Understanding Human Astrovirus from Pathogenesis to Treatment

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Human Astrovirus from Pathogenesis to Treatment University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 6-2020 Understanding Human Astrovirus from Pathogenesis to Treatment Virginia Hargest University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Diseases Commons, Medical Sciences Commons, and the Viruses Commons Recommended Citation Hargest, Virginia (0000-0003-3883-1232), "Understanding Human Astrovirus from Pathogenesis to Treatment" (2020). Theses and Dissertations (ETD). Paper 523. http://dx.doi.org/10.21007/ etd.cghs.2020.0507. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Understanding Human Astrovirus from Pathogenesis to Treatment Abstract While human astroviruses (HAstV) were discovered nearly 45 years ago, these small positive-sense RNA viruses remain critically understudied. These studies provide fundamental new research on astrovirus pathogenesis and disruption of the gut epithelium by induction of epithelial-mesenchymal transition (EMT) following astrovirus infection. Here we characterize HAstV-induced EMT as an upregulation of SNAI1 and VIM with a down regulation of CDH1 and OCLN, loss of cell-cell junctions most notably at 18 hours post-infection (hpi), and loss of cellular polarity by 24 hpi. While active transforming growth factor- (TGF-) increases during HAstV infection, inhibition of TGF- signaling does not hinder EMT induction. However, HAstV-induced EMT does require active viral replication. These are among the first studies describing the induction of EMT by a non-oncogenic virus and provides an exciting opportunity to understand EMT induction independent of cancer. Our findings likely extend beyond astrovirus to other viruses and may shed light on novel ways pathogens can circumvent the barriers meant to protect against them. Crossing these barriers can lead to systemic and even fatal infections. Astroviruses can be especially problematic in immunocompromised individuals and infants where the virus has been associated with necrotizing enterocolitis, severe and persistent diarrhea, and even encephalitis and meningitis. Using our novel tools and models, we demonstrate that the FDA-approved broad-spectrum anti-infective drug nitazoxanide (NTZ) blocks astrovirus replication in vitro with a 50% effective concentration (EC50) of approximately 1.47μM. It can be administered up to 8 hours post-infection and is effective against multiple human astrovirus serotypes including clinical isolates. Most importantly, NTZ reduces viral shed in vivo, exhibiting its potential as a future clinical therapeutic. Overall, these studies will further our understanding of astrovirus pathogenesis leading to the development of therapeutic options for vulnerable populations. Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Biomedical Sciences Research Advisor Stacey Schultz-Cherry, PhD Keywords Cellular biology, virology, microbiology Subject Categories Diseases | Medical Sciences | Medicine and Health Sciences | Viruses This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/523 UNIVERSITY OF TENNESSEE HEALTH SCIENCE CENTER DOCTOR OF PHILOSOPHY DISSERTATION Understanding Human Astrovirus from Pathogenesis to Treatment Author: Advisor: Virginia Hargest Stacey Schultz-Cherry, PhD A Dissertation Presented for The Graduate Studies Council of The University of Tennessee Health Science Center in Partial Fulfillment of the Requirements for the Doctor of Philosophy degree from The University of Tennessee in Biomedical Sciences: Microbiology, Immunology, and Biochemistry College of Graduate Health Sciences June 2020 Chapters 3 and 5 © 2020 by American Society for Microbiology. All other material © 2020 by Virginia Hargest. All rights reserved. ii DEDICATION To my amazing fiancé Winter, my Mom and Dad, and Jessie, for their constant support and encouragement. I love you and I could not have gotten here without you. iii ACKNOWLEDGEMENTS First and foremost, I want to thank my mentor Dr. Stacey Schultz-Cherry. Stacey has allowed me to grow as a scientist and encouraged me along the way. She has taught me how to think critically, how to perform the right tests to answer the questions my project has raised, and has