Personal Care Product Catalog Leadership

Total Page:16

File Type:pdf, Size:1020Kb

Personal Care Product Catalog Leadership Leadership. Service. Flexibility. Success. We’re going further. Personal Care Product Catalog Leadership. Service. Flexibility. Success. We’re going further. Charting Your Course with Innovative Chemical Solutions Pilot Chemical’s customized manufacturing solutions have spanned the globe for more than 50 years. Commitment to unique chemical processes and efficient manufacturing are our hallmarks, lending to a storied history of creating the best surfactants in the industry that maximize your new product development opportunities. We are a dynamic, market-focused and environmentally conscious company that sets the standard of comprehensive chemical dexterity. Between easy access to knowledgeable and reliable assistance from our industry experts through all stages of production, and our well- established distributor network with a record of consistent, efficient delivery, you can depend on Pilot to help lead you to success. Contents Personal Care Cleansers....................................................2 - 7 Preservatives & Preservative Alternatives....................................8 Emollient / Thickener.............................................................8 Hair Styling Polymer...............................................................9 Hair Conditioning Quats..............................................................9 Conditioners......................................................................10 Alcohol Foamers................................................................10 Index by Name..................................................................1 1 - 1 2 Personal Care At Pilot, our wide variety of anionic, cationic, amphoteric, and nonionic surfactant chemistries deliver luxurious foam, mildness, and superior cleansing characteristics in shampoo, body wash, bar soap, hand soap, lotion, dental, pet care, and skin care applications. These low-color, high-purity performance products help you create the best personal care products. Personal Care Cleansers Calfoam® ammonium and sodium laureth sulfates are biodegradable anionic surfactants that have great cleansing properties Alkyl Ether Sulfates with water hardness tolerance. They are excellent foamers with high flash foam and high viscosity response using amides, betaines and salts. Product INCI Name Physical Form/Activity Features/Benefits Application Ammonium Laureth Sulfate Calfoam® EA-303 Liquid/26 % (3 Mole EO) Ammonium Laureth Sulfate Calfoam® EA-603 Liquid/60% (3 Mole EO) Ammonium Laureth Sulfate Calfoam® EA-703 Liquid/70% (3 Mole EO) • Ammonium laureth sulfates should be used with formulations having a pH of 7.0 or below. Sodium Laureth Sulfate • Calfoam® EA-603 contains ethanol as a Calfoam® ES-301 Liquid/26% (1 Mole EO) solvent. • Calfoam® EA-703 offers cost savingsover lower active products, but requires special Sodium Laureth Sulfate handling and storage capabilities. Calfoam® ES-302 Liquid/27% (2 Mole EO) • Sodium laureth sulfates are compatible with high pH formulations. Sodium Laureth Sulfate Shampoos, Calfoam® ES-302HS Liquid/27% • Higher moles of EO may increase skin (2 Mole EO) mildness and flash foaming properties. personal and pet cleansers, • Calfoam® ES-302HS has high viscosity. liquid hand soaps, baby wash, Sodium Laureth Sulfate Calfoam® ES-302LD Liquid/27% • Calfoam® ES-603 contains ethanol as a bubble bath, facial (2 Mole EO) solvent. cleansers • Calfoam® ES-702, ES-702LD, and ES-703 Sodium Laureth Sulfate offer cost savings over lower active Calfoam® ES-303 Liquid/28% (3 Mole EO) products, but require special handling and storage capabilities. • Calfoam® ES-302LD and ES-702LD are specially processed to achieve extremely Calfoam® ES-562 Sodium Laureth Sulfate Liquid/55% low dioxane levels. • Calfoam® ES-562 is a high active product with the ease of handling of a low active Sodium Laureth Sulfate Calfoam® ES-702 Liquid/70% product and does not contain alcohol. (2 Mole EO) Sodium Laureth Sulfate Calfoam® ES-702LD Liquid/70% (2 Mole EO) Sodium Laureth Sulfate Calfoam® ES-703 Liquid/70% (3 Mole EO) Notes: ___________________________________________________________________________________________________________ _________________________________________________________________________________________________________________ _________________________________________________________________________________________________________________ 2 Personal Care Personal Care Cleansers ® Alkyl Sulfates Calfoam lauryl sulfates are biodegradable anionic surfactants derived from renewable vegetable resources. They have excellent cleansing and foaming properties. They produce creamy lather; copious high flash foam; soft and silky after-feel properties; and provide excellent viscosity response with amides, betaines and salts. Product INCI Name Physical Form/Activity Features/Benefits Application Calfoam® ALS-30 Ammonium Lauryl Sulfate Liquid/30% • Calfoam® ALS-30 should be used with formulations having a pH of 7.0 or below. • Calfoam® SLS-30 and TLS-40 are compatible with lower and high Shampoos, Calfoam® SLS-30 Sodium Lauryl Sulfate Liquid/30% pH formulations. personal and pet cleansers, • Calfoam® TLS-40 offers higher activity, liquid hand soaps increased mildness and clarity at lower temperatures. Lower viscosity and foam responses with amides, betaines and salts, compared to SLS and ALS. Calfoam® TLS-40 TEA Lauryl Sulfate Liquid/40% Pilot’s alkanolamides are biodegradable, naturally derived, 100% active 1:1 super amides which provide foam Alkanolamides boosting, foam stabilization, and viscosity building properties in personal care products. They also offer multiple lubrication and emulsification characteristics. Product INCI Name Physical Form/Activity Features/Benefits Application Calamide® C is a clear amide used for Calamide® C Cocamide DEA Liquid/100% viscosity building and foam stabilization. Calamide® F provides maximum viscosity Calamide® F Modified Oleamide DEA Liquid/100% performance in personal care formulations. Shampoos, personal and pet cleansers, liquid hand soaps, baby Calamide® MC is an amide with some wash, bubble bath, emollient and lubrication characteristics. facial cleansers Calamide® MC Cocamide MEA Flake/100% Requires heat to bring product to a liquid state. Cocamide DEA, Calamide® O provides outstanding Calamide® O Liquid/100% Oleamide DEA viscosity-building properties. A unique thickening, foam boosting and stabilizing, and solubilizing agent, free of Masamide® R-4 PEG-4 Rapeseedamide Liquid/90% diethanolamine and nitrosamine, and high biodegradability and low aquatic toxicity. 3 Personal Care Personal Care Cleansers CalBlend® products are pre-formulated performance blends. Simply mix with water to the preferred active level, then add Performance Blends preservative, fragrance and dye to obtain a finished product ready for packaging. CalBlend® products offer formulators convenience and reduction of production errors and inventory. