The State of Engineering Key Facts 2018

Total Page:16

File Type:pdf, Size:1020Kb

The State of Engineering Key Facts 2018 Engineering UK 2018 was produced with the support of Challenges and the members and fellows of the following Professional The state of engineering recommendations Engineering Institutions: Key facts 2018 If modern engineering is to continue to provide its BCS, The Chartered Institute for IT Institution of Lighting enormous economic and social contributions to British Institute of Non- Professionals (ILP) the United Kingdom, it is of critical importance that Destructive Testing (BINDT) Institute of Marine Engineering, Science & Technology (IMarEST) the engineering community work alongside the Chartered Institution of Building government and educational sector to address Services Engineers (CIBSE) Institution of Mechanical Chartered Institution of Highways Engineers (IMechE) the skills shortage. & Transportation (CIHT) Institute of Measurement and Chartered Institute of Plumbing Control (InstMC) Challenges and Heating Engineering (CIPHE) Institution of Royal Engineers • Too few STEM teachers Chartered Institution of Water (InstRE) • Limited access to STEM careers activity and Environmental Management Institute of Acoustics (IOA) (CIWEM) • Too few women becoming engineers Institute of Materials, Minerals Energy Institute (EI) and Mining (IOM3) • Too little home grown talent Institution of Agricultural Institute of Physics (IOP) • Too little understanding of apprenticeships Engineers (IAgrE) Institute of Physics and Institution of Civil Engineers (ICE) Engineering in Medicine (IPEM) Recommendations Institution of Chemical Engineers Institution of Railway Signal 1. Streamline the STEM outreach landscape to make it simpler for (IChemE) Engineers (IRSE) schools to connect with employers and other providers to access high quality, engineering focused STEM engagement activity Institute of Cast Metals Engineers Institution of Structural Engineers (ICME) (IStructE) 2. Develop a better understanding of what engineering-focused careers interventions work so we can direct our resources to the Institution of Engineering Institute of Water most effective methods to inspire young people to study STEM Designers (IED) Nuclear Institute (NI) and pursue engineering careers Institution of Engineering and Royal Academy of Engineering 3. Increase the supply and retention of specialist STEM teachers, Technology (IET) (RaEng) who have a vital role in shaping the aspirations and career Institution of Fire Engineers (IFE) trajectories of young people Royal Aeronautical Society (RAeS) Institution of Gas Engineers and Royal Institution of Naval 4. Actively safeguard and enhance the status of the UK’s higher Managers (IGEM) education sector as world-class and welcoming to talent from Architects (RINA) across the world Institute of Highway Engineers Society of Environmental (IHE) 5. Raise awareness of apprenticeships among young people and Engineers (SEE) their influencers – and ensure the apprenticeships on offer are Institute of Healthcare The Society of Operations of high quality Engineering and Estate Engineers Management (IHEEM) 6. Ensure young people have a full understanding of the excitement The Welding Institute (TWI) and variety a career in engineering offers, and the potential EngineeringUK is a not-for-profit organisation, which works in partnership with the contribution they can make as an engineer engineering community to promote the vital role of engineers and engineering and to 7. Improve our understanding of the barriers for women, black and inspire the next generation. EngineeringUK leads engagement programmes The Big Bang and Tomorrow’s Engineers, produces the annual State of Engineering report and the minority ethnic communities and people from disadvantaged Engineering Brand Monitor. backgrounds to pursue pathways into, and careers in, engineering www.engineeringuk.com @_EngineeringUK #EngUK18 We need to improve awareness of engineering Engineering is of vital importance to UK’s economy Engineering skills are in short supply and the different routes into the profession New industries and technologies are emerging, adding