Press Release

Total Page:16

File Type:pdf, Size:1020Kb

Press Release Royal Academy of Engineering Royal Aeronautical T: +44 (0)20 7670 4300 Prince Philip House Society E: [email protected] 3 Carlton House Terrace No. 4 Hamilton www.aerosociety.com London SW1Y 5DG Place 0207 766 0636 London W1J 7BQ [email protected] United Kingdom PRESS RELEASE EMBARGOED until 00.01 on Tuesday 27 August 2019 ENGINEERING PROFESSION CALLS FOR ACTION TO SECURE THE UK’S FUTURE ECONOMY AND SOCIETY. The National Engineering Policy Centre, which represents nearly half a million UK engineers, has published a manifesto for a prosperous and secure economy and society, calling on government to work with them to invest in skills, innovation, digital and traditional infrastructure, and clean energy technologies. Backed by the UK’s leading engineering organisations, Engineering priorities for our future economy and society highlights critical policy recommendations to enhance the UK’s status as a world-leading innovation and engineering hub, ahead of the forthcoming spending review, the UK’s exit from the EU and a possible general election. This is the first joint publication by the National Engineering Policy Centre, an ambitious new partnership between 39 UK engineering organisations, led by the Royal Academy of Engineering. The National Engineering Policy Centre was established to give policymakers access to the best independent advice, skills and expertise of the engineering profession, which generates £420.5 billion of UK GVA and employs over 5.8 million people. It aims to apply engineers’ problem solving skills to some of the biggest problems the UK faces today. This engineering manifesto includes 20 actions across five key policy areas: • Skills: Implement the recommendations of the Perkins Review, which sets out actions to ensure an adequate supply of engineering talent for our nation, to secure the engineering skills needed for the future. • Innovation: Increase Innovate UK’s budget to boost support for business innovation and the ‘D’ of R&D to increase productivity. • Digital: Deliver fast and resilient digital infrastructure, a thriving business environment, excellent digital skills and a diverse pipeline of workers to create a world-leading digital economy. • Infrastructure: Deliver on the recommendations of the National Infrastructure Assessment or set out alternative plans to meet the UK’s long-term infrastructure needs. • Energy and climate change: Deliver on the UK’s ambitious climate change goals by investing in demonstration and deployment of new low-carbon heat, charging of electric vehicles and carbon capture and storage technologies. The Royal Academy of Engineering promotes excellence in the science, art and practice of engineering. Registered charity number 293074 FULL REPORT https://www.aerosociety.com/media/11989/2019_08_17_report_engineering_priorities_f or_our_future_economy-_and_society_raeng_raes.pdf NOTES TO EDITOR 1. National Engineering Policy Centre The National Engineering Policy Centre is an ambitious partnership, led by the Royal Academy of Engineering, between UK engineering organisations representing 450,000 engineers. The Centre connects policymakers with critical engineering expertise to inform and respond to policy issues of national importance, giving policymakers a route to the best independent advice available from across the whole profession, and the profession a unified voice on shared challenges. Our ambition is that the Centre will be a trusted partner for policymakers, enabling them to access excellent engineering expertise, for social and economic benefit. Find out more about more about the Centre partners here: Royal Academy of Engineering EngineeringUK The Engineering Council BCS, The Chartered Institute for IT British Institute of Non-Destructive Testing (BINDT) Chartered Institution of Building Services Engineers (CIBSE) Chartered Institution of Highways & Transportation (CIHT) Chartered Institute of Plumbing and Heating Engineering (CIPHE) Chartered Institution of Water and Environmental Management (CIWEM) Energy Institute (EI) Institution of Agricultural Engineers (IAgrE) Institution of Civil Engineers (ICE) Institute of Cast Metals Engineers (ICME) Institution of Chemical Engineers (IChemE) Institution of Engineering Designers (IED) Institution of Engineering and Technology (IET) Institution of Fire Engineers (IFE) Institution of Gas Engineers and Managers (IGEM) Institute of Highway Engineers (IHE) Institute of Healthcare Engineering and Estate Management (IHEEM) Institution of Lighting Professionals (ILP) Institute of Marine Engineering, Science & Technology (IMarEST) Institution of Mechanical Engineers (IMechE) Institute of Measurement and Control (InstMC) Institution of Royal Engineers (InstRE) Institute of Acoustics (IOA) Institute of Materials, Minerals and Mining (IOM3) Institute of Physics (IOP) Institute of Physics and Engineering in Medicine (IPEM) Institution