made me a more confident scientist. She gave me enough freedom to study what I was curious about, but reigned me back in when I would get stuck down a rabbit hole. Stacey has been there for the lows of multiple hypotheses being proven wrong and the highs of my first first-author publication and all the times in between. She is my role model for what a strong woman in science should be and I owe her everything for the scientist I have become. I also would like to thank my committee members Dr. Mike Whitt, Dr. RK Rao, Dr. Jason Rosch, and especially Dr. Carolyn Coyne, for serving as an external member. I appreciate their time, commitment, and for their helpful guidance through my graduate career. Finally, as every graduate student can attest, a majority of what you learn during your graduate studies comes from those you interact with on a daily basis. With that said, I want to thank the many members, past and present, of the Schultz-Cherry Lab. I want to especially thank Victoria Meliopoulos, Pam Freiden, Val Cortez, Bekah Honce, and Cydney Johnson. Whether it be teaching me a new technique, answering questions, helping with figure design, editing manuscripts, or just keeping me (mostly) sane, each of them has contributed to my success and I thank them for it. iv ABSTRACT While human astroviruses (HAstV) were discovered nearly 45 years ago, these small positive-sense RNA viruses remain critically understudied. These studies provide fundamental new research on astrovirus pathogenesis and disruption of the gut epithelium by induction of epithelial-mesenchymal transition (EMT) following astrovirus infection. Here we characterize HAstV-induced EMT as an upregulation of SNAI1 and VIM with a down regulation of CDH1 and OCLN, loss of cell-cell junctions most notably at 18 hours post-infection (hpi), and loss of cellular polarity by 24 hpi. While active transforming growth factor- (TGF-) increases during HAstV infection, inhibition of TGF- signaling does not hinder EMT induction. However, HAstV-induced EMT does require active viral replication. These are among the first studies describing the induction of EMT by a non-oncogenic virus and provides an exciting opportunity to understand EMT induction independent of cancer. Our findings likely extend beyond astrovirus to other viruses and may shed light on novel ways pathogens can circumvent the barriers meant to protect against them. Crossing these barriers can lead to systemic and even fatal infections. Astroviruses can be especially problematic in immunocompromised individuals and infants where the virus has been associated with necrotizing enterocolitis, severe and persistent diarrhea, and even encephalitis and meningitis. Using our novel tools and models, we demonstrate that the FDA-approved broad-spectrum anti-infective drug nitazoxanide (NTZ) blocks astrovirus replication in vitro with a 50% effective concentration (EC50) of approximately 1.47μM. It can be administered up to 8 hours post- infection and is effective against multiple human astrovirus serotypes including clinical isolates. Most importantly, NTZ reduces viral shed in vivo, exhibiting its potential as a future clinical therapeutic. Overall, these studies will further our understanding of astrovirus pathogenesis leading to the development of therapeutic options for vulnerable populations. v TABLE OF CONTENTS CHAPTER 1. ASTROVIRUS VIROLOGY, PATHOGENESIS, AND DISEASE .....1 Virology ...........................................................................................................................1 Classification ................................................................................................................1 Genome ........................................................................................................................3 Virus Structure .............................................................................................................3 Replication Cycle .........................................................................................................5 Entry ........................................................................................................................ 5 Replication .............................................................................................................. 