-Roach, Jordan Ford and Rebecca M. DuBois * Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA; [email protected] (L.M.); [email protected] (K.D.-C.); [email protected] (N.L.-R.); [email protected] (J.F.) * Correspondence: [email protected] Abstract: Human astroviruses are an important cause of viral gastroenteritis globally, yet few studies have investigated the serostatus of adults to establish rates of previous infection. Here, we applied biolayer interferometry immunosorbent assay (BLI-ISA), a recently developed serosurveillance technique, to measure the presence of blood plasma IgG antibodies directed towards the human astrovirus capsid spikes from serotypes 1–8 in a cross-sectional sample of a United States adult population. The seroprevalence rates of IgG antibodies were 73% for human astrovirus serotype 1, 62% for serotype 3, 52% for serotype 4, 29% for serotype 5, 27% for serotype 8, 22% for serotype 2, 8% for serotype 6, and 8% for serotype 7. Notably, seroprevalence rates for capsid spike antigens correlate with neutralizing antibody rates determined previously. -
Astrovirus MLB2, a New Gastroenteric Virus Associated with Meningitis and Disseminated Infection Samuel Cordey,1 Diem-Lan Vu,1 Manuel Schibler, Arnaud G
RESEARCH Astrovirus MLB2, a New Gastroenteric Virus Associated with Meningitis and Disseminated Infection Samuel Cordey,1 Diem-Lan Vu,1 Manuel Schibler, Arnaud G. L’Huillier, Francisco Brito, Mylène Docquier, Klara M. Posfay-Barbe, Thomas J. Petty, Lara Turin, Evgeny M. Zdobnov, Laurent Kaiser Next-generation sequencing has identified novel astrovi- observed in community healthcare centers (2,3). Symp- ruses for which a pathogenic role is not clearly defined. toms are generally mild, with patient hospitalization We identified astrovirus MLB2 infection in an immunocom- usually not required; asymptomatic carriage has been petent case-patient and an immunocompromised patient described in 2% of children (4). who experienced diverse clinical manifestations, notably, Screening of fecal samples from persons with diarrhea meningitis and disseminated infection. The initial case-pa- and control samples in different parts of the world by un- tient was identified by next-generation sequencing, which revealed astrovirus MLB2 RNA in cerebrospinal fluid, biased next-generation sequencing (NGS) or reverse tran- plasma, urine, and anal swab specimens. We then used scription PCR (RT-PCR) has revealed the sporadic pres- specific real-time reverse transcription PCR to screen 943 ence of members of the Astroviridae family, previously fecal and 424 cerebrospinal fluid samples from hospital- unrecognized in humans, that are phylogenetically substan- ized patients and identified a second case of meningitis, tially distant from classic HAstVs (3,5–9). These viruses with positive results for the agent in the patient’s feces have been named HAstV-VA/HMO and HAstV-MLB, for and plasma. This screening revealed 5 additional positive Virginia, human-mink-ovine, and Melbourne, respectively, fecal samples: 1 from an infant with acute diarrhea and according to the place where they were first identified and 4 from children who had received transplants. -
Non-Norovirus Viral Gastroenteritis Outbreaks Reported to the National Outbreak Reporting System, USA, 2009–2018 Claire P
Non-Norovirus Viral Gastroenteritis Outbreaks Reported to the National Outbreak Reporting System, USA, 2009–2018 Claire P. Mattison, Molly Dunn, Mary E. Wikswo, Anita Kambhampati, Laura Calderwood, Neha Balachandran, Eleanor Burnett, Aron J. Hall During 2009–2018, four adenovirus, 10 astrovirus, 123 The Study rotavirus, and 107 sapovirus gastroenteritis outbreaks NORS is a dynamic, voluntary outbreak reporting were reported to the US National Outbreak Reporting system. For each reported outbreak, health depart- System (annual median 30 outbreaks). Most were at- ments report the mode of transmission, number of tributable to person-to-person transmission in long-term confirmed and suspected cases, and aggregate epi- care facilities, daycares, and schools. Investigations of demiologic and demographic information as avail- norovirus-negative gastroenteritis outbreaks should in- able. NORS defines outbreaks as >2 cases of similar clude