Chemical Warfare: Nerve Agents Steven J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Novichok Agent - Wikipedia
18-3-2018 Novichok agent - Wikipedia Novichok agent Novichok (Russian: Новичо́к, "newcomer") is a series of nerve agents the Soviet Union and Russia developed between 1971 and 1993.[a][2][3] Russian scientists who developed the agents claim they are the deadliest nerve agents ever made, with some variants possibly five to eight times more potent than VX,[4][5] and others up to ten times more potent than soman.[6] They were designed as part of a Soviet program codenamed "FOLIANT".[7][1] Five Novichok variants are believed to have been weaponised for military use.[8] The most versatile was A-232 (Novichok-5).[9] Novichok agents have never been used on the battlefield. Theresa May, Prime Minister of the United Kingdom, said that one such agent was used in the poisoning of Sergei and Yulia Skripal in England in March 2018.[10] Russia officially denies producing or researching Novichok agents.[11] In 2013, the Organisation for the Prohibition of Chemical Weapons Scientific Advisory Board reported that it had insufficient information to comment on the existence or properties of Novichok agents,[12] and in 2011 it noted there was no peer reviewed paper on Novichok agents in scientific literature.[13] Contents Design objectives Disclosure Development and test sites Description of Novichok agents Chemistry Effects Use Poisoning of Kivelidi Poisoning of Sergei and Yulia Skripal See also References Further reading External links Design objectives These agents were designed to achieve four objectives:[14][15] To be undetectable using standard 1970s and 1980s NATO chemical detection equipment; To defeat NATO chemical protective gear; To be safer to handle; To circumvent the Chemical Weapons Convention list of controlled precursors, classes of chemical and physical form. -
1981-04-15 EA Plan of Development Production
United States Department of the Interior Office of the Secretary Minerals Management Service 1340 West Sixth Street Los Angeles, California 90017 OCS ENVIRONMENTAL ASSESSMENT July 8, 1982 Operator Chevron U.S.A. Inc. Plan Type Development/Production Lease OCS-P 0296 Block 34 N., 37 W. Pl atfonn Edith Date Submitted April 15, 1981 Prepared by the Office of the Deputy Minerals Manager, Field Operations, Pacific OCS Region Related Environmental Documents U. S. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Environmental Impact Report - Environmental Assessment, Shell OCS Beta Unit Development (prepared jointly with agencies of the State of California, 1978) 3 Volumes Environmental Assessment, Exploration, for Lease OCS-P 0296 BUREAU OF LAND MANAGEMENT Proposed 1975 OCS Oil and Gas General Lease Sale Offshore Southern California (OCS Sale No. 35), 5 Volumes Proposed 1979 OCS Oil and Gas Lease Sale Offshore Southern California (OCS Sale No. 48), 5 Volumes Proposed 1982 OCS Oil and Gas General Lease Sale Offshore Southern California (OCS Sale No. 68), 2 Volumes u.c. Santa Cruz - BLM, Study of Marine Mammals and Seabirds of the Southern California Bight ENVIRONMENTAL ASSESSMENT CHEVRON U.S.A. INC. OPERATOR PLAN OF DEVELOPMENT/PRODUCTION, PROPOSED PLATFORM EDITH, LEASE OCS-P 0296, BETA AREA, SAN PEDRO BAY, OFFSHORE SOUTHERN CALIFORNIA Table of Contents Page I. DESCRIPTION OF THE PROPOSED ACTION ••••••••••••••••••••• 1 II. DESCRIPTION OF AFFECTED ENVIRONMENT •••••••••••••••••••• 12 III. ENVIRONMENTAL CONSEQUENCES ••••••••••••••••••••••••••••• 29 IV. ALTERNATIVES TO THE PROPOSED ACTION •••••••••••••••••••• 46 v. UNAVOIDABLE ADVERSE ENVIRONMENTAL EFFECTS •••••••••••••• 48 VI. CONTROVERSIAL ISSUES ••••••••••••••••••••••••••••••••••• 48 VII. FINDING OF NO SIGNIFICANT IMPACT (FONS!) ••••••••••••••• 51 VIII. ENVIRONMENTAL ASSESSMENT DETERMINATION ••••••••••••••••• 55 IX. -
Galantamine Potentiates the Neuroprotective Effect of Memantine Against NMDA-Induced Excitotoxicity Joao~ P