5 Assembly and Release ............................................................................................ 6 Pathogenesis .....................................................................................................................6 Molecular Mechanisms of Disease ..............................................................................6 Immune Response ........................................................................................................8 Disease .............................................................................................................................9 Clinical Features ..........................................................................................................9
Recommended publications
  • Oligometastatic Adenocarcinoma of the Esophagus: Current Understanding, Diagnosis, and Therapeutic Strategies
    cancers Review Oligometastatic Adenocarcinoma of the Esophagus: Current Understanding, Diagnosis, and Therapeutic Strategies Michael P. Rogers 1 , Anthony J. DeSantis 1 and Christopher G. DuCoin 2,* 1 Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33606, USA; [email protected] (M.P.R.); [email protected] (A.J.D.) 2 Department of Surgery, Division of Gastrointestinal Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33606, USA * Correspondence: [email protected] Simple Summary: The diagnosis and management of oligometastatic esophageal adenocarcinoma remains nuanced. Early diagnosis may allow for prompt intervention and, ideally, prolonged patient survival. As recent and emerging trials shed new light on this topic, we sought to identify the current understanding and treatment recommendations for oligometastatic disease by performing a thorough review of the available literature. Abstract: Esophageal adenocarcinoma is an aggressive cancer of increasing incidence and is associ- ated with poor prognosis. The early recognition of synchronous and metachronous oligometastasis in esophageal adenocarcinoma may allow for prompt intervention and potentially improved survival. However, curative approaches to oligometastatic esophageal disease remain unproven and may represent an area of emerging divergence of opinion for surgical and medical oncologists. We sought to identify the current understanding and evidence for management of oligometastatic esophageal Citation: Rogers, M.P.;
    [Show full text]
  • The Positive Rhinovirus/Enterovirus Detection and SARS-Cov-2 Persistence Beyond the Acute Infection Phase: an Intra-Household Surveillance Study
    viruses Communication The Positive Rhinovirus/Enterovirus Detection and SARS-CoV-2 Persistence beyond the Acute Infection Phase: An Intra-Household Surveillance Study Pedro Brotons 1,2,3, Iolanda Jordan 1,3,4, Quique Bassat 3,5,6,7,8 , Desiree Henares 1,3, Mariona Fernandez de Sevilla 1,3,5, Sara Ajanovic 7, Alba Redin 1,2, Vicky Fumado 1,5, Barbara Baro 7 , Joana Claverol 9, Rosauro Varo 7 , Daniel Cuadras 9 , Jochen Hecht 10, Irene Barrabeig 3,11, Juan Jose Garcia-Garcia 1,3,5, Cristian Launes 1,3,5,† and Carmen Muñoz-Almagro 1,2,3,12,*,† 1 Pediatric Infectious Diseases Research Group, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain; [email protected] (P.B.); [email protected] (I.J.); [email protected] (D.H.); [email protected] (M.F.d.S.); [email protected] (A.R.); [email protected] (V.F.); [email protected] (J.J.G.-G.); [email protected] (C.L.) 2 Department of Medicine, School of Medicine, Universitat Internacional de Catalunya, Sant Cugat, 08195 Barcelona, Spain 3 Consorcio de Investigacion Biomédica en Red Epidemiologia y Salud Pública (CIBERESP), 28029 Madrid, Spain; [email protected] (Q.B.); [email protected] (I.B.) 4 Pediatric Intensive Care Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain 5 Pediatrics Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain 6 Centro de Investigação em Saúde de Manhiça (CISM), Manhiça 1929, Mozambique Citation: Brotons, P.; Jordan, I.; 7 ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; [email protected] (S.A.); Bassat, Q.; Henares, D.; Fernandez de [email protected] (B.B.); [email protected] (R.V.) Sevilla, M.; Ajanovic, S.; Redin, A.; 8 Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain Fumado, V.; Baro, B.; Claverol, J.; et al.