of Railway Signal Engineers (IRSE) Institution of Structural Engineers (IStructE) Institute of Water Permanent Way Institution (PWI) Nuclear Institute (NI) Royal Aeronautical Society (RAeS) Royal Institution of Naval Architects (RINA) Society of Environmental Engineers (SEE) The Society of Operations Engineers (SOE) The Welding Institute 2. Royal Academy of Engineering As the UK’s national academy for engineering and technology, we bring together the most successful and talented engineers from academia and business – our Fellows – to advance and promote excellence in engineering for the benefit of society. We harness their experience and expertise to provide independent advice to government, to deliver programmes that help exceptional engineering researchers and innovators realise their potential, to engage the public with engineering and to provide leadership for the profession. We have three strategic priorities: • Make the UK the leading nation for engineering innovation and businesses • Address the engineering skills and diversity challenge • Position engineering at the heart of society We bring together engineers, policymakers, entrepreneurs, business leaders, academics, educators and the public in pursuit of these goals. Engineering is a global profession, so we work with partners across the world to advance engineering’s contribution to society on an international, as well as a national scale. For enquiries contact Victoria Runcie Royal Academy of Engineering T: 020 7766 0745 E: [email protected] .
Recommended publications
  • A Short History of the Royal Aeronautical Society
    A SHORT HISTORY OF THE ROYAL AERONAUTICAL SOCIETY Royal Aeronautical Society Council Dinner at the Science Museum on 26 May 1932 with Guest of Honour Miss Amelia Earhart. Edited by Chris Male MRAeS Royal Aeronautical Society www.aerosociety.com Afterburner Society News RAeS 150th ANNIVERSARY www.aerosociety.com/150 The Royal Aeronautical Society: Part 1 – The early years The Beginning “At a meeting held at Argyll Lodge, Campden Hill, Right: The first Aeronautical on 12 January 1866, His Grace The Duke of Argyll Exhibition, Crystal Palace, 1868, showing the presiding; also present Mr James Glaisher, Dr Hugh Stringfellow Triplane model W. Diamond, Mr F.H. Wenham, Mr James Wm. Butler and other exhibits. No fewer and Mr F.W. Brearey. Mr Glaisher read the following than 77 exhibits were address: collected together, including ‘The first application of the Balloon as a means of engines, lighter- and heavier- than-air models, kites and ascending into the upper regions of the plans of projected machines. atmosphere has been almost within the recollection A special Juror’s Report on on ‘Aerial locomotion and the laws by which heavy of men now living but with the exception of some the exhibits was issued. bodies impelled through air are sustained’. of the early experimenters it has scarcely occupied Below: Frederick W Brearey, Wenham’s lecture is now one of the aeronautical Secretary of the the attention of scientific men, nor has the subject of Aeronautical Society of Great classics and was the beginning of the pattern of aeronautics been properly recognised as a distinct Britain, 1866-1896.
    [Show full text]
  • Evidence Synthesis on the EU-UK Relationship on Research and Innovation January 2018
    Evidence synthesis on the EU-UK relationship on research and innovation January 2018 1. Introduction The Royal Society and the Wellcome Trust have undertaken a rapid evidence synthesis on the EU-UK research and innovation relationship as part of their Future Partnership Project. Organisations and individuals were invited to submit evidence and analyses for inclusion. Evidence was also gathered through internet searches to ensure an inclusive approach. The Annex is a summary of the methods. Two questions were used in gathering evidence and in determining the material in scope: 1. What incentives, infrastructure and mechanisms can be accessed by research and innovation organisations, funders and individuals in Member States to support collaborations? 2. How do Member States currently use and benefit from these and how might they be affected by Brexit? This paper is a synthesis of the evidence and covers funding, infrastructures, mobility, collaboration and regulation, with a focus on links between the EU and the UK. 2. Overview of the evidence base A few major reports were of particular relevance; the Royal Society’s three reports on the role of the EU in UK research and innovation and two reports commissioned from Technopolis Group by UK organisations, on the role of EU funding in UK research and innovation and the impact of collaboration: the value of UK medical research to EU science and health1,2. These documents were often referenced in other submissions. A report from the Lords Science and Technology Committee’s inquiry on EU Membership and UK Science also summarises many sources of evidence relevant to this synthesis.