to already significant demand for engineering skills 27% 11 to 14 year olds in 2017 of enterprises know what engineers do 124,000 79,000 203,000 27% compared to just 15% in 2013 in the UK are engineers and engineering- people with Level Fig 3.11, page 66 engineering-related technicians with core related roles to 3+ engineering skills engineering skills arise per year needed every year Figure 2.6, page 38 Engineering UK 2018 Report required per year to meet demand Figure 10.21, page 270 36% 58% 29% 19% Annual shortfall of up to engineering Information and Manufacturing communication 46% employers 59,000 surveyed 11 to 14 year olds know what to do 11 to 14 year olds know almost engineering graduates and technicians report next to become an engineer nothing or just a little about what 25% apprentices do and the different types 26% to fill core engineering roles recruitment Construction Other engineering Figure 10.21, page 270 Page 86 of apprenticeships available difficulties Figure 2.7, page 39 Page 20 Raising understanding among key influencers is critical It is essential more young people – particularly girls – study STEM Who would you consider going to for careers advice? Between 2015 and Engineering generates 2016 the number of 0 0 66% 65% 64% 63% engineering enterprises 129,059 37,335 10% decrease 0 0 8 in the UK grew by 23% engineering-related first year engineering GCSE entries for biology, of the UK’s apprenticeship and technology chemistry and physics total turnover starts across England, undergraduates between 2012 and 2017 Scotland and Wales in the UK Page 87 Figure 2.12, page 42 5.6% Page 9 Figure 6.10, page 145 Figure 2.4, page 37 ge 111 ge 11 ge 11 Proportion female: Parentsguardians areers advisers eachers Engineering employs GCSE Physics entrants A level Physics entrants Fig 3.14, page 68 5.1% 50% 22% 5.6 million Figure 4.4, page 92 Figure 3.20, page 82 increase in employment over the last five years Engineering and technology undergraduate Engineering apprenticeship starts (England only) people in the UK entrants 31% Figure 7.8, page 175 parents 36% of parents and 58% 16% 8% know what Figure 6.10, page 145 Figure 5.8, page 116 of teachers feel confident giving Every time a new job is created in engineering, engineers do Demand and shortfall figures presented here are not directly comparable to previous editions due to the use careers advice about engineering 1.74 jobs are created elsewhere Page 35 of a revised engineering footprint. Fig 3.11, page 66 Page 86.
Recommended publications
  • A Short History of the Royal Aeronautical Society
    A SHORT HISTORY OF THE ROYAL AERONAUTICAL SOCIETY Royal Aeronautical Society Council Dinner at the Science Museum on 26 May 1932 with Guest of Honour Miss Amelia Earhart. Edited by Chris Male MRAeS Royal Aeronautical Society www.aerosociety.com Afterburner Society News RAeS 150th ANNIVERSARY www.aerosociety.com/150 The Royal Aeronautical Society: Part 1 – The early years The Beginning “At a meeting held at Argyll Lodge, Campden Hill, Right: The first Aeronautical on 12 January 1866, His Grace The Duke of Argyll Exhibition, Crystal Palace, 1868, showing the presiding; also present Mr James Glaisher, Dr Hugh Stringfellow Triplane model W. Diamond, Mr F.H. Wenham, Mr James Wm. Butler and other exhibits. No fewer and Mr F.W. Brearey. Mr Glaisher read the following than 77 exhibits were address: collected together, including ‘The first application of the Balloon as a means of engines, lighter- and heavier- than-air models, kites and ascending into the upper regions of the plans of projected machines. atmosphere has been almost within the recollection A special Juror’s Report on on ‘Aerial locomotion and the laws by which heavy of men now living but with the exception of some the exhibits was issued. bodies impelled through air are sustained’. of the early experimenters it has scarcely occupied Below: Frederick W Brearey, Wenham’s lecture is now one of the aeronautical Secretary of the the attention of scientific men, nor has the subject of Aeronautical Society of Great classics and was the beginning of the pattern of aeronautics been properly recognised as a distinct Britain, 1866-1896.