    [Show full text]
  • Immunogenicity and Efficacy Testing in Chimpanzees of an Oral Hepatitis B Vaccine Based on Live Recombinant Adenovirus
    Proc. Natl. Acad. Sci. USA Vol. 86, pp. 6763-6767, September 1989 Medical Sciences Immunogenicity and efficacy testing in chimpanzees of an oral hepatitis B vaccine based on live recombinant adenovirus (adenovirus animal model/adenovirus-vectored vacdnes) MICHAEL D. LUBECK*, ALAN R. DAVIS*, MURTY CHENGALVALA*, ROBERT J. NATUK*, JOHN E. MORIN*, KATHERINE MOLNAR-KIMBER*, BRUCE B. MASON*, BHEEM M. BHAT*, SATOSHI MIZUTANI*, PAUL P. HUNG*, AND ROBERT H. PURCELLO *Wyeth-Ayerst Research, Biotechnology and Microbiology Division, P.O. Pox 8299, Philadelphia, PA 19101; and tLaboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 Contributed by Robert H. Purcell, May 30, 1989 ABSTRACT As a major cause of acute and chronic liver which, because oftheir wide prior usage, are good candidates disease as well as hepatocellular carcinoma, hepatitis B virus as vectors. Other less well-characterized small animal models (HBV) continues to pose significant health problems world- for human adenoviruses have been occasionally reported wide. Recombinant hepatitis B vaccines based on adenovirus (11-13) but are likewise nonpermissive for Ad4 and Ad7 vectors have been developed to address global needs for infections (unpublished data). An early study of animal effective control of hepatitits B infection. Although consider- species including nonhuman primates indicated that human able progress has been made in the construction ofrecombinant adenoviruses do not induce acute respiratory disease in adenoviruses that express large amounts of HBV gene prod- monkeys or chimpanzees following intranasal inoculations ucts, preclinical immunogenicity and efficacy testing of candi- (14). Serological data, however, indicated that such experi- date vaccines has remained difficult due to the lack ofa suitable mental infections occasionally induced anti-adenovirus anti- animal model.
    [Show full text]
  • On the Entry and Entrapment of Picornaviruses
    On the entry and entrapment of picornaviruses Jacqueline Staring PS_JS_def.indd 1 08-10-18 08:46 ISBN 978-94-92679-60-4 NUR 100 Printing and lay-out by: Proefschriftenprinten.nl – The Netherlands With financial support from the Netherlands Cancer Institute © J. Staring, 2018 All rights are reserved. No part of this book may be reproduced, distributed, or transmitted in any form or by any means, without prior written permission of the author. PS_JS_def.indd 2 08-10-18 08:46 On the entry and entrapment of picornaviruses Over het binnendringen en insluiten van picornavirussen (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. H.R.B.M. Kummeling, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op dinsdag 6 november 2018 des middags te 16.15 uur door Jacqueline Staring geboren op 8 december 1984 te Leiden PS_JS_def.indd 3 08-10-18 08:46 Promotor: Prof. dr T.R. Brummelkamp PS_JS_def.indd 4 08-10-18 08:46 TABLE OF CONTENTS Chapter 1 Introduction I: Picornaviruses 7 Chapter 2 Introduction II: Genetic approaches to study 27 host-pathogen interactions Chapter 3 PLA2G16, a switch between entry and clearance of 43 picornaviridae Chapter 4 Enterovirus D68 receptor requirements unveiled by 77 haploid genetics Chapter 5 KREMEN1 is a host entry receptor for a major group 95 of enteroviruses Chapter 6 General Discussion I: Viral endosomal escape & 125 detection at a glance Chapter 7 General Discussion II: Concluding remarks 151 Addendum 161 Summary 163 Nederlandse samenvatting 165 Curriculum vitae 167 List of publications 168 Acknowledgements 169 PS_JS_def.indd 5 08-10-18 08:46 Roll the dice if you’re going to try, go all the way.
    [Show full text]
  • Hesperetin Protects Crayfish Procambarus Clarkii Against White
    Fish and Shellfish Immunology 93 (2019) 116–123 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Hesperetin protects crayfish Procambarus clarkii against white spot syndrome virus infection T Xiyi Qian, Fei Zhu* Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China ARTICLE INFO ABSTRACT Keywords: Hesperetin is a natural flavanone compound, which mainly exists in lemons and oranges, and has potential Hesperetin antiviral and anticancer activities. In this study, hesperetin was used in a crayfish pathogen challenge to discover WSSV its effects on the innate immune system of invertebrates. The crayfish Procambarus clarkii was used as an ex- Innate immunity perimental model and challenged with white spot syndrome virus (WSSV). Pathogen challenge experiments Procambarus clarkii showed that hesperetin treatment significantly reduced the mortality caused by WSSV infection, while the VP28 copies of WSSV were also reduced. Quantitative reverse transcriptase polymerase chain reaction revealed that hesperetin increased the expression of several innate immune-related genes, including NF-kappaB and C-type lectin. Further analysis showed that hesperetin treatment plays a positive effects on three immune parameters like total hemocyte count, phenoloxidase and superoxide dismutase activity. Nevertheless, whether or not in- fected with WSSV, hesperetin treatment would significantly increase the hemocyte apoptosis rates in crayfish. These results indicated that hesperetin could regulate the innate immunity of crayfish, and delaying and re- ducing the mortality after WSSV challenge. Therefore, the present study provided novel insights into the po- tential therapeutic or preventive functions associated with hesperetin to regulate crayfish immunity and protect crayfish against WSSV infection, provide certain theoretical basis for production practice.
