Drugs Affectin the Autonomic Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

Drugs Affectin the Autonomic Nervous System Fundamentals of Medical Pharmacology Paterson Public Schools Written by Néstor Collazo, Ph.D. Jonathan Hodges, M.D. Tatiana Mikhaelovsky, M.D. for Health and Related Professions (H.A.R.P.) Academy March 2007 Course Description This fourth year course is designed to give students in the Health and Related Professions (H.A.R.P.) Academy a general and coherent explanation of the science of pharmacology in terms of its basic concepts and principles. Students will learn the properties and interactions between chemical agents (drugs) and living organisms for the rational and safe use of drugs in the control, prevention, and therapy of human disease. The emphasis will be on the fundamental concepts as they apply to the actions of most prototype drugs. In order to exemplify important underlying principles, many of the agents in current use will be singled out for fuller discussion. The course will include the following topics: ¾ The History of Pharmacology ¾ Terminology Used in Pharmacology ¾ Drug Action on Living Organisms ¾ Principles of Pharmacokinetics ¾ Dose-Response Relationships ¾ Time-Response Relationships ¾ Human Variability: Factors that will modify effects of drugs on individuals ¾ Effects of Drugs Attributable to Varying Modes of Administration ¾ Drug Toxicity ¾ Pharmacologic Aspects of Drug Abuse and Drug Dependence Pre-requisites Students must have completed successfully the following courses: Biology, Chemistry, Anatomy and Physiology, Algebra I and II Credits: 5 credits Basic Principles of Drug Action Introduction to Pharmacology a. Basic Mechanisms of Drug Actions b. Dose-response relationships c. Drug absorption d. Biotransformation of Drugs e. Pharmacokinetics f. Factors Affecting Drug Distribution g. Drug Allergy and Pharmacogenetics h. Case History i. Laboratory Reports and Problem Solving Drugs Affecting the Autonomic Nervous System a. Adrenergic drugs b. Adrenergic blocking drugs c. Adrenergic nerve terminal d. Cholinergic Agonists e. Ganglionic blockers f. Diuretic drugs g. Antihypertensive drugs Pharmacology of the Cardiovascular System a. Clinical Correlation b. Cardiac Review c. Cardiac Glycosides d. Antiarrhythmic Drugs e. Anti-Anginal drugs f. Anticoagulants g. Prescription writing h. Autonomic Laboratory i. Case History Pharmacology of Drugs Affecting the CNS a. Drugs affecting the basal ganglia b. Treatment of sleep disorders c. Anxiety drugs d. Anticonvulsant drugs e. Stimulant drugs f. Antidepressant drugs g. Conferences h. Histamine and Antihistaminic drugs i. Case history j. Emetics and Antiemetics The Pharmacologic Management of Pain a. Pharmacologic intervention of pain b. Centrally acting analgesics c. Clinical correlation d. Peripherally acting analgesics e. Non-steroidal anti-inflammatory agents f. General anesthetics g. Neuromuscular blocking agents h. Local anesthetics i. Alcohol and drugs of abuse Principles and Mechanisms of Anti-Infective and Antineoplastic Agents a. Introduction to Chemotherapy b. Treatment of urinary tract infections c. Sulfonamides d. Penicillin e. Cephalosporin f. Penicillin Substitutes g. Broad Spectrum Anti-biotics h. Amino glycosides i. Antifungal and Antiviral drugs j. Chemotherapy and Tuberculosis k. Antimlarial drugs l. Clinical correlation m. Antiprotozoal and antihelmintic drugs n. Cancer chemotherapy o. Case history Pharmacology of the Endocrine Drugs a. Hypothalamic-Pituitary interactions b. Androgens, anabolic steroids, and estrogens c. Antifertility agents and Uterotropics d. Adrenal steroids e. Insulin and Oral hypoglycemic agents f. Thyroid and antithyroid drugs g. Parathyroid drugs Toxicology and Special Topics a. Introduction to Toxicology b. Self-study c. Environmental Toxicology d. Clinical Toxicology e. Toxicology of heavy metals f. Clinical correlations g. Drug interactions h. Pharmacology and Toxicology of ionizing radiation i. Drugs affecting the Gastrointestinal system j. Case history k. Immunosuppressives l. Role of nutrition in Pharmacology m. Developmental and perinatal Pharmacology DRUGS AFFECTING THE AUTONOMIC NERVOUS SYSTEM h. Adrenergic drugs i. Adrenergic blocking drugs j. Adrenergic nerve terminal k. Cholinergic