    [Show full text]
  • Women in Engineering Fixing the Talent Pipeline
    REPORT WOMEN IN ENGINEERING FIXING THE TALENT PIPELINE Amna Silim and Cait Crosse September 2014 © IPPR 2014 Institute for Public Policy Research ABOUT IPPR IPPR, the Institute for Public Policy Research, is the UK’s leading progressive thinktank. We are an independent charitable organisation with more than 40 staff members, paid interns and visiting fellows. Our main office is in London, with IPPR North, IPPR’s dedicated thinktank for the North of England, operating out of offices in Newcastle and Manchester. The purpose of our work is to conduct and publish the results of research into and promote public education in the economic, social and political sciences, and in science and technology, including the effect of moral, social, political and scientific factors on public policy and on the living standards of all sections of the community. IPPR 4th Floor 14 Buckingham Street London WC2N 6DF T: +44 (0)20 7470 6100 E: [email protected] www.ippr.org Registered charity no. 800065 This paper was first published in September 2014. © 2014 The contents and opinions in this paper are the authors’ only. NEW IDEAS for CHANGE CONTENTS Summary ............................................................................................................1 Introduction: Why should we care about the lack of women in engineering? .....2 1. The scale of the challenge in the UK .............................................................3 2. The choices girls make in education ..............................................................5 2.1 Choices at school ............................................................................................ 5 2.2 Choices in higher education ............................................................................. 6 2.3 Choices in employment.................................................................................... 7 3. Why do girls reject the idea of a career in engineering?..............................10 3.1 Perception of STEM subjects and engineering careers ..................................
    [Show full text]
  • Evidence Synthesis on the EU-UK Relationship on Research and Innovation January 2018
    Evidence synthesis on the EU-UK relationship on research and innovation January 2018 1. Introduction The Royal Society and the Wellcome Trust have undertaken a rapid evidence synthesis on the EU-UK research and innovation relationship as part of their Future Partnership Project. Organisations and individuals were invited to submit evidence and analyses for inclusion. Evidence was also gathered through internet searches to ensure an inclusive approach. The Annex is a summary of the methods. Two questions were used in gathering evidence and in determining the material in scope: 1. What incentives, infrastructure and mechanisms can be accessed by research and innovation organisations, funders and individuals in Member States to support collaborations? 2. How do Member States currently use and benefit from these and how might they be affected by Brexit? This paper is a synthesis of the evidence and covers funding, infrastructures, mobility, collaboration and regulation, with a focus on links between the EU and the UK. 2. Overview of the evidence base A few major reports were of particular relevance; the Royal Society’s three reports on the role of the EU in UK research and innovation and two reports commissioned from Technopolis Group by UK organisations, on the role of EU funding in UK research and innovation and the impact of collaboration: the value of UK medical research to EU science and health1,2. These documents were often referenced in other submissions. A report from the Lords Science and Technology Committee’s inquiry on EU Membership and UK Science also summarises many sources of evidence relevant to this synthesis.
    [Show full text]
  • Common Acronyms Engineers SOE Society of Operations Engineers Licensed Members TWI the Welding Institute BCS the Chartered Institute for IT
    SEE Society of Environmental Common Acronyms Engineers SOE Society of Operations Engineers Licensed Members TWI The Welding Institute BCS The Chartered Institute for IT BINDT British Institute of Non-Destructive Testing Professional Affiliates CIBSE Chartered Institution of Building ACostE Association of Cost Engineers Services Engineers APM Association for Project CIHT Chartered Institution of Highways Management and Transportation CABE Chartered Association of Building CIPHE Chartered Institute of Plumbing and Engineers Heating Engineering CQI Chartered Quality Institute CIWEM Chartered Institution of Water and IAEA Institute of Automotive Engineer Environmental Management Assessors EI Energy Institute IAT Institute of Asphalt Technology IAgrE Institution of Agricultural Engineers ICES Chartered Institution of Civil ICE Institution of Civil Engineers Engineering Surveyors IChemE Institution of Chemical Engineers ICorr Institute of Corrosion ICME Institute of Cast Metals Engineers ICT Institute of Concrete Technology IED Institution of Engineering IDE Institute of Demolition Engineers Designers IDGTE Institution of Diesel and Gas IET Institution of Engineering and Turbine Engineers Technology IExpE Institute of Explosives Engineers IFE Institution of Fire Engineers IMA Institute of Mathematics and its IGEM Institution of Gas Engineers and Applications Managers IMF Institute of Materials Finishing IHE Institute of Highway Engineers INCOSE UK International Council on Systems Engineering (UK Chapter) IHEEM Institute of Healthcare Engineering