Galantamine potentiates the neuroprotective effect of memantine against NMDA-induced excitotoxicity Joao~ P. Lopes1, Glauco Tarozzo1, Angelo Reggiani1, Daniele Piomelli1,2 & Andrea Cavalli1,3 1D3 – Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego, 16163, Genova, Italy 2Departments of Anatomy and Neurobiology and Biological Chemistry, University of California, Irvine, CA, 92697-4621 3Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, Bologna University, Via Belmeloro, 40126, Bologna, Italy Keywords Abstract Alzheimer’s disease, drug combination, N NMDA neurotoxicity, NR2B, The combination of memantine, an -methyl-D-aspartate (NMDA) receptor polypharmacology, primary cortical neurons antagonist, with an acetylcholinesterase inhibitor (AChEI) is the current stan- dard of care in Alzheimer’s disease (AD). Galantamine, an AChEI currently Correspondence marketed for the treatment of AD, exerts memory-enhancing and neuroprotec- Andrea Cavalli, D3 – Drug Discovery and tive effects via activation of nicotinic acetylcholine receptors (nAChRs). Here, Development Department, Istituto Italiano we investigated the neuroprotective properties of galantamine in primary cul- di Tecnologia – Via Morego, 30, 16163 tures of rat cortical neurons when given alone or in combination with meman- Genova, Italy. Tel: +39 010 71781530; Fax: +39 010 tine. In agreement with previous findings, we found that memantine was fully 71781228; E-mail: [email protected] effective in reversing NMDA toxicity at concentrations of 2.5 and 5 lmol/L. Galantamine also completely reversed NMDA toxicity at a concentration of Funding Information 5 lmol/L. The a7 and a4b2 nAChR antagonists, methyllycaconitine, and dihy- No funding information provided. dro-b-erythroidine blocked the neuroprotective effect of galantamine, demon- strating the involvement of nAChRs. -
Reference List of Drugs with Potential Anticholinergic Effects 1, 2, 3, 4, 5
ANTICHOLINERGICS: Reference List of Drugs with Potential Anticholinergic Effects 1, 2, 3, 4, 5 J Bareham BSP © www.RxFiles.ca Aug 2021 WHENEVER POSSIBLE, AVOID DRUGS WITH MODERATE TO HIGH ANTICHOLINERGIC ACTIVITY IN OLDER ADULTS (>65 YEARS OF AGE) Low Anticholinergic Activity; Moderate/High Anticholinergic Activity -B in combo Beers Antibiotics Antiparkinsonian Cardiovascular Agents Immunosuppressants ampicillin *ALL AVAILABLE AS amantadine SYMMETREL atenolol TENORMIN azaTHIOprine IMURAN cefOXitin GENERIC benztropine mesylate COGENTIN captopril CAPOTEN cyclosporine NEORAL clindamycin bromocriptine PARLODEL chlorthalidone GENERIC ONLY hydrocortisone CORTEF gentamicin (Oint & Sol’n NIHB covered) carbidopa/levodopa SINEMET digoxin LANOXIN, TOLOXIN methylprednisolone MEDROL piperacillin entacapone COMTAN dilTIAZem CARDIZEM, TIAZAC prednisone WINPRED dipyridamole PERSANTINE, ethopropazine PARSITAN vancomycin phenelzine NARDIL AGGRENOX disopyramide RYTHMODAN Muscle Relaxants pramipexole MIRAPEX Antidepressants baclofen LIORESAL ( on intrathecal only) procyclidine KEMADRIN furosemide LASIX amitriptyline ELAVIL cyclobenzaprine FLEXERIL selegiline ELDEPRYL hydrALAZINE APRESOLINE clomiPRAMINE ANAFRANIL isosorbide ISORDIL methocarbamol ROBAXIN OTC trihexyphenidyl ARTANE desipramine NORPRAMIN metoprolol LOPRESOR orphenadrine NORFLEX OTC doxepin >6mg SINEQUAN Antipsychotics NIFEdipine ADALAT tiZANidine ZANAFLEX A imipramine TOFRANIL quiNIDine GENERIC ONLY C ARIPiprazole ABILIFY & MAINTENA -
A Theoretical Study of the Hydrolysis Mechanism of A-234; the Suspected Novichok Agent in the Skripal Cite This: RSC Adv., 2020, 10, 27884 Attack†
