Sustainable Water Engineering the Authors Dedicate the Book to Their Families and Colleagues Sustainable Water Engineering
Total Page:16
File Type:pdf, Size:1020Kb
Sustainable Water Engineering The authors dedicate the book to their families and colleagues Sustainable Water Engineering Theory and Practice Ramesha Chandrappa Diganta B. Das This edition first published 2014 © 2014 John Wiley & Sons, Ltd Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission toreuse the copyright material in this book please see our website at www.wiley.com. The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on theunderstanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom. Library of Congress Cataloging-in-Publication Data Chandrappa, Ramesha. Sustainable and water engineering : theory and practice / Ramesha Chandrappa, Diganta B. Das. pages cm Includes index. ISBN 978-1-118-54104-3 (cloth) 1. Water quality. 2. Water–Purification. 3. Water-supply–Management. 4. Hydraulic engineering. I. Das, D. B. (Diganta Bhusan), 1974– II. Title. TD370.C484 2014 628.1028′6–dc23 2013050546 A catalogue record for this book is available from the British Library. ISBN: 9781118541043 Set in 10/12pt Times by Aptara Inc., New Delhi, India. 1 2014 Contents Preface xi Abbreviations xiii Glossary xvii 1 Water Crisis 1 1.1 Water Resource Issues 6 1.1.1 Water Footprint 8 1.2 Climate Change and Its Influence on Global Water Resources 9 1.3 Protection and Enhancement of Natural Watershed and Aquifer Environments 12 1.4 Water Engineering for Sustainable Coastal and Offshore Environments 12 1.5 Endangering World Peace and Security 13 1.6 Awareness among Decision Makers and the Public across the World 15 1.7 Criteria for Sustainable Water Management 16 1.8 Water Scarcity and Millennium Development Goals 18 1.9 Lack of Access to Clean Drinking Water and Sanitation 19 1.10 Fragmentation of Water Management 20 1.11 Economics and Financial Aspects 22 1.11.1 Water Treatment and Distribution 24 1.11.2 Wastewater Treatment, Collection and Disposal 27 1.12 Legal Aspects 28 References 30 2 Requirements for the Sustainability of Water Systems 35 2.1 History of Water Distribution and Wastewater Collection 38 2.2 Integrated Water Management 40 2.3 Sewerage Treatment and Urban Pollution Management 44 2.4 Conventional Water Supply 45 2.4.1 Features 49 2.4.2 Capacity and Pressure Requirements 50 2.4.3 Design and Hydraulic Analysis of Distribution System 52 2.4.4 Unsustainable Characteristics 55 2.4.5 Sustainable Approach 64 2.5 Conventional Wastewater Collection Systems 71 2.5.1 Features 71 vi Contents 2.5.2 Unsustainable Characteristics 77 2.5.3 Sustainable Approach 79 References 80 3 Water Quality Issues 83 3.1 Water-Related Diseases 84 3.1.1 Transmission Vectors 85 3.1.2 Field Testing and Monitoring 85 3.1.3 Village-Level Monitoring 89 3.2 Selection Options for Water Supply Source 89 3.2.1 Spring Capping 91 3.2.2 Simple Tube Wells 93 3.2.3 Hand Pumps 95 3.2.4 Rainwater Harvesting 95 3.2.5 Fog and Dew Harvesting 98 3.2.6 Snow Harvesting 99 3.3 On-Site Sanitation 99 3.3.1 Latrines 99 3.3.2 Septic Tanks 103 3.3.3 Aqua Privies 103 3.3.4 Oxidation Pond Treatment Systems 103 3.3.5 Storm Drainage 105 3.4 Water Quality Characteristics of Potable Drinking Water and Wastewater Effluents 110 3.4.1 Physical Parameters 110 3.4.2 Chemical Parameters 113 3.4.3 Solids in Water 127 3.4.4 Biological Parameters 139 3.5 Standards and Consents 147 3.5.1 Potable Water Standards 