testing for these viruses. illness associated with a common exposure or epi- demiologic link (9). Health departments determine n the United States, ≈179 million cases of acute gas- reported outbreak etiologies on the basis of available troenteritis (AGE) occur annually (1). Norovirus is I laboratory, epidemiologic, and clinical data; specific the leading cause of AGE in the United States; other laboratory testing protocols vary by health depart- viral causes include adenovirus (specifically group F ment. Outbreak etiologies are considered confirmed or types 40 and 41), astrovirus, sapovirus, and rotavi- when >2 laboratory-confirmed cases are reported rus (2,3). These viruses are spread primarily through and considered suspected when <2 laboratory-con- the fecal–oral route through person-to-person contact firmed cases are reported. Outbreaks are considered or through contaminated food, water, or fomites (4–8). -
Understanding Human Astrovirus from Pathogenesis to Treatment
University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 6-2020 Understanding Human Astrovirus from Pathogenesis to Treatment Virginia Hargest University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Diseases Commons, Medical Sciences Commons, and the Viruses Commons Recommended Citation Hargest, Virginia (0000-0003-3883-1232), "Understanding Human Astrovirus from Pathogenesis to Treatment" (2020). Theses and Dissertations (ETD). Paper 523. http://dx.doi.org/10.21007/ etd.cghs.2020.0507. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Understanding Human Astrovirus from Pathogenesis to Treatment Abstract While human astroviruses (HAstV) were discovered nearly 45 years ago, these small positive-sense RNA viruses remain critically understudied. These studies provide fundamental new research on astrovirus pathogenesis and disruption of the gut epithelium by induction of epithelial-mesenchymal transition (EMT) following astrovirus infection. Here we characterize HAstV-induced EMT as an upregulation of SNAI1 and VIM with a down regulation of CDH1 and OCLN, loss of cell-cell junctions most notably at 18 hours post-infection (hpi), and loss of cellular polarity by 24 hpi. While active transforming growth factor- (TGF-) increases during HAstV infection, inhibition of TGF- signaling does not hinder EMT induction. However, HAstV-induced EMT does require active viral replication. -
Astrovirus Evolution and Emergence T ⁎ Nicholas Wohlgemutha, Rebekah Honcea,B, Stacey Schultz-Cherrya, a Department of Infectious Diseases, St
Infection, Genetics and Evolution 69 (2019) 30–37 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Conference report Astrovirus evolution and emergence T ⁎ Nicholas Wohlgemutha, Rebekah Honcea,b, Stacey Schultz-Cherrya, a Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States b Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38105, United States ARTICLE INFO ABSTRACT Keywords: Astroviruses are small, non-enveloped, positive-sense, single-stranded RNA viruses that belong to the Astroviridae Astrovirus family. Astroviruses infect diverse hosts and are typically associated with gastrointestinal illness; although Cross-species transmission disease can range from asymptomatic to encephalitis depending on the host and viral genotype. Astroviruses Recombination have high genetic variability due to an error prone polymerase and frequent recombination events between Emergence strains. Once thought to be species specific, recent evidence suggests astroviruses can spread between different host species, although the frequency with which this occurs and the restrictions that regulate the process are unknown. Recombination events can lead to drastic evolutionary changes and contribute to cross-species transmission events. This work reviews the current state of research on astrovirus evolution and emergence, especially as it relates to cross-species transmission and recombination of astroviruses. 1. Introduction 2. Genetics and genomics Astroviruses are nonenveloped, show icosahedral morphology, and Little is known about the astrovirus genome compared to other, have positive-sense, single-stranded RNA (+ssRNA) genomes (Méndez better characterized viruses. While several virus replication processes and Arias, 2013). They infect a multitude of hosts from birds to mam- and structural elements have been mapped to the genome (Fig. -