RSC Advances View Article Online PAPER View Journal | View Issue A theoretical study of the hydrolysis mechanism of A-234; the suspected novichok agent in the Skripal Cite this: RSC Adv., 2020, 10, 27884 attack† a a b b Yadhav A. Imrit, Hanusha Bhakhoa, Tetiana Sergeieva, Sergi Danes,´ Nandini Savoo, a Mohamed I. Elzagheid, c Lydia Rhyman, ad Diego M. Andrada b and Ponnadurai Ramasami *ad A-234, [EtO–P(]O)(F)–N]C(Me)–N(Et)2], is the suspected A-type nerve agent used in the Skripal attack on the 4th of March 2018. Studies related to the structure and reactivity of this compound are limited. We, therefore, aimed at understanding the underlying hydrolysis mechanism of A-234 within the DFT framework. The attack of the water molecule can occur at the phosphinate and acetoamidine reactive centres. Our theoretical findings indicate that the hydrolysis at the acetoamidine centre is thermodynamically favoured compared to the hydrolysis at the phosphinate centre. The hydrolysis at the Creative Commons Attribution-NonCommercial 3.0 Unported Licence. acetoamidine moiety may proceed via two pathways, depending on the nitrogen atom participating in Received 9th June 2020 the hydrolysis. The main pathway consists of four distinct channels to reach the final product, with the Accepted 17th July 2020 concerted 1,3-proton shift favoured kinetically and thermodynamically in the gas phase and water as DOI: 10.1039/d0ra05086e solvent. The results are in good agreement with the literature, although some differences in the reaction rsc.li/rsc-advances mechanism were observed. 1 Introduction including A-234 (Scheme 1, structure B). -
Organic & Biomolecular Chemistry
Organic & Biomolecular Chemistry Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/obc Page 1 of 7 Organic & Biomolecular Chemistry Journal Name RSCPublishing ARTICLE Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) Cite this: DOI: 10.1039/x0xx00000x with a unique probe based on a boron dipyrromethene (BODIPY) dye Manuscript Received 00th January 2012, Accepted 00th January 2012 Andrea Barba-Bon,a,b Ana M. Costero,a,b* Salvador Gil,a,b Ramón Martínez- a,c,d a,c,d DOI: 10.1039/x0xx00000x Máñez, * and Félix Sancenón www.rsc.org/ A novel colorimetric probe (P4) for the selective differential detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) was prepared. -
Daily Comment
Daily Comment By Bill O’Grady, Thomas Wash, and Patrick Fearon-Hernandez, CFA Looking for something to read? See our Reading List; these books, separated by category, are ones we find interesting and insightful. We will be adding to the list over time. [Posted: September 3, 2020—9:30 AM EDT] Global equity markets are generally lower this morning. The EuroStoxx 50 is up 1.5% from its last close. In Asia, the MSCI Asia Apex 50 closed down 0.2% from the prior close. Chinese markets were lower, with the Shanghai Composite down 0.6%, and the Shenzhen Composite up 0.8%. U.S. equity index futures are signaling a lower open. We have a new report available, the Q3 2020 Asset Allocation Quarterly Rebalance Chart Book. Every quarter, the Asset Allocation Committee reviews and makes adjustments to our Asset Allocation portfolios, which we detail in the Asset Allocation Quarterly. As a supplement to that report, this video chart book reviews our asset allocation process, details the changes to the portfolios, and offers a deep dive into the macro environment that underlies our portfolio decisions. The macro presentation is a discussion of the economy and the political and geopolitical environment. Going forward, we plan to make this chart book available in the weeks following the quarterly rebalance date for the Asset Allocation portfolios. Perhaps the biggest news this morning is that equity markets are set to open lower. Equities have continued to rally in an orderly fashion, with the major indices setting new record highs. Stocks have been lifted by improving earnings, low interest rates, moderate inflation and expectations of accommodative policy. -
Doubts About Novichok