    [Show full text]
  • Human Astrovirus 1–8 Seroprevalence Evaluation in a United States Adult Population
    UC Santa Cruz UC Santa Cruz Previously Published Works Title Human Astrovirus 1-8 Seroprevalence Evaluation in a United States Adult Population. Permalink https://escholarship.org/uc/item/9nz336gs Journal Viruses, 13(6) ISSN 1999-4915 Authors Meyer, Lena Delgado-Cunningham, Kevin Lorig-Roach, Nicholas et al. Publication Date 2021-05-25 DOI 10.3390/v13060979 Peer reviewed eScholarship.org Powered by the California Digital Library University of California viruses Article Human Astrovirus 1–8 Seroprevalence Evaluation in a United States Adult Population Lena Meyer , Kevin Delgado-Cunningham, Nicholas Lorig-Roach, Jordan Ford and Rebecca M. DuBois * Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA; [email protected] (L.M.); [email protected] (K.D.-C.); [email protected] (N.L.-R.); [email protected] (J.F.) * Correspondence: [email protected] Abstract: Human astroviruses are an important cause of viral gastroenteritis globally, yet few studies have investigated the serostatus of adults to establish rates of previous infection. Here, we applied biolayer interferometry immunosorbent assay (BLI-ISA), a recently developed serosurveillance technique, to measure the presence of blood plasma IgG antibodies directed towards the human astrovirus capsid spikes from serotypes 1–8 in a cross-sectional sample of a United States adult population. The seroprevalence rates of IgG antibodies were 73% for human astrovirus serotype 1, 62% for serotype 3, 52% for serotype 4, 29% for serotype 5, 27% for serotype 8, 22% for serotype 2, 8% for serotype 6, and 8% for serotype 7. Notably, seroprevalence rates for capsid spike antigens correlate with neutralizing antibody rates determined previously.
    [Show full text]
  • Global Distribution of Novel Rhinovirus Genotype
    DISPATCHES in resource-poor regions (1). Streptococcus pneumoniae Global Distribution and Haemophilus infl uenzae are important bacterial causes of ARI, although their impact is expected to decline with of Novel Rhinovirus increasing vaccine coverage. Collectively, however, virus- es dominate as causative agents in ARI. Viruses frequently Genotype implicated in ARI include infl uenza virus, respiratory syn- Thomas Briese,* Neil Renwick,* Marietjie Venter,† cytial virus, metapneumovirus, parainfl uenza virus, human Richard G. Jarman,‡ Dhrubaa Ghosh,§ enterovirus (HEV), and human rhinovirus (HRV). Sophie Köndgen,¶ Sanjaya K. Shrestha,# HRVs are grouped taxonomically into Human rhinovi- A. Mette Hoegh,** Inmaculada Casas,†† Edgard rus A (HRV-A) and Human rhinovirus B (HRV-B), 2 spe- Valerie Adjogoua,‡‡ cies within the family Picornaviridae (International Com- Chantal Akoua-Koffi ,‡‡ Khin Saw Myint,‡ David T. mittee on Taxonomy of Viruses database [ICTVdb]; http:// Williams,§§ Glenys Chidlow,¶¶ phene.cpmc.columbia.edu). These nonenveloped, positive- Ria van den Berg,† Cristina Calvo,## sense, single-stranded RNA viruses have been classifi ed se- Orienka Koch,† Gustavo Palacios,* rologically and on the basis of antiviral susceptibility pro- Vishal Kapoor,* Joseph Villari,* fi le, nucleotide sequence relatedness, and receptor usage (2). Samuel R. Dominguez,*** Kathryn V. Holmes,*** Phylogenetic analyses of viral protein VP4/VP2 and VP1 Gerry Harnett,¶¶ David Smith,¶¶ coding regions indicate the presence of 74 serotypes in ge- John S. Mackenzie,§§ Heinz Ellerbrok,¶ netic group A and 25 serotypes in genetic group B (2). Brunhilde Schweiger,¶ Kristian Schønning,** Isolated in the 1950s from persons with upper respi- Mandeep S. Chadha,§ Fabian H. Leendertz,¶ A.C. ratory tract symptoms (2,3), HRVs have become known Mishra,§ Robert V.