147 3.5.2 Wastewater Effluent Standards 148 3.6 Kinetics of Biochemical Oxygen Demand 149 3.7 Water Management for Wildlife Conservation 149 3.8 Water-Quality Deterioration 152 References 153 4 Fundamentals of Treatment and Process Design, and Sustainability 163 4.1 History of Water and Wastewater Treatment Regulatory Issues across the World 164 4.1.1 Low-Tech versus Hi-Tech 165 4.1.2 Low Cost versus High Cost 167 4.2 Design Principles for Sustainable Treatment Systems 168 4.2.1 Low Carbon 168 4.2.2 Low Energy 168 4.2.3 Low Chemical Use 172 4.2.4 Modelling of Treatment Processes to Attain Sustainability 172 4.2.5 Operation, Management, Financial, Socio-Economic Aspect 173 Contents vii 4.3 Preliminary and Primary Treatment 174 4.3.1 Screening 174 4.3.2 Coarse-Solid Reduction 174 4.3.3 Grease Removal Chamber 174 4.3.4 Flow Equalization 177 4.3.5 Mixing and Flocculation 177 4.3.6 Sedimentation 180 4.3.7 Flotation 183 4.4 Secondary Treatment 185 4.4.1 Biological Treatment 185 4.4.2 Vermifiltration 202 4.4.3 Chemical Treatment 202 4.5 Tertiary Treatment 203 4.5.1 Filtration 203 4.5.2 Activated Carbon Treatment 205 4.5.3 Ion Exchange 206 4.5.4 Forward and Reverse Osmosis, Membrane Filtration, Membrane Bioreactor, Membrane Distillation, and Electro Dialysis 206 4.5.5 Air Stripping 207 4.5.6 Disinfection and Fluoridation 209 4.5.7 Removal of Specific Constituents 211 4.6 Emerging Technologies 211 4.6.1 Nanotechnology applied for Water Purification 212 4.6.2 Photocatalysis 212 4.6.3 Evaporation 214 4.6.4 Incineration 214 4.6.5 Sono-Photo-Fenton Process 214 4.7 Residual Management 215 4.7.1 Thickening 216 4.7.2 Drying 216 4.7.3 Stabilization 216 4.7.4 Digestion 217 4.7.5 Composting 217 4.7.6 Dewatering 218 4.7.7 Incineration 218 4.7.8 Remediation of Contaminants in Subsurface 219 4.8 Portable Water Purification Kit 220 4.9 Requirements of Electrical, Instrumentation and Mechanical Equipment in Water and Wastewater Treatment to Achieve Sustainability 220 4.9.1 Electrical Equipment and Energy Requirement 221 4.9.2 Piping and Instrumentation 223 4.9.3 Mechanical Equipment Requirements and Related Issues 224 4.9.4 Systems and Operational Issues 224 4.9.5 Real-Time Control 225 4.9.6 Indicators of Sustainable Performance; Systems Approach for Sustainability Assessment of Water Infrastructure 225 viii Contents 4.9.7 Troubleshooting 226 4.9.8 Operational Checks for the STP 228 4.9.9 Design, Construction and Engineering Checks for the WWTP 228 4.9.10 Odour Management 228 References 232 5 Sustainable Industrial Water Use and Wastewater Treatment 237 5.1 Sustainable Principles in Industrial Water Use and Wastewater Treatment 237 5.1.1 Industries with High Dissolved Solids 240 5.1.2 Industries/Activities with High Inorganic Content 242 5.2 Industries with Low Dissolved Solids 282 5.2.1 Industries with Low Amounts of Inorganic Materials 282 5.2.2 Industries Dealing with Low Dissolved Organic Material 284 References 292 6 Sustainable Effluent Disposal 297 6.1 Dissolved Oxygen Sag Curves, Mass Balance Calculations and Basic River Models 299 6.2 Disposal Options and Impact on Environment 302 6.2.1 Ocean Disposal 304 6.2.2 Disposal into Fresh Water Bodies 306 6.2.3 On-Land Disposal 308 6.3 Sustainable Reuse Options and Practice 310 6.3.1 Toilet Flushing 317 6.3.2 Floor Washing 317 6.3.3 Sustainable Wastewater Irrigation 317 6.3.4 Nonpotable Industrial Use 320 References 326 7 Sustainable Construction of Water Structures 331 7.1