    [Show full text]
  • Common Acronyms Engineers SOE Society of Operations Engineers Licensed Members TWI the Welding Institute BCS the Chartered Institute for IT
    SEE Society of Environmental Common Acronyms Engineers SOE Society of Operations Engineers Licensed Members TWI The Welding Institute BCS The Chartered Institute for IT BINDT British Institute of Non-Destructive Testing Professional Affiliates CIBSE Chartered Institution of Building ACostE Association of Cost Engineers Services Engineers APM Association for Project CIHT Chartered Institution of Highways Management and Transportation CABE Chartered Association of Building CIPHE Chartered Institute of Plumbing and Engineers Heating Engineering CQI Chartered Quality Institute CIWEM Chartered Institution of Water and IAEA Institute of Automotive Engineer Environmental Management Assessors EI Energy Institute IAT Institute of Asphalt Technology IAgrE Institution of Agricultural Engineers ICES Chartered Institution of Civil ICE Institution of Civil Engineers Engineering Surveyors IChemE Institution of Chemical Engineers ICorr Institute of Corrosion ICME Institute of Cast Metals Engineers ICT Institute of Concrete Technology IED Institution of Engineering IDE Institute of Demolition Engineers Designers IDGTE Institution of Diesel and Gas IET Institution of Engineering and Turbine Engineers Technology IExpE Institute of Explosives Engineers IFE Institution of Fire Engineers IMA Institute of Mathematics and its IGEM Institution of Gas Engineers and Applications Managers IMF Institute of Materials Finishing IHE Institute of Highway Engineers INCOSE UK International Council on Systems Engineering (UK Chapter) IHEEM Institute of Healthcare Engineering
    [Show full text]
  • Wellcome Trust Annual Report and Financial Statements 2018 Is © the Wellcome Trust and Is Licensed Under Creative Commons Attribution 2.0 UK
    Annual Report and Financial Statements 2018 Table of contents Report from Chair 3 Report from Director 4 Trustee’s Report 5 What we do 6 Review of Charitable Activities 7 Review of Investment Activities 18 Financial Review 28 Structure and Governance 33 Social Responsibility 38 Risk Management 40 Remuneration Report 42 Nomination Committee Report 44 Remuneration Committee Report 45 Investment Committee Report 46 Audit and Risk Committee Report 47 Independent Auditor’s Report 49 Financial Statements 59 Consolidated Statement of Financial Activities 60 Consolidated Balance Sheet 61 Statement of Financial Activities of the Trust 62 Balance Sheet of the Trust 63 Consolidated Cash Flow Statement 64 Notes to the Financial Statements 65 Reference and Administrative Details 116 2 Table of Contents Wellcome Trust Annual Report 2018 Report from Chair In March 2018, the Board of Governors and I year, driven by the performance of the investment decided to reappoint Jeremy Farrar as Director portfolio, which returned 13.4%, or 10.7% after of Wellcome for a further five years. Under his inflation. This year has seen a return of market leadership, Wellcome is ambitious, innovative and volatility as the economic cycle has matured. willing to take risks in pursuit of our mission of Central Banks, led by the US Federal Reserve, have improving health by helping great ideas to thrive. begun to raise interest rates and remove the prop to Wellcome’s work is underpinned by the financial asset prices previously provided by quantitative strength we derive from our £25.9 billion investment easing. Uncertainties about Brexit have generated portfolio.