Doubts About Novichok By Professor Paul Mckeigue, Professor Piers Robinson, and Region: Europe, Russia and FSU Jake Mason Theme: Intelligence, Media Disinformation Global Research, April 05, 2018 In-depth Report: FAKE INTELLIGENCE Introduction In view of the seriousness of the rapidly worsening relations between the West and Russia, and the quickly evolving military events in the Middle East, especially Syria, we have taken the step to publish relevant evidence-based analysis with respect to the Skripal incident of 4 March 2018. This update to our earlier briefing note covers new material that has become available. We welcome comments and corrections which can be sent to Piers Robinson or provided on this site. Summary Official statements from the UK government claim that the “military grade nerve agent” detected in Salisbury was “part of a group of nerve agents known as Novichok” that the Russian chemist Vil Mirzayanov alleged had been developed in the Soviet Union in a secret programme. The structures of these compounds, labelled A-230, A-232, A-234, A-242 and A-262, were published by Mirzayanov in a book in 2008, twelve years after he emigrated to the US. Other than Mirzayanov’s story, there is no evidence that these compounds were ever synthesized in either the Soviet Union or Russia, or that the “Novichok” programme ever existed. The use of the term “Novichoks” to describe this A-230 series of compounds, which are real chemical structures, is therefore tendentious. An account by another Russian chemist Vladimir Uglev, often cited as corroboration of Mirzayanov’s story, appears on close examination to be about the development of a class of nerve agents denoted GV which have been studied in several countries including Czechoslovakia and the US. -
Medical Aspects of Chemical Warfare
Medical Diagnostics Chapter 22 MEDICAL DIAGNOSTICS † ‡ § BENEDICT R. CAPACIO, PHD*; J. RICHARD SMITH ; RICHARD K. GORDON, PHD ; JULIAN R. HAIGH, PHD ; JOHN ¥ ¶ R. BARR, PHD ; AND GENNADY E. PLATOFF JR, PHD INTRODUCTION NERVE AGENTS SULFUR MUSTARD LEWISITE CYANIDE PHOSGENE 3-QUINUCLIDINYL BENZILATE SAMPLE CONSIDERATIONS Summary * Chief, Medical Diagnostic and Chemical Branch, Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, 3100 Rickets Point Road, Aberdeen Proving Ground, Maryland 21010-5400 † Chemist, Medical Diagnostic and Chemical Branch, Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, 3100 Rickets Point Road, Aberdeen Proving Ground, Maryland 21010-5400 ‡ Chief, Department of Biochemical Pharmacology, Biochemistry Division, Walter Reed Army Institute of Research, 503 Robert Grant Road, Silver Spring, Maryland 20910-7500 § Research Scientist, Department of Biochemical Pharmacology, Biochemistry Division, Walter Reed Army Institute of Research, 503 Robert Grant Road, Silver Spring, Maryland 20910-7500 ¥ Lead Research Chemist, Centers for Disease Control and Prevention, 4770 Buford Highway, Mailstop F47, Atlanta, Georgia 30341 ¶ Colonel, US Army (Retired); Scientific Advisor, Office of Biodefense Research, National Institute of Allergies and Infectious Disease, National Institutes of Health, 6610 Rockledge Drive, Room 4069, Bethesda, Maryland 20892-6612 691 Medical Aspects of Chemical Warfare INTRODUCTION In the past, issues associated with chemical war- an -
Structural and Functional Neuroprotection in Glaucoma: Role of Galantamine-Mediated Activation of Muscarinic Acetylcholine Receptors
Citation: Cell Death and Disease (2010) 1, e27; doi:10.1038/cddis.2009.23 & 2010 Macmillan Publishers Limited All rights reserved 2041-4889/10 www.nature.com/cddis Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors M Almasieh1, Y Zhou1, ME Kelly2, C Casanova3 and A Di Polo*,1 Glaucoma is the leading cause of irreversible blindness worldwide. Loss of vision due to glaucoma is caused by the selective death of retinal ganglion cells (RGCs). Treatments for glaucoma, limited to drugs or surgery to lower intraocular pressure (IOP), are insufficient. Therefore, a pressing medical need exists for more effective therapies to prevent vision loss in glaucoma patients. In this in vivo study, we demonstrate that systemic administration of galantamine, an acetylcholinesterase inhibitor, promotes protection of RGC soma and axons in a rat glaucoma model. Functional deficits caused by high IOP, assessed by recording visual evoked potentials from the superior colliculus, were improved by galantamine. These effects were not related to a reduction in IOP because galantamine did not change the pressure in glaucomatous eyes and it promoted neuronal survival after optic nerve axotomy, a pressure-independent model of RGC death. Importantly, we demonstrate that galantamine- induced ganglion cell survival occurred by activation of types M1 and M4 muscarinic acetylcholine receptors, while nicotinic receptors were not involved. These data provide the first evidence of the clinical potential -