Agonists l. Ganglionic blockers m. Diuretic drugs n. Antihypertensive drugs Adrenergic drugs 1. GENERIC NAME: albuterol BRAND NAMES: Ventolin; Proventil DRUG CLASS: Albuterol is a bronchodilator used in treating asthma and other conditions with reversible airway obstruction. Asthma is a breathing problem involving widespread narrowing of the airways (bronchial tubes). Airways are breathing passages that allow air to move in and out of the lungs. These airways can be narrowed due to the accumulation of mucus, spasm of the muscles that surround these airways, or swelling of the lining of the airways. Airway narrowing leads to shortness of breath, wheezing, cough, and congestion. Albuterol dilates bronchial airways by relaxing the surrounding bronchial muscles. Albuterol can also be helpful in patients with emphysema and chronic bronchitis when their symptoms are partially related to reversible airway obstruction. PRESCRIBED FOR: Albuterol is used in the relief and prevention of airway obstruction (bronchospasm) in patients with asthma and in patients with exercise-induced asthma. Albuterol can also be used in treating those patients with emphysema and chronic bronchitis when their symptoms are related to reversible airway obstruction. The inhaled form of albuterol starts working within 15 minutes and can last up to 6 hours. DOSING: Albuterol inhalations should not be administered more often than prescribed. Excessive use of inhaled albuterol can have adverse effects on the heart. Albuterol inhalations should be administered with proper technique and the specific instructions accompanying the drug packaging should be exactly followed. Use in children should be supervised by an adult. Patients requiring more inhalations for relief of symptoms should seek medical advice. DRUG INTERACTIONS: Albuterol is used with caution in patients with coronary heart disease or in patients with cardiac rhythm disturbances (arrhythmias). Use of albuterol together with other stimulant medications is discouraged because of their combined effects on the heart rate, blood pressure, and the potential for causing chest pain in patients with underlying coronary heart disease. Tricyclic antidepressants, such as Elavil, should not be used together with albuterol because of their combined toxicity to the vascular system. In rare patients, inhaled albuterol can paradoxically precipitate life threatening bronchospasm. Allergic reactions may rarely occur and can cause rash, hives, swelling, bronchospasm, and anaphylaxis (shock). Worsening of diabetes and lowering of potassium have also been reported. SIDE EFFECTS: Albuterol can cause side effects including palpitations, fast heart rate, elevated blood pressure, tremor, nausea, nervousness, dizziness, and heart burn. Throat irritation and nose bleeds can also occur. 2. GENERIC NAME: amphetamine and dextroamphetamine BRAND NAME: Adderall, Adderall XR DRUG CLASS AND MECHANISM: Amphetamine and dextroamphetamine are used in combination to treat attention-deficit hyperactivity disorder (ADHD) and narcolepsy. Adderall stimulates the brain and also can increase blood pressure. In a recent small study in children with ADHD, the effects of Adderall lasted longer and were preferred over methylphenidate (Ritalin), the most commonly used drug for ADHD. Adderall XR is an extended release form of Adderall.═ Adderall was approved by the FDA in 1996. PRESCRIBED FOR: Adderall is used for the treatment of attention-deficit hyperactivity disorder (ADHD) and narcolepsy. DOSING: Adderall usually is taken once or twice a day. Adderall XR is taken once daily.═ The dose is adjusted carefully by the physician to achieve the desired effects. DRUG INTERACTIONS: Adderall should not be taken with monoamine oxidase (MAO) inhibitor drugs including phenelzine (Nardil) and tranylcypromine (Parnate). Patients receiving antihypertensive medications may experience loss of blood pressure control with Adderall. SIDE EFFECTS: Side effects of Adderall include excessive stimulation of the nervous system leading to nervousness, restlessness, excitability, dizziness, headache, fear, anxiety, tremor, and even hallucinations and convulsions (seizures). Blood pressure and heart rate may increase, and patients may experience palpitations of the heart. Adrenergic blocking drugs. 