    [Show full text]
  • Royal Society, 1985
    The Public Understanding of Science Report of a Royal Society adhoc Group endorsed by the Council of the Royal Society The Royal Society 6 Carlton House Terrace London SWlY 5AG CONTENTS Page Preface 5 Summary 6 1. Introduction 7 2. Why it matters 9 3. The present position 12 4. Formal education 17 5. The mass media 2 1 6. ' The scientific community 24 7. Public lectures, children's activities, museums and libraries 27 8. Industry 29 9. Conclusions and recommendations 31 Annexes A. List of those submitting evidence B. Visits and seminars C. Selected bibliography PREFACE This report was prepared by an ad hoc group under the chairmanship of Dr W.F. Bodmer, F.R.S.; it has been endorsed by the Council of the Royal Society. It deals with an issue that is important not only, or even mainly, for the scientific community but also for the nation as a whole and for each individual within it. More than ever, people need some understanding of science, whether they are involved in decision-making at a national or local level, in managing industrial companies, in skilled or semi-skilled employment, in voting as private citizens or in making a wide range of personal decisions. In publishing this report the Council hopes that it will highlight this need for an overall awareness of the nature of science and, more particularly, of the way that science and technology pervade modern life, and that it will generate both debate and decisions on how best they can be fostered. The report makes a number of recommendations.
    [Show full text]
  • Wellcome Trust Annual Report and Financial Statements 2019 Is © the Wellcome Trust and Is Licensed Under Creative Commons Attribution 2.0 UK
    Annual Report and Financial Statements 2019 Table of contents Report from Chair 3 Report from Director 5 Trustee’s Report 7 What we do 8 Review of Charitable Activities 9 Review of Investment Activities 21 Financial Review 31 Structure and Governance 36 Social Responsibility 40 Risk Management 42 Remuneration Report 44 Remuneration Committee Report 46 Nomination Committee Report 47 Investment Committee Report 48 Audit and Risk Committee Report 49 Independent Auditor’s Report 52 Financial Statements 61 Consolidated Statement of Financial Activities 62 Consolidated Balance Sheet 63 Statement of Financial Activities of the Trust 64 Balance Sheet of the Trust 65 Consolidated Cash Flow Statement 66 Notes to the Financial Statements 67 Alternative Performance Measures and Key Performance Indicators 114 Glossary of Terms 115 Reference and Administrative Details 116 Table of Contents Wellcome Trust Annual Report 2019 | 2 Report from Chair During my tenure at Wellcome, which ends in The macro environment is increasingly challenging, 2020, I count myself lucky to have had the which has created volatility in financial markets. opportunity to meet inspiring people from a rich Q4 2018 was a very difficult quarter, but the diversity of sectors, backgrounds, specialisms resumption of interest rate cuts by the US Federal and scientific fields. Reserve underpinned another year of gains for our portfolio. We recognise that the cycle is extended, Wellcome’s achievements belong to the people and that the portfolio is likely to face more who work here and to the people we fund – it is challenging times ahead. a partnership that continues to grow stronger, more influential and more ambitious, spurred by The team is working hard to ensure that our independence.
    [Show full text]
  • Guides to the Royal Institution of Great Britain: 1 HISTORY
    Guides to the Royal Institution of Great Britain: 1 HISTORY Theo James presenting a bouquet to HM The Queen on the occasion of her bicentenary visit, 7 December 1999. by Frank A.J.L. James The Director, Susan Greenfield, looks on Front page: Façade of the Royal Institution added in 1837. Watercolour by T.H. Shepherd or more than two hundred years the Royal Institution of Great The Royal Institution was founded at a meeting on 7 March 1799 at FBritain has been at the centre of scientific research and the the Soho Square house of the President of the Royal Society, Joseph popularisation of science in this country. Within its walls some of the Banks (1743-1820). A list of fifty-eight names was read of gentlemen major scientific discoveries of the last two centuries have been made. who had agreed to contribute fifty guineas each to be a Proprietor of Chemists and physicists - such as Humphry Davy, Michael Faraday, a new John Tyndall, James Dewar, Lord Rayleigh, William Henry Bragg, INSTITUTION FOR DIFFUSING THE KNOWLEDGE, AND FACILITATING Henry Dale, Eric Rideal, William Lawrence Bragg and George Porter THE GENERAL INTRODUCTION, OF USEFUL MECHANICAL - carried out much of their major research here. The technological INVENTIONS AND IMPROVEMENTS; AND FOR TEACHING, BY COURSES applications of some of this research has transformed the way we OF PHILOSOPHICAL LECTURES AND EXPERIMENTS, THE APPLICATION live. Furthermore, most of these scientists were first rate OF SCIENCE TO THE COMMON PURPOSES OF LIFE. communicators who were able to inspire their audiences with an appreciation of science.