Astrovirus MLB2, a New Gastroenteric Virus Associated with Meningitis and Disseminated Infection Samuel Cordey,1 Diem-Lan Vu,1 Manuel Schibler, Arnaud G
RESEARCH Astrovirus MLB2, a New Gastroenteric Virus Associated with Meningitis and Disseminated Infection Samuel Cordey,1 Diem-Lan Vu,1 Manuel Schibler, Arnaud G. L’Huillier, Francisco Brito, Mylène Docquier, Klara M. Posfay-Barbe, Thomas J. Petty, Lara Turin, Evgeny M. Zdobnov, Laurent Kaiser Next-generation sequencing has identified novel astrovi- observed in community healthcare centers (2,3). Symp- ruses for which a pathogenic role is not clearly defined. toms are generally mild, with patient hospitalization We identified astrovirus MLB2 infection in an immunocom- usually not required; asymptomatic carriage has been petent case-patient and an immunocompromised patient described in 2% of children (4). who experienced diverse clinical manifestations, notably, Screening of fecal samples from persons with diarrhea meningitis and disseminated infection. The initial case-pa- and control samples in different parts of the world by un- tient was identified by next-generation sequencing, which revealed astrovirus MLB2 RNA in cerebrospinal fluid, biased next-generation sequencing (NGS) or reverse tran- plasma, urine, and anal swab specimens. We then used scription PCR (RT-PCR) has revealed the sporadic pres- specific real-time reverse transcription PCR to screen 943 ence of members of the Astroviridae family, previously fecal and 424 cerebrospinal fluid samples from hospital- unrecognized in humans, that are phylogenetically substan- ized patients and identified a second case of meningitis, tially distant from classic HAstVs (3,5–9). These viruses with positive results for the agent in the patient’s feces have been named HAstV-VA/HMO and HAstV-MLB, for and plasma. This screening revealed 5 additional positive Virginia, human-mink-ovine, and Melbourne, respectively, fecal samples: 1 from an infant with acute diarrhea and according to the place where they were first identified and 4 from children who had received transplants. -
Latest Ncbi-Taxonomist Docker Image Can Be Pulled from Registry.Gitlab.Com/Janpb/ Ncbi-Taxonomist:Latest
ncbi-taxonomist Documentation Release 1.2.1+8580b9b Jan P Buchmann 2020-11-15 Contents: 1 Installation 3 2 Basic functions 5 3 Cookbook 35 4 Container 39 5 Frequently Asked Questions 49 6 Module references 51 7 Synopsis 63 8 Requirements and Dependencies 65 9 Contact 67 10 Indices and tables 69 Python Module Index 71 Index 73 i ii ncbi-taxonomist Documentation, Release 1.2.1+8580b9b 1.2.1+8580b9b :: 2020-11-15 Contents: 1 ncbi-taxonomist Documentation, Release 1.2.1+8580b9b 2 Contents: CHAPTER 1 Installation Content • Local pip install (no root required) • Global pip install (root required) ncbi-taxonomist is available on PyPi via pip. If you use another Python package manager than pip, please consult its documentation. If you are installing ncbi-taxonomist on a non-Linux system, consider the propsed methods as guidelines and adjust as required. Important: Please note If some of the proposed commands are unfamiliar to you, don’t just invoke them but look them up, e.g. in man pages or search online. Should you be unfamiliar with pip, check pip -h Note: Python 3 vs. Python 2 Due to co-existing Python 2 and Python 3, some installation commands may be invoked slighty different. In addition, development and support for Python 2 did stop January 2020 and should not be used anymore. ncbi-taxonomist requires Python >= 3.8. Depending on your OS and/or distribution, the default pip command can install either Python 2 or Python 3 packages. Make sure you use pip for Python 3, e.g. -
HEPATITIS D the Most Virulent Hepatitis Virus of All