1. GENERIC NAME: doxazosin mesylate BRAND NAME: Cardura DRUG CLASS AND MECHANISM: Cardura is an inhibitor of the alpha 1 adrenergic nervous system. It is in a class of drugs referred to as alpha blockers that includes alfusosin (Uroxatral), terazosin (Hytrin), tamsulosin (Flomax), and prazosin (Minipress). Elevated blood pressure (hypertension) is lowered as the action of these nerves, which promote constriction of blood vessels, is blocked. Cardura was also found to relax the muscles around the prostate gland which is also under the influence of the alpha adrenergic portion nervous system. This can makes urination easier for men affected by enlarged prostate glands. PRESCRIBED FOR: Cardura is used for the control of elevated blood pressure (hypertension) and for benign prostatic hyperplasia (noncancerous enlargement of the prostate gland). DOSING: Cardura should be taken at doses specifically directed by your physician. This medication can be taken with or without food. Cardura should be taken the same time each day to maintain proper blood levels. Do not take Cardura within two
Recommended publications
  • 22-556Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 22-556Orig1s000 MEDICAL REVIEW(S) MEDICAL OFFICER REVIEW Division Of Pulmonary, Allergy, and Rheumatology Products, HFD-570 APPLICATION: NDA 22-556 TRADE NAME: Karbinal ER™ APPLICANT/SPONSOR: Tris Pharma USAN NAME: Carbinoxamine Extended-Release MEDICAL OFFICER: Peter Starke, MD Oral Suspension TEAM LEADER: Theresa Michele, MD CATEGORY: Antihistamine DATE: February 25, 2013 ROUTE: Oral SUBMISSIONS REVIEWED IN THIS DOCUMENT Document Date Submission Date Application/Doc Comments October 4, 2012 October 5, 2012 SD-17 Complete Response submission January 8, 2013 January 9, 2013 SD-20 Response to labeling (formatting) IR RELATED APPLICATIONS Date Application Comments REVIEW SUMMARY: This is clinical review of a Complete Response (CR) to a CR action taken by the Agency on October 7, 2011, for a 505(b)(2) application from Tris Pharma for Carbinoxamine Extended-Release (ER) Oral Suspension, equivalent to 4 mg of carbinoxamine maleate (CM) per 5 mL. The formulation is a sustained release formulation of carbinoxamine maleate suspended in a drug-polistirex resin complex. The proposed Trade Name is Karbinal ER. The application references both the currently available generic immediate-release Carbinoxamine Maleate 4 mg tablets (ANDA 40-442) and oral solution 4 mg/5 mL(ANDA 40-458), marketed under the brand name Palgic and manufactured by Milkart, Inc., and the no-longer-marketed immediate-release innovator products, Clistin 4 mg tablets (NDA 08-915) and 4 mg/5 mL elixir (NDA 08-955), previously marketed by McNeil. McNeil discontinued marketing the Clistin products in the 1990s, and the Orange Book makes the notation that the Clistin products were not discontinued or withdrawn for safety or efficacy reasons.
    [Show full text]
  • TABLE 1 Studies of Antagonist Activity in Constitutively Active
    TABLE 1 Studies of antagonist activity in constitutively active receptors systems shown to demonstrate inverse agonism for at least one ligand Targets are natural Gs and constitutively active mutants (CAM) of GPCRs. Of 380 antagonists, 85% of the ligands demonstrate inverse agonism. Receptor Neutral Antagonist Inverse Agonist Reference Human β2-adrenergic Dichloroisoproterenol, pindolol, labetolol, timolol, Chidiac et al., 1996; Azzi et alprenolol, propranolol, ICI 118,551, cyanopindolol al., 2001 Turkey erythrocyte β-adrenergic Propranolol, pindolol Gotze et al., 1994 Human β2-adrenergic (CAM) Propranolol Betaxolol, ICI 118,551, sotalol, timolol Samama et al., 1994; Stevens and Milligan, 1998 Human/guinea pig β1-adrenergic Atenolol, propranolol Mewes et al., 1993 Human β1-adrenergic Carvedilol CGP20712A, metoprolol, bisoprolol Engelhardt et al., 2001 Rat α2D-adrenergic Rauwolscine, yohimbine, WB 4101, idazoxan, Tian et al., 1994 phentolamine, Human α2A-adrenergic Napthazoline, Rauwolscine, idazoxan, altipamezole, levomedetomidine, Jansson et al., 1998; Pauwels MPV-2088 (–)RX811059, RX 831003 et al., 2002 Human α2C-adrenergic RX821002, yohimbine Cayla et al., 1999 Human α2D-adrenergic Prazosin McCune et al., 2000 Rat α2-adrenoceptor MK912 RX821002 Murrin et al., 2000 Porcine α2A adrenoceptor (CAM- Idazoxan Rauwolscine, yohimbine, RX821002, MK912, Wade et al., 2001 T373K) phentolamine Human α2A-adrenoceptor (CAM) Dexefaroxan, (+)RX811059, (–)RX811059, RS15385, yohimbine, Pauwels et al., 2000 atipamezole fluparoxan, WB 4101 Hamster α1B-adrenergic