    [Show full text]
  • Guidance for Applicants
    Guidance for applicants The British Academy, Royal Academy of Engineering and A full list of the disciplines covered by the Academies can the Royal Society are three of five Designated Competent be found in the ‘Guidance on Policy for UK visas under Tier Bodies (DCBs) appointed by the Home Office to assess 1 (Exceptional Talent)’ document available on the Home applications for the Research and Innovation Talent Visa Office website. under the Home Office Tier 1 (Exceptional Talent) Visa route. Holders of a Research and Innovation Talent Visa that were As DCBs, the Academies are responsible for considering endorsed through Exceptional Talent are eligible to apply whether an individual who makes an application for settlement (Indefinite Leave to Remain) after three years. is demonstrably ‘exceptionally talented’ or has Holders endorsed through Exceptional Promise are eligible ‘exceptional promise’. after five years. Tier 1 (Exceptional Talent) is subject to a limit of 2,000 visas per year (beginning on 6 April one year and ending on 5 April the following year). The Academies assess applications in the following areas and are allocated a minumum number of endorsements by the Home Office from the total annual pool. • The British Academy – for humanities and social sciences (150 endorsements); • The Royal Society – for natural sciences and medical science research (250 endorsements); • The Royal Academy of Engineering – for engineering (150 endorsements). TIER 1 APPLICATION GUIDANCE 1 Overview of the application process The application for a Research & Innovation Talent visa Should the decision be upheld then the process ends here. (Tier 1 Exceptional Talent) is in two stages: You can still apply via another visa route or re-apply to this route with revised supporting evidence.
    [Show full text]
  • Chemistry for All Reducing Inequalities in Chemistry Aspirations and Attitudes
    Chemistry for All Reducing inequalities in chemistry aspirations and attitudes Institute of Education 2 Chemistry for All Reducing inequalities in chemistry aspirations and attitudes Findings from the Chemistry for All research and evaluation programme November 2020 Authors Dr Tamjid Mujtaba Dr Richard Sheldrake Professor Michael J. Reiss UCL Institute of Education, University College London Acknowledgements The authors would like to thank the students and staff from across the participating schools. The authors would also like to thank the Chemistry for All programme delivery teams and members of the programme steering group. The research was conducted independently by the UCL Institute of Education with funding from the Royal Society of Chemistry. For further information For further information on the Chemistry for All project, including requests for related publications or the next phase of the work, please contact Dr Tamjid Mujtaba ([email protected]). 3 1. Executive summary 5 9.3. Results for science as of Year 11 82 1.1. Background and context 6 9.3.1. Predicting students’ science aspirations 1.2. Chemistry for All programme 7 (A-Level, university, jobs) as of Year 11 82 1.3. Research and evaluation programme 7 9.3.2. Predicting students’ science aspirations for A-Level as of Year 11 85 CONTENTS 1.4. Research results and insights 8 1.4.1. Insights into students’ changing attitudes and aspirations 8 9.3.3. Predicting students’ science aspirations for careers as of Year 11 86 1.4.2. Insights into students’ attitudes and views 9 9.3.4. Predicting students’ science aspirations for university 1.4.3.