Potencies and Selectivities of Inhibitors of Acetylcholinesterase and Its Molecular Forms in Normal and Alzheimer’S Disease Brain*
Acta Biologica Hungarica 54 (2), pp. 183–189 (2003) POTENCIES AND SELECTIVITIES OF INHIBITORS OF ACETYLCHOLINESTERASE AND ITS MOLECULAR FORMS IN NORMAL AND ALZHEIMER’S DISEASE BRAIN* Z. RAKONCZAY** Alzheimer’s Disease Research Center, Department of Psychiatry, University of Szeged, Szeged, Hungary (Received: April 2, 2003; accepted: April 24, 2003) Eight inhibitors of acetylcholinesterase (AChE), tacrine, bis-tacrine, donepezil, rivastigmine, galanta- mine, heptyl-physostigmine, TAK-147 and metrifonate, were compared with regard to their effects on AChE and butyrylcholinesterase (BuChE) in normal human brain cortex. Additionally, the IC50 values of different molecular forms of AChE (monomeric, G1, and tetrameric, G4) were determined in the cerebral cortex in both normal and Alzheimer’s human brains. The most selective AChE inhibitors, in decreasing sequence, were in order: TAK-147, donepezil and galantamine. For BuChE, the most specific was rivastigmine. However, none of these inhibitors was absolutely specific for AChE or BuChE. Among these inhibitors, tacrine, bis-tacrine, TAK-147, metrifonate and galantamine inhibited both the G1 and G4 AChE forms equally well. Interestingly, the AChE molecular forms in Alzheimer samples were more sensitive to some of the inhibitors as compared with the normal samples. Only one inhibitor, rivastig- mine, displayed preferential inhibition for the G1 form of AChE. We conclude that a molecular form-spe- cific inhibitor may have therapeutic applications in inhibiting the G1 form, which is relatively unchanged -
A Novel Galantamine-Curcumin Hybrid As a Potential Multi-Target Agent Against Neurodegenerative Disorders
molecules Article A Novel Galantamine-Curcumin Hybrid as a Potential Multi-Target Agent against Neurodegenerative Disorders Rumyana Simeonova 1,† , Dimitrina Zheleva 1,†, Iva Valkova 1, Georgi Stavrakov 1,2 , Irena Philipova 2 , Mariyana Atanasova 1 and Irini Doytchinova 1,* 1 Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; [email protected]fia.bg (R.S.); [email protected]fia.bg (D.Z.); [email protected]fia.bg (I.V.); [email protected]fia.bg (G.S.); [email protected]fia.bg (M.A.) 2 Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; [email protected] * Correspondence: [email protected]fia.bg † These authors contributed equally to this work. Abstract: The acetylcholinesterase (AChE) inhibitors are the main drugs for symptomatic treatment of neurodegenerative disorders like Alzheimer’s disease. A recently designed, synthesized and tested hybrid compound between the AChE inhibitor galantamine (GAL) and the antioxidant polyphenol curcumin (CU) showed high AChE inhibition in vitro. Here, we describe tests for acute and short- term toxicity in mice as well as antioxidant tests on brain homogenates measured the levels of Citation: Simeonova, R.; Zheleva, D.; malondialdehide (MDA) and glutathione (GSH) and in vitro DPPH, ABTS, FRAP and LPO inhibition Valkova, I.; Stavrakov, G.; Philipova, assays. Hematological and serum biochemical analyses were also performed. In the acute toxicity I.; Atanasova, M.; Doytchinova, I. A tests, the novel AChE inhibitor given orally in mice showed LD50 of 49 mg/kg. The short-term Novel Galantamine-Curcumin administration of 2.5 and 5 mg/kg did not show toxicity.