    [Show full text]
  • Eurartesim, INN-Piperaquine & INN-Artenimol
    ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Eurartesim 160 mg/20 mg film-coated tablets. 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each film-coated tablet contains 160 mg piperaquine tetraphosphate (as the tetrahydrate; PQP) and 20 mg artenimol. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Film-coated tablet (tablet). White oblong biconvex film-coated tablet (dimension 11.5x5.5mm / thickness 4.4mm) with a break-line and marked on one side with the letters “S” and “T”. The tablet can be divided into equal doses. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Eurartesim is indicated for the treatment of uncomplicated Plasmodium falciparum malaria in adults, adolescents, children and infants 6 months and over and weighing 5 kg or more. Consideration should be given to official guidance on the appropriate use of antimalarial medicinal products, including information on the prevalence of resistance to artenimol/piperaquine in the geographical region where the infection was acquired (see section 4.4). 4.2 Posology and method of administration Posology Eurartesim should be administered over three consecutive days for a total of three doses taken at the same time each day. 2 Dosing should be based on body weight as shown in the table below. Body weight Daily dose (mg) Tablet strength and number of tablets per dose (kg) PQP Artenimol 5 to <7 80 10 ½ x 160 mg / 20 mg tablet 7 to <13 160 20 1 x 160 mg / 20 mg tablet 13 to <24 320 40 1 x 320 mg / 40 mg tablet 24 to <36 640 80 2 x 320 mg / 40 mg tablets 36 to <75 960 120 3 x 320 mg / 40 mg tablets > 75* 1,280 160 4 x 320 mg / 40 mg tablets * see section 5.1 If a patient vomits within 30 minutes of taking Eurartesim, the whole dose should be re-administered; if a patient vomits within 30-60 minutes, half the dose should be re-administered.
    [Show full text]
  • Taking Artemisinin to Clinical Anticancer Applications: Design, Synthesis and Characterization
    Taking Artemisinin to Clinical Anticancer Applications: Design, Synthesis and Characterization of pH-responsive Artemisinin Dimer Derivatives in Lipid Nanoparticles Yitong Zhang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Tomikazu Sasaki, Chair Rodney J.Y. Ho Champak Chatterjee Program Authorized to Offer Degree: Chemistry i ©Copyright 2015 Yitong Zhang ii University of Washington Abstract Taking Artemisinin to Clinical Anticancer Applications: Design, Synthesis and Characterization of pH-responsive Artemisinin Dimer Derivatives in Lipid Nanoparticles Yitong Zhang Chair of the Supervisory Committee: Professor Tomikazu Sasaki Chemistry iii Abstract Qinghaosu or Artemisinin is an active sesquiterpene lactone isolated from Artemisia annua L. The natural product and its derivatives are known as a first line treatment for malaria. Investigations have also reported that the compound exhibits anti-cancer activities both on cell lines and in animal models. The remarkably stable endoperoxide bridge under ambient conditions is believed to be responsible for the selectivity as well as potency against cells that are rich in iron content. Dimeric derivatives where two artemisinin units are covalently bonded through lactone carbon (C10) show superior efficacies against both malaria parasites and cancer cells. Artemisinin dimer succinate derivative demonstrates a 100-fold enhancement in potency, compared to the natural product, with IC50 values in the low micromolar range. This work focuses on the development of artemisinin dimer derivatives to facilitate their clinical development. Novel pH-responsive artemisinin dimers were synthesized to enhance the aqueous solubility of the pharmacophore motif. Compounds with promising potency against human breast cancer cell lines were selected for lipid and protein based nanoparticle formulations for delivery of the derivatives without the need of organic co-solvents into animal models.