    [Show full text]
  • The Case for a Gender Lens in STEM THROUGH BOTH Eyes: the Case for a Gender Lens in STEM ‘Think of a Gender Lens As Putting on Spectacles
    THE CASE FOR A GENDER LENS IN STEM THROUGH BOTH eyes: The case for a gender lens in STEM ‘Think of a gender lens as putting on spectacles. Out of one lens of the spectacles, you see the participation, needs and realities of women. Out of the other lens, you see the participation, needs and realities of men. Your sight or vision is the combination of what each eye sees.’ 2 contents Contents EXECUTive summary 4 1.0 introduction 7 2.0 Challenges 8 3.0 Solutions 23 Sir Peter Luff MP: A Call to Action 49 References 50 Authorship & Credits 51 ‘The country urgently needs more young people with STEM qualifications, which means we have to get more girls and women involved. This should be at the heart of education and skills policy – it isn’t an optional extra left to a few passionate enthusiasts. We have to make it everyone’s business’ Helen Wollaston, Director WISE ‘Our research shows that it is harder for girls to balance, or reconcile, their interest in science with femininity. The solution won’t lie in trying to change girls. The causes are rooted in, and perpetuated by, wider societal attitudes and social structures. We also need to think about the whole structure of our education system in England, which essentially channels children into narrow ‘tracks’ from a young age’ Professor Louise Archer, Director of ASPIRES, ‘The lack of girls and women in STEM blights lead coordinatior of TISME our society and our economy. There is no single solution, which is why I am glad to see that Sciencegrrl have come forward with a wide range of recommendations covering education, careers and the broader cultural challenges’ Chi Onwurah, MP for Newcastle upon Tyne ‘We are working to maximise employer engagement to help put science and maths in a careers context.
    [Show full text]
  • Humphry Davy, Nitrous Oxide, the Pneumatic Institution, and the Royal Institution
    Am J Physiol Lung Cell Mol Physiol 307: L661–L667, 2014. First published August 29, 2014; doi:10.1152/ajplung.00206.2014. Perspectives Humphry Davy, nitrous oxide, the Pneumatic Institution, and the Royal Institution John B. West Department of Medicine, University of California San Diego, La Jolla, California Submitted 23 July 2014; accepted in final form 18 August 2014 West JB. Humphry Davy, nitrous oxide, the Pneumatic Institu- magnesium, boron, and barium. Davy is also well known as the tion, and the Royal Institution. Am J Physiol Lung Cell Mol Phy- person responsible for developing the miner’s safety lamp. siol 307: L661–L667, 2014. First published August 29, 2014; There is an extensive literature on Davy. A readable intro- doi:10.1152/ajplung.00206.2014.—Humphry Davy (1778–1829) has an duction is Hartley’s (8). The biography by Knight (10) is more interesting place in the history of respiratory gases because the detailed and contains useful citations to primary sources. Tre- Pneumatic Institution in which he did much of his early work signaled neer (17) wrote another biography with an emphasis on Davy’s the end of an era of discovery. The previous 40 years had seen relations with other people including his wife and also Faraday. essentially all of the important respiratory gases described, and the Partington (12) is authoritative on his chemical research. Institution was formed to exploit their possible value in medical Davy’s collected works are available (6). treatment. Davy himself is well known for producing nitrous oxide and demonstrating that its inhalation could cause euphoria and height- Early Years ened imagination.
    [Show full text]
  • Rulers of Opinion Women at the Royal Institution of Great Britain, 1799
    Rulers of Opinion Women at the Royal Institution of Great Britain, 1799-1812 Harriet Olivia Lloyd UCL Submitted for the Degree of Doctor of Philosophy in History of Science 2018 1 I, Harriet Olivia Lloyd, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract This thesis examines the role of women at the Royal Institution of Great Britain in its first decade and contributes to the field by writing more women into the history of science. Using the method of prosopography, 844 women have been identified as subscribers to the Royal Institution from its founding on 7 March 1799, until 10 April 1812, the date of the last lecture given by the chemist Humphry Davy (1778- 1829). Evidence suggests that around half of Davy’s audience at the Royal Institution were women from the upper and middle classes. This female audience was gathered by the Royal Institution’s distinguished patronesses, who included Mary Mee, Viscountess Palmerston (1752-1805) and the chemist Elizabeth Anne, Lady Hippisley (1762/3-1843). A further original contribution of this thesis is to explain why women subscribed to the Royal Institution from the audience perspective. First, Linda Colley’s concept of the “service élite” is used to explain why an institution that aimed to apply science to the “common purposes of life” appealed to fashionable women like the distinguished patronesses. These women were “rulers of opinion,” women who could influence their peers and transform the image of a degenerate ruling class to that of an élite that served the nation.
    [Show full text]