    [Show full text]
  • Inside Science
    SPRING 2009 NEWS FROM THE ROYAL SOCIETY INSIDE SCIENCE YOUNG EXPLORERS TOUCHDOWN IN NEW ZEALAND International Expedition Prize is a ‘once in a lifetime experience’ SCIENCE TAKES TO THE STAGE The Royal Shakespeare Company premiers a new play on the emergence of modern science UPDATE FROM THE ROYAL SOCIETY This third issue of Inside Science contains early information DID YOU KNOW? about exciting plans for the Royal Society’s 350th Anniversary in 2010. The Anniversary is a marvellous STEADY FOOTING, opportunity to increase the profile of science, explore its SHAKY BRIDGE benefits and address the challenges it presents for society On its opening day, crowds of but perhaps most important of all to inspire young minds pedestrians experienced unexpected with the excitement of scientific discovery. swaying as they walked across London’s Our policy work continues to address major scientific issues Millennium Bridge. Whilst pedestrians affecting the UK. In December we cautioned the Government on fondly nicknamed it the ‘wobbly bridge’, the levels of separated plutonium stockpiled in the UK – currently physicists were busy exploring the the highest in the world. With support from our Plutonium Working Group, the Society has reasons for the phenomenon. submitted detailed comment to the Nuclear Decommissioning Authority (NDA) for a report to The view was widely held that the Government on management options for the stockpile. ‘wobble’ was due to crowd loading and Late last year we ran an extremely successful MP-Scientist pairing scheme, helping to build pedestrians synchronising their footsteps bridges between parliamentarians and some of the best young scientists in the UK.
    [Show full text]
  • Wellcome Trust Annual Report and Financial Statements 2018 Is © the Wellcome Trust and Is Licensed Under Creative Commons Attribution 2.0 UK
    Annual Report and Financial Statements 2018 Table of contents Report from Chair 3 Report from Director 4 Trustee’s Report 5 What we do 6 Review of Charitable Activities 7 Review of Investment Activities 18 Financial Review 28 Structure and Governance 33 Social Responsibility 38 Risk Management 40 Remuneration Report 42 Nomination Committee Report 44 Remuneration Committee Report 45 Investment Committee Report 46 Audit and Risk Committee Report 47 Independent Auditor’s Report 49 Financial Statements 59 Consolidated Statement of Financial Activities 60 Consolidated Balance Sheet 61 Statement of Financial Activities of the Trust 62 Balance Sheet of the Trust 63 Consolidated Cash Flow Statement 64 Notes to the Financial Statements 65 Reference and Administrative Details 116 2 Table of Contents Wellcome Trust Annual Report 2018 Report from Chair In March 2018, the Board of Governors and I year, driven by the performance of the investment decided to reappoint Jeremy Farrar as Director portfolio, which returned 13.4%, or 10.7% after of Wellcome for a further five years. Under his inflation. This year has seen a return of market leadership, Wellcome is ambitious, innovative and volatility as the economic cycle has matured. willing to take risks in pursuit of our mission of Central Banks, led by the US Federal Reserve, have improving health by helping great ideas to thrive. begun to raise interest rates and remove the prop to Wellcome’s work is underpinned by the financial asset prices previously provided by quantitative strength we derive from our £25.9 billion investment easing. Uncertainties about Brexit have generated portfolio.
    [Show full text]
  • Royal Society, 1985
    The Public Understanding of Science Report of a Royal Society adhoc Group endorsed by the Council of the Royal Society The Royal Society 6 Carlton House Terrace London SWlY 5AG CONTENTS Page Preface 5 Summary 6 1. Introduction 7 2. Why it matters 9 3. The present position 12 4. Formal education 17 5. The mass media 2 1 6. ' The scientific community 24 7. Public lectures, children's activities, museums and libraries 27 8. Industry 29 9. Conclusions and recommendations 31 Annexes A. List of those submitting evidence B. Visits and seminars C. Selected bibliography PREFACE This report was prepared by an ad hoc group under the chairmanship of Dr W.F. Bodmer, F.R.S.; it has been endorsed by the Council of the Royal Society. It deals with an issue that is important not only, or even mainly, for the scientific community but also for the nation as a whole and for each individual within it. More than ever, people need some understanding of science, whether they are involved in decision-making at a national or local level, in managing industrial companies, in skilled or semi-skilled employment, in voting as private citizens or in making a wide range of personal decisions. In publishing this report the Council hopes that it will highlight this need for an overall awareness of the nature of science and, more particularly, of the way that science and technology pervade modern life, and that it will generate both debate and decisions on how best they can be fostered. The report makes a number of recommendations.