    [Show full text]
  • Hepatitis B Fast Facts Everything You Need to Know in 2 Minutes Or Less!
    Hepatitis B Foundation Cause for a Cure www.hepb.org Hepatitis B Fast Facts Everything you need to know in 2 minutes or less! Hepatitis B is the most common serious liver infection in the world. It is caused by the hepatitis B virus (HBV) that attacks liver cells and can lead to liver failure, cirrhosis (scarring) or cancer of the liver. The virus is transmitted through contact with blood and bodily fluids that contain blood. Most people are able to fight off the hepatitis B infection and clear the virus from their blood. This may take up to six months. While the virus is present in their blood, infected people can pass the virus on to others. Approximately 5-10% of adults, 30-50% of children, and 90% of babies will not get rid of the virus and will develop chronic infection. Chronically infected people can pass the virus on to others and are at increased risk for liver problems later in life. The hepatitis B virus is 100 times more infectious than the AIDS virus. Yet, hepatitis B can be pre- vented with a safe and effective vaccine. For the 400 million people worldwide who are chronically infected with hepatitis B, the vaccine is of no use. However, there are promising new treatments for those who live with chronic hepatitis B. In the World: • This year alone, 10 to 30 million people will become infected with the hepatitis B virus (HBV). • The World Health Organization estimates that 400 million people worldwide are already chronically infected with hepatitis B.
    [Show full text]
  • Prevention & Control of Viral Hepatitis Infection
    Prevention & Control of Viral Hepatitis Infection: A Strategy for Global Action © World Health Organization 2011. All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either express or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. Table of contents Disease burden 02 What is viral hepatitis? 05 Prevention & control: a tailored approach 06 Global Achievements 08 Remaining challenges 10 World Health Assembly: a mandate for comprehensive prevention & control 13 WHO goals and strategy
    [Show full text]
  • The Role of Hepatitis C Virus in Hepatocellular Carcinoma U
    Viruses in cancer cell plasticity: the role of hepatitis C virus in hepatocellular carcinoma U. Hibner, D. Gregoire To cite this version: U. Hibner, D. Gregoire. Viruses in cancer cell plasticity: the role of hepatitis C virus in hepato- cellular carcinoma. Contemporary Oncology, Termedia Publishing House, 2015, 19 (1A), pp.A62–7. 10.5114/wo.2014.47132. hal-02187396 HAL Id: hal-02187396 https://hal.archives-ouvertes.fr/hal-02187396 Submitted on 2 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License Review Viruses are considered as causative agents of a significant proportion of human cancers. While the very Viruses in cancer cell plasticity: stringent criteria used for their clas- sification probably lead to an under- estimation, only six human viruses the role of hepatitis C virus are currently classified as oncogenic. In this review we give a brief histor- in hepatocellular carcinoma ical account of the discovery of on- cogenic viruses and then analyse the mechanisms underlying the infectious causes of cancer. We discuss viral strategies that evolved to ensure vi- Urszula Hibner1,2,3, Damien Grégoire1,2,3 rus propagation and spread can alter cellular homeostasis in a way that increases the probability of oncogen- 1Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Montpellier, France ic transformation and acquisition of 2Université Montpellier 2, Montpellier, France stem cell phenotype.