    [Show full text]
  • Galantamine Potentiates the Neuroprotective Effect of Memantine Against NMDA-Induced Excitotoxicity Joao~ P
    Galantamine potentiates the neuroprotective effect of memantine against NMDA-induced excitotoxicity Joao~ P. Lopes1, Glauco Tarozzo1, Angelo Reggiani1, Daniele Piomelli1,2 & Andrea Cavalli1,3 1D3 – Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego, 16163, Genova, Italy 2Departments of Anatomy and Neurobiology and Biological Chemistry, University of California, Irvine, CA, 92697-4621 3Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, Bologna University, Via Belmeloro, 40126, Bologna, Italy Keywords Abstract Alzheimer’s disease, drug combination, N NMDA neurotoxicity, NR2B, The combination of memantine, an -methyl-D-aspartate (NMDA) receptor polypharmacology, primary cortical neurons antagonist, with an acetylcholinesterase inhibitor (AChEI) is the current stan- dard of care in Alzheimer’s disease (AD). Galantamine, an AChEI currently Correspondence marketed for the treatment of AD, exerts memory-enhancing and neuroprotec- Andrea Cavalli, D3 – Drug Discovery and tive effects via activation of nicotinic acetylcholine receptors (nAChRs). Here, Development Department, Istituto Italiano we investigated the neuroprotective properties of galantamine in primary cul- di Tecnologia – Via Morego, 30, 16163 tures of rat cortical neurons when given alone or in combination with meman- Genova, Italy. Tel: +39 010 71781530; Fax: +39 010 tine. In agreement with previous findings, we found that memantine was fully 71781228; E-mail: [email protected] effective in reversing NMDA toxicity at concentrations of 2.5 and 5 lmol/L. Galantamine also completely reversed NMDA toxicity at a concentration of Funding Information 5 lmol/L. The a7 and a4b2 nAChR antagonists, methyllycaconitine, and dihy- No funding information provided. dro-b-erythroidine blocked the neuroprotective effect of galantamine, demon- strating the involvement of nAChRs.
    [Show full text]
  • Alpha^ and Beta^Blocking Agents: Pharmacology and Properties
    CURRENT DRUG THERAPY DONALD G. VIDT, MD AND ALAN BAKST, PharmD, EDITORS Alpha^ and beta^blocking agents: pharmacology and properties PROFESSOR B.N.C. PRICHARD • Adrenergic receptors have been separated into alpha and beta groups, which have then been further subdivided. Agents have been developed that block each type of receptor with varying degrees of specificity between the sub-types, leading to differences in pharmacodynamic profile. A more recent innovation has been the development of multiple action beta-blocking drugs, ie, those not only blocking the beta receptors but also posessing a peripheral vasodilator effect that may be due to alpha blockade, beta-2 stimulation, or a vasodilator action independent of either alpha or beta receptors. • INDEX TERMS: ALPHA BLOCKERS; BETA BLOCKERS; HYPERTENSION • CLEVE CLIN ] MED 1991; 58:33 7-350 HE CONCEPT that binding of Rosenblueth suggested that a transmitter released at catecholamines to receptors leads to differ- sympathetic nerve endings produced either inhibitory ing responses was first described by Langley, or excitatory responses as a result of combination with who in 1905 noted that a cell may make sympathin I or sympathin E at the receptor.3 Tmotor or inhibitory substances or both, and that "the The current classification of alpha and beta respon- effect of a nerve impulse depends upon the proportion ses is based on the classic work of Ahlquist,4 who of the two kinds of receptive substance which is af- studied six sympathomimetic amines and found two fected by the impulse."1 In 1906, Dale reported that patterns of reactivity. One group of actions, mediated ergot blocked the excitatory but not the inhibitory ac- by what were termed "alpha receptors," were principally tions of adrenaline.2 In 1933, Cannon and excitatory.