    [Show full text]
  • Department of Physics Review
    The Blackett Laboratory Department of Physics Review Faculty of Natural Sciences 2008/09 Contents Preface from the Head of Department 2 Undergraduate Teaching 54 Academic Staff group photograph 9 Postgraduate Studies 59 General Departmental Information 10 PhD degrees awarded (by research group) 61 Research Groups 11 Research Grants Grants obtained by research group 64 Astrophysics 12 Technical Development, Intellectual Property 69 and Commercial Interactions (by research group) Condensed Matter Theory 17 Academic Staff 72 Experimental Solid State 20 Administrative and Support Staff 76 High Energy Physics 25 Optics - Laser Consortium 30 Optics - Photonics 33 Optics - Quantum Optics and Laser Science 41 Plasma Physics 38 Space and Atmospheric Physics 45 Theoretical Physics 49 Front cover: Laser probing images of jet propagating in ambient plasma and a density map from a 3D simulation of a nested, stainless steel, wire array experiment - see Plamsa Physics group page 38. 1 Preface from the Heads of Department During 2008 much of the headline were invited by, Ian Pearson MP, the within the IOP Juno code of practice grabbing news focused on ‘big science’ Minister of State for Science and (available to download at with serious financial problems at the Innovation, to initiate a broad ranging www.ioppublishing.com/activity/diver Science and Technology Facilities review of physics research under sity/Gender/Juno_code_of_practice/ Council (STFC) (we note that some the chairmanship of Professor Bill page_31619.html). As noted in the 40% of the Department’s research Wakeham (Vice-Chancellor of IOP document, “The code … sets expenditure is STFC derived) and Southampton University). The stated out practical ideas for actions that the start-up of the Large Hadron purpose of the review was to examine departments can take to address the Collider at CERN.
    [Show full text]
  • Wellcome Trust Annual Report and Financial Statements 2019 Is © the Wellcome Trust and Is Licensed Under Creative Commons Attribution 2.0 UK
    Annual Report and Financial Statements 2019 Table of contents Report from Chair 3 Report from Director 5 Trustee’s Report 7 What we do 8 Review of Charitable Activities 9 Review of Investment Activities 21 Financial Review 31 Structure and Governance 36 Social Responsibility 40 Risk Management 42 Remuneration Report 44 Remuneration Committee Report 46 Nomination Committee Report 47 Investment Committee Report 48 Audit and Risk Committee Report 49 Independent Auditor’s Report 52 Financial Statements 61 Consolidated Statement of Financial Activities 62 Consolidated Balance Sheet 63 Statement of Financial Activities of the Trust 64 Balance Sheet of the Trust 65 Consolidated Cash Flow Statement 66 Notes to the Financial Statements 67 Alternative Performance Measures and Key Performance Indicators 114 Glossary of Terms 115 Reference and Administrative Details 116 Table of Contents Wellcome Trust Annual Report 2019 | 2 Report from Chair During my tenure at Wellcome, which ends in The macro environment is increasingly challenging, 2020, I count myself lucky to have had the which has created volatility in financial markets. opportunity to meet inspiring people from a rich Q4 2018 was a very difficult quarter, but the diversity of sectors, backgrounds, specialisms resumption of interest rate cuts by the US Federal and scientific fields. Reserve underpinned another year of gains for our portfolio. We recognise that the cycle is extended, Wellcome’s achievements belong to the people and that the portfolio is likely to face more who work here and to the people we fund – it is challenging times ahead. a partnership that continues to grow stronger, more influential and more ambitious, spurred by The team is working hard to ensure that our independence.