    [Show full text]
  • Astrovirus MLB2, a New Gastroenteric Virus Associated with Meningitis and Disseminated Infection Samuel Cordey,1 Diem-Lan Vu,1 Manuel Schibler, Arnaud G
    RESEARCH Astrovirus MLB2, a New Gastroenteric Virus Associated with Meningitis and Disseminated Infection Samuel Cordey,1 Diem-Lan Vu,1 Manuel Schibler, Arnaud G. L’Huillier, Francisco Brito, Mylène Docquier, Klara M. Posfay-Barbe, Thomas J. Petty, Lara Turin, Evgeny M. Zdobnov, Laurent Kaiser Next-generation sequencing has identified novel astrovi- observed in community healthcare centers (2,3). Symp- ruses for which a pathogenic role is not clearly defined. toms are generally mild, with patient hospitalization We identified astrovirus MLB2 infection in an immunocom- usually not required; asymptomatic carriage has been petent case-patient and an immunocompromised patient described in 2% of children (4). who experienced diverse clinical manifestations, notably, Screening of fecal samples from persons with diarrhea meningitis and disseminated infection. The initial case-pa- and control samples in different parts of the world by un- tient was identified by next-generation sequencing, which revealed astrovirus MLB2 RNA in cerebrospinal fluid, biased next-generation sequencing (NGS) or reverse tran- plasma, urine, and anal swab specimens. We then used scription PCR (RT-PCR) has revealed the sporadic pres- specific real-time reverse transcription PCR to screen 943 ence of members of the Astroviridae family, previously fecal and 424 cerebrospinal fluid samples from hospital- unrecognized in humans, that are phylogenetically substan- ized patients and identified a second case of meningitis, tially distant from classic HAstVs (3,5–9). These viruses with positive results for the agent in the patient’s feces have been named HAstV-VA/HMO and HAstV-MLB, for and plasma. This screening revealed 5 additional positive Virginia, human-mink-ovine, and Melbourne, respectively, fecal samples: 1 from an infant with acute diarrhea and according to the place where they were first identified and 4 from children who had received transplants.
    [Show full text]
  • Diagnosis Accuracy and Prognostic Significance of the Dickkopf-1
    Journal of Cancer 2020, Vol. 11 7091 Ivyspring International Publisher Journal of Cancer 2020; 11(24): 7091-7100. doi: 10.7150/jca.49970 Review Diagnosis Accuracy and Prognostic Significance of the Dickkopf-1 Protein in Gastrointestinal Carcinomas: Systematic Review and Network Meta-analysis Xiaowen Jiang1#, Fuhai Hui1#, Xiaochun Qin1, Yuting Wu1, Haihan Liu1, Jing Gao2, Xiang Li2, Yali Xu2, Yingshi Zhang1 1. Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China. 2. Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China. #Xiaowen Jiang and Fuhai Hui contributed equally to this article Corresponding author: Yingshi Zhang, Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China. E-mail: [email protected], [email protected] (Y. Zhang) © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2020.06.26; Accepted: 2020.10.06; Published: 2020.10.18 Abstract Objective: To evaluate the diagnosis accuracy and prognostic significance of bio-marker dickkopf-1(DKK-1) protein in GIC, and also sub-type of hepatocellular carcinoma (HCC), pancreas carcinomas (PC), oesophageal carcinoma (EPC) and Adenocarcinoma of esophago-gastric junction (AEGJ), etc. Methods: Electronic databases were searched from inception to May 2020. Patients were diagnosed with gastrointestinal carcinomas, and provided data on the correlation between high and low DKK-1 expression and diagnosis or prognosis. Results: Forty-three publications involving 9318 participants were included in the network meta-analysis, with 31 of them providing data for diagnosis value and 18 records were eligible for providing prognosis value of DKK-1.
    [Show full text]