    [Show full text]
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • FEXOFENADINE HYDROCHLORIDE 180 MG FILM-COATED TABLETS Fexofenadine Hydrochloride
    ID1089 MRP _ UK Version: 07 Review Date: 19/02/2020 PACKAGE LEAFLET: INFORMATION FOR THE USER FEXOFENADINE HYDROCHLORIDE 120 MG FILM-COATED TABLETS FEXOFENADINE HYDROCHLORIDE 180 MG FILM-COATED TABLETS Fexofenadine hydrochloride Read all of this leaflet carefully before you start using this medicine because it contains important information for you. - Keep this leaflet. You may need to read it again. - If you have any further questions, ask your doctor or pharmacist. - This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours. - If you get any of the side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet, (see section 4). In this leaflet: 1. What Fexofenadine hydrochloride is and what it is used for 2. What you need to know before you take Fexofenadine hydrochloride 3. How to take Fexofenadine hydrochloride 4. Possible side effects of Fexofenadine hydrochloride 5. How to store Fexofenadine hydrochloride 6. Contents of the pack and other information 1. WHAT FEXOFENADINE HYDROCHLORIDE IS AND WHAT IT IS USED FOR FEXOFENADINE HYDROCHLORIDE Contains fexofenadine hydrochloride which is an antihistamine. Only Fexofenadine hydrochloride 120 mg tablets is used in adults and adolescents of 12 years and older to relieve the symptoms that occur with hay fever (seasonal allergic rhinitis) such as sneezing, itchy, running or blocked nose and itchy, red and watery eye). Fexofenadine hydrochloride 180 mg tablets is used in adults and adolescents of 12 years and older to relieve the symptoms that occur with long term allergic skin reactions( chronic idiopathic urticaria) such as itching, swelling and rashes 2.
    [Show full text]
  • Reference List of Drugs with Potential Anticholinergic Effects 1, 2, 3, 4, 5
    ANTICHOLINERGICS: Reference List of Drugs with Potential Anticholinergic Effects 1, 2, 3, 4, 5 J Bareham BSP © www.RxFiles.ca Aug 2021 WHENEVER POSSIBLE, AVOID DRUGS WITH MODERATE TO HIGH ANTICHOLINERGIC ACTIVITY IN OLDER ADULTS (>65 YEARS OF AGE) Low Anticholinergic Activity; Moderate/High Anticholinergic Activity -B in combo Beers Antibiotics Antiparkinsonian Cardiovascular Agents Immunosuppressants ampicillin *ALL AVAILABLE AS amantadine SYMMETREL atenolol TENORMIN azaTHIOprine IMURAN cefOXitin GENERIC benztropine mesylate COGENTIN captopril CAPOTEN cyclosporine NEORAL clindamycin bromocriptine PARLODEL chlorthalidone GENERIC ONLY hydrocortisone CORTEF gentamicin (Oint & Sol’n NIHB covered) carbidopa/levodopa SINEMET digoxin LANOXIN, TOLOXIN methylprednisolone MEDROL piperacillin entacapone COMTAN dilTIAZem CARDIZEM, TIAZAC prednisone WINPRED dipyridamole PERSANTINE, ethopropazine PARSITAN vancomycin phenelzine NARDIL AGGRENOX disopyramide RYTHMODAN Muscle Relaxants pramipexole MIRAPEX Antidepressants baclofen LIORESAL ( on intrathecal only) procyclidine KEMADRIN furosemide LASIX amitriptyline ELAVIL cyclobenzaprine FLEXERIL selegiline ELDEPRYL hydrALAZINE APRESOLINE clomiPRAMINE ANAFRANIL isosorbide ISORDIL methocarbamol ROBAXIN OTC trihexyphenidyl ARTANE desipramine NORPRAMIN metoprolol LOPRESOR orphenadrine NORFLEX OTC doxepin >6mg SINEQUAN Antipsychotics NIFEdipine ADALAT tiZANidine ZANAFLEX A imipramine TOFRANIL quiNIDine GENERIC ONLY C ARIPiprazole ABILIFY & MAINTENA
    [Show full text]
  • Attachment: Extract from Clinical Evaluation Bosentan
    AusPAR Attachment 1 Extract from the Clinical Evaluation Report for Bosentan Proprietary Product Name: Tracleer Sponsor: Actelion Pharmaceuticals Australia Pty Ltd First round report: 25 October 2016 Second round report: 3 February 2017 Therapeutic Goods Administration About the Therapeutic Goods Administration (TGA) · The Therapeutic Goods Administration (TGA) is part of the Australian Government Department of Health, and is responsible for regulating medicines and medical devices. · The TGA administers the Therapeutic Goods Act 1989 (the Act), applying a risk management approach designed to ensure therapeutic goods supplied in Australia meet acceptable standards of quality, safety and efficacy (performance), when necessary. · The work of the TGA is based on applying scientific and clinical expertise to decision- making, to ensure that the benefits to consumers outweigh any risks associated with the use of medicines and medical devices. · The TGA relies on the public, healthcare professionals and industry to report problems with medicines or medical devices. TGA investigates reports received by it to determine any necessary regulatory action. · To report a problem with a medicine or medical device, please see the information on the TGA website <https://www.tga.gov.au>. About the Extract from the Clinical Evaluation Report · This document provides a more detailed evaluation of the clinical findings, extracted from the Clinical Evaluation Report (CER) prepared by the TGA. This extract does not include sections from the CER regarding product documentation or post market activities. · The words [Information redacted], where they appear in this document, indicate that confidential information has been deleted. · For the most recent Product Information (PI), please refer to the TGA website <https://www.tga.gov.au/product-information-pi>.