HEPATITIS D The Most Virulent Hepatitis Virus Of All The hepatitis D virus is perhaps the most unique of all hepatitis viruses, and also the most virulent. As a virus, it is flawed. The hepatitis D virus (HDV) cannot replicate and infect someone unless the person is already infected with the hepatitis B virus (HBV). The hepatitis D virus requires the outer coating of the hepatitis B virus—called the surface antigen—in order to reproduce itself in a human host. The virus currently infects 15 million worldwide, nearly all adults, and it is most common among injecting drug user populations and in countries bordering the Mediterranean Sea. Most children with HDV infection live in Italy and Greece, with a few in northern Africa. There are no reports or estimates of There are two types of HDV infection, the number of children infected with coinfection and super-infection: HDV worldwide. • Coinfection occurs when a patient is Despite widespread hepatitis B in simultaneously infected with HDV and Asian populations, HDV infection is HBV. The majority of these patients virtually unknown there and appears completely recover but there is a higher rate of fulminant hepatic failure and primarily in injecting drug user death than with HBV infection alone. populations. • Super-infection occurs when someone HDV is transmitted through blood and with an existing chronic HBV infection body fluids, similar to the hepatitis B becomes infected with HDV. These patients usually experience a sudden virus. Hepatitis D symptoms are worsening of liver disease. Patients with similar to other viral hepatitis diseases hepatitis B who become chronically and include jaundice, fever, malaise, infected with HDV experience a very dark urine and nausea. -
Risk Groups: Viruses (C) 1988, American Biological Safety Association
Rev.: 1.0 Risk Groups: Viruses (c) 1988, American Biological Safety Association BL RG RG RG RG RG LCDC-96 Belgium-97 ID Name Viral group Comments BMBL-93 CDC NIH rDNA-97 EU-96 Australia-95 HP AP (Canada) Annex VIII Flaviviridae/ Flavivirus (Grp 2 Absettarov, TBE 4 4 4 implied 3 3 4 + B Arbovirus) Acute haemorrhagic taxonomy 2, Enterovirus 3 conjunctivitis virus Picornaviridae 2 + different 70 (AHC) Adenovirus 4 Adenoviridae 2 2 (incl animal) 2 2 + (human,all types) 5 Aino X-Arboviruses 6 Akabane X-Arboviruses 7 Alastrim Poxviridae Restricted 4 4, Foot-and- 8 Aphthovirus Picornaviridae 2 mouth disease + viruses 9 Araguari X-Arboviruses (feces of children 10 Astroviridae Astroviridae 2 2 + + and lambs) Avian leukosis virus 11 Viral vector/Animal retrovirus 1 3 (wild strain) + (ALV) 3, (Rous 12 Avian sarcoma virus Viral vector/Animal retrovirus 1 sarcoma virus, + RSV wild strain) 13 Baculovirus Viral vector/Animal virus 1 + Togaviridae/ Alphavirus (Grp 14 Barmah Forest 2 A Arbovirus) 15 Batama X-Arboviruses 16 Batken X-Arboviruses Togaviridae/ Alphavirus (Grp 17 Bebaru virus 2 2 2 2 + A Arbovirus) 18 Bhanja X-Arboviruses 19 Bimbo X-Arboviruses Blood-borne hepatitis 20 viruses not yet Unclassified viruses 2 implied 2 implied 3 (**)D 3 + identified 21 Bluetongue X-Arboviruses 22 Bobaya X-Arboviruses 23 Bobia X-Arboviruses Bovine 24 immunodeficiency Viral vector/Animal retrovirus 3 (wild strain) + virus (BIV) 3, Bovine Bovine leukemia 25 Viral vector/Animal retrovirus 1 lymphosarcoma + virus (BLV) virus wild strain Bovine papilloma Papovavirus/ -
Nadia Khamees Sanaa Halabiah
pbl Nadia khamees Sanaa Halabiah PBL lecs1+2: Introduction to clinical manifestations of some of the common GI disorders: - Upper GI Bleeding - liver cirrhosis and portal hypertension - Viral Hepatitis A-E Upper GI Bleeding Bleeding that originates above the ligament of Treitz. Signs and Symptoms ► Hematemesis; vomiting fresh blood. ► Melena; a loose shiny black tarry offensive smell stool. ► Dizziness; due to hypotension and volume loss. ► Abdominal pain and symptoms of peptic ulcer disease. ► Pallor due to anemia. ► Hypotension. ► Orthostasis; a drop in the blood pressure while the patient becomes in a standing position due to hypotension. it may precede that frank hypotension. So, to any patient with upper GI bleeding, we have to measure his blood pressure while he is supine and while he is standing because he may have normal blood pressure while he is supine and his blood pressure will drop upon standing up. ► Jaundice and other stigmata of chronic liver diseases ► Hematochezia; massive fresh bleeding which is not having the time to convert to the black color of melena. ► Coffee ground vomiting. ► they usually report a history of non-steroidal anti-inflammatory drug use. Causes of upper GI bleeding ► Peptic ulcer