    [Show full text]
  • Guides to the Royal Institution of Great Britain: 1 HISTORY
    Guides to the Royal Institution of Great Britain: 1 HISTORY Theo James presenting a bouquet to HM The Queen on the occasion of her bicentenary visit, 7 December 1999. by Frank A.J.L. James The Director, Susan Greenfield, looks on Front page: Façade of the Royal Institution added in 1837. Watercolour by T.H. Shepherd or more than two hundred years the Royal Institution of Great The Royal Institution was founded at a meeting on 7 March 1799 at FBritain has been at the centre of scientific research and the the Soho Square house of the President of the Royal Society, Joseph popularisation of science in this country. Within its walls some of the Banks (1743-1820). A list of fifty-eight names was read of gentlemen major scientific discoveries of the last two centuries have been made. who had agreed to contribute fifty guineas each to be a Proprietor of Chemists and physicists - such as Humphry Davy, Michael Faraday, a new John Tyndall, James Dewar, Lord Rayleigh, William Henry Bragg, INSTITUTION FOR DIFFUSING THE KNOWLEDGE, AND FACILITATING Henry Dale, Eric Rideal, William Lawrence Bragg and George Porter THE GENERAL INTRODUCTION, OF USEFUL MECHANICAL - carried out much of their major research here. The technological INVENTIONS AND IMPROVEMENTS; AND FOR TEACHING, BY COURSES applications of some of this research has transformed the way we OF PHILOSOPHICAL LECTURES AND EXPERIMENTS, THE APPLICATION live. Furthermore, most of these scientists were first rate OF SCIENCE TO THE COMMON PURPOSES OF LIFE. communicators who were able to inspire their audiences with an appreciation of science.
    [Show full text]
  • British Association for the Advancement of Science – Collections on the History of Science (1830S-1970S) Inside the Archive
    British Association for the Advancement of Science – Collections on the History of Science (1830s-1970s) inside the archive wileydigitalarchives.com/british-association-for-the-advancement-of-science/ 1 Introduction Introduction to the British Association for the Advancement of Science—Collections on the History of Science (1830s-1970s) Archive The British Association for the Advancement of Science was founded in 1831. Its aim: to transform science from a self-funded endeavor of the wealthy into a government funded professional “Our vision is of activity at the heart of social and economic development. This archive connects the works, thoughts and interactions of the most influential scientists of the time, from Darwin to Ramsay, and a world where documents the history of British science from the 1830s through the 1970s across disciplines and universities. science is at the The BAAS archive is complemented by a wealth of material drawn from leading British universities. Over ninety percent of the content within this unique archive has not been available digitally until now. heart of culture The materials within the archive document 150 years of scientific discovery, Britain’s emergence as a center for science, and provide and society” an insider’s perspective that is invaluable to researchers. This look book provides a window into some of the stories that shaped modern science. – British Science Association To learn more about these and other stories in The British Association for the Advancement of Science—Collections on the History
    [Show full text]
  • Chemistry for All Reducing Inequalities in Chemistry Aspirations and Attitudes
    Chemistry for All Reducing inequalities in chemistry aspirations and attitudes Institute of Education 2 Chemistry for All Reducing inequalities in chemistry aspirations and attitudes Findings from the Chemistry for All research and evaluation programme November 2020 Authors Dr Tamjid Mujtaba Dr Richard Sheldrake Professor Michael J. Reiss UCL Institute of Education, University College London Acknowledgements The authors would like to thank the students and staff from across the participating schools. The authors would also like to thank the Chemistry for All programme delivery teams and members of the programme steering group. The research was conducted independently by the UCL Institute of Education with funding from the Royal Society of Chemistry. For further information For further information on the Chemistry for All project, including requests for related publications or the next phase of the work, please contact Dr Tamjid Mujtaba ([email protected]). 3 1. Executive summary 5 9.3. Results for science as of Year 11 82 1.1. Background and context 6 9.3.1. Predicting students’ science aspirations 1.2. Chemistry for All programme 7 (A-Level, university, jobs) as of Year 11 82 1.3. Research and evaluation programme 7 9.3.2. Predicting students’ science aspirations for A-Level as of Year 11 85 CONTENTS 1.4. Research results and insights 8 1.4.1. Insights into students’ changing attitudes and aspirations 8 9.3.3. Predicting students’ science aspirations for careers as of Year 11 86 1.4.2. Insights into students’ attitudes and views 9 9.3.4. Predicting students’ science aspirations for university 1.4.3.
    [Show full text]