    [Show full text]
  • Despite Improvements, COVID-19'S Health Care Disruptions Persist
    News & Analysis Global Health More Comprehensive Care Drug-Resistant Malaria Detected for Miscarriage Needed Worldwide in Africa Will Require Monitoring About 1 in 10 women will have a miscar- Evidence in Africa that the malaria parasite riage over a lifetime—a statistic that repre- Plasmodium falciparum has developed sents 23 million pregnancies lost annually, genetic variants that confer partial resis- or 44 per minute worldwide, according to tance to the antimalarial drug artemisinin is a series of articles in The Lancet. Despite a warning of potential treatment failure on the magnitude, the articles described mis- the horizon, a drug-resistance monitoring carriage as a misunderstood phenomenon study suggested. and called for more comprehensive care to Partial resistance to artemisinin, the cur- prevent and treat miscarriage. rent frontline treatment for malaria, first The 15% of pregnancies that end in a emerged in Cambodia in 2008 and has be- miscarriage can be attributed to risk fac- come common in Southeast Asia, the au- tors including age during pregnancy, smok- thors wrote. Artemisinin is a fast-acting drug ing, stress, air pollution, and exposure to that typically clears the parasite within 3 pesticides, 1 of the studies reported. For days. It’s usually combined with a longer- Miscarriage is a misunderstood phenomenon, repeated miscarriages, which affect about acting drug to kill any remaining parasites. according to a recent series of articles. 2% of women, another study indicated When artemisinin resistance emerged in that progesterone could increase live-birth Asia, resistance to the combination therapy rates and that levothyroxine may decrease soon followed. 2020 when half of essential services had the risk of miscarriage for women with The current study was part of routine been interrupted.
    [Show full text]
  • Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy Using Machine Learning
    Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy using Machine Learning Kate Wang et al. Supplemental Table S1. Drugs selected by Pharmacophore-based, ML-based and DL- based search in the FDA-approved drugs database Pharmacophore WEKA TF 1-Palmitoyl-2-oleoyl-sn-glycero-3- 5-O-phosphono-alpha-D- (phospho-rac-(1-glycerol)) ribofuranosyl diphosphate Acarbose Amikacin Acetylcarnitine Acetarsol Arbutamine Acetylcholine Adenosine Aldehydo-N-Acetyl-D- Benserazide Acyclovir Glucosamine Bisoprolol Adefovir dipivoxil Alendronic acid Brivudine Alfentanil Alginic acid Cefamandole Alitretinoin alpha-Arbutin Cefdinir Azithromycin Amikacin Cefixime Balsalazide Amiloride Cefonicid Bethanechol Arbutin Ceforanide Bicalutamide Ascorbic acid calcium salt Cefotetan Calcium glubionate Auranofin Ceftibuten Cangrelor Azacitidine Ceftolozane Capecitabine Benserazide Cerivastatin Carbamoylcholine Besifloxacin Chlortetracycline Carisoprodol beta-L-fructofuranose Cilastatin Chlorobutanol Bictegravir Citicoline Cidofovir Bismuth subgallate Cladribine Clodronic acid Bleomycin Clarithromycin Colistimethate Bortezomib Clindamycin Cyclandelate Bromotheophylline Clofarabine Dexpanthenol Calcium threonate Cromoglicic acid Edoxudine Capecitabine Demeclocycline Elbasvir Capreomycin Diaminopropanol tetraacetic acid Erdosteine Carbidopa Diazolidinylurea Ethchlorvynol Carbocisteine Dibekacin Ethinamate Carboplatin Dinoprostone Famotidine Cefotetan Dipyridamole Fidaxomicin Chlormerodrin Doripenem Flavin adenine dinucleotide
    [Show full text]