disease “gastric and duodenal ulcers” (the most common) ► Esophageal varies ► Mallory- Weiss tear ► Erosions other uncommon causes: ► malignancy ► arterial-venous malformations ► Hemobilia due to collagen carcinoma. ► Aorto-enteric fistulas; occurs in patients with an aortic aneurysm that did surgery for that aneurysm and a fistula then forms between the colon and the aorta which causes massive bleeding. ► Neoplasms ► AVM/Ectasia ► Dieulafoy’s ► Stoma ulcers ► Esophageal ulcers ► Duodenitis We will talk about some of these causes: Peptic ulcer disease A defect in the GI mucosa that extends through their muscularis mucosa, caused by an imbalance between the aggressive and defensive factors. -
Rotavirus - Adenovirus Astrovirus - Norovirus
Rotavirus - Adenovirus Astrovirus - Norovirus Rotavirus, Adenovirus and Astrovirus are the agents most frequently responsible for gas- troenteritis in infant and youth populations, as well as occasionally in adults. They are trans- mitted faeco-orally and their main symptoms are watery diarrhoea and vomiting. The concern for global public health cau- sed by Noroviruses has increased in recent years due to sporadic outbreaNs of signiÀcant morbidity and mortality. There are frequent outbreaks in schools, hospitals, cruise ships and other semi-closed institutions. Noroviruses are the main cause of gastroenteritis epidemics in the United States (approximately 90% of outbreaks of non-bacterial gastroenteritis). The symptoms associated with Novovirus infections are typical of gastroenteritis: vomiting, watery diarrhoea and abdominal cramps. Enteric viruses have been recognised as the most important aetiological agents behind acute diarrhoea, the principal cause of mortality in many countries. SpeciÀcally, the four categories of viruses considered to be the most clinically relevant are the Group A Rotavirus, Adenovirus, Astrovirus and Norovirus. They give rise to co-infections in 46% of children with acute diarrhoea. The new CERTEST combined test for Rotavirus, Adenovirus, Astrovirus and Norovirus means the four main enteric vi- ruses causing non-bacterial gastroenteritis can be simultaneously detected in stool samples using just a single test which is both rapid and accurate. folleto ingles rotavirus -adenovirus- astrovirus.indd 1 14/07/2014 20:50:55 Test procedure Cut the end of the cap and dispense exactly 4 drops into the “A” circular window marked with an arrow. Unscrew the cap Close the tube with the diluent step and use the stick step and stool sample. -
Hepatitis D Chapter
HEPATITIS D Also known as: Viral hepatitis D, Hepatitis delta virus, Delta agent hepatitis, Delta associated hepatitis Responsibilities: Hospital: Report by IDSS, facsimile, mail, or phone Lab: Report by IDSS, facsimile, mail, or phone Physician: Report by facsimile, mail, or phone Local Public Health Agency (LPHA): Follow-up required Iowa Department of Public Health Disease Reporting Hotline: (800) 362-2736 Secure Fax: (515) 281-5698 1) THE DISEASE AND ITS EPIDEMIOLOGY A. Agent Hepatitis delta virus (HDV) is a small virus-like particle made up of a hepatitis B surface antigen and the delta antigen and a single strand of DNA. It cannot infect a cell itself; it can only replicate if there is a co-infection with hepatitis B virus (HBV). Infection with HDV can occur at the same time as HBV or can occur at a later date in a person with chronic hepatitis B. B. Clinical Description Symptoms: Signs and symptoms resemble hepatitis B and may be severe. These symptoms are fatigue, nausea, vomiting, fever, stomach pain, tea-colored urine, and jaundice. The infection may be self-limiting or it may progress to chronic infection. Children may have a very severe course of disease. Infection with HDV in a person with chronic hepatitis B may be misdiagnosed as a worsening of hepatitis B. One quarter to one half of fulminant cases of hepatitis B (those that are rapidly fatal) are associated with concurrent infection with HDV. Onset: is usually sudden. Complications: of hepatitis D are the same as that of hepatitis B. Infection can lead to rapid death from liver cell necrosis or the infection can become chronic, leaving the person a carrier of disease and may lead to cirrhosis of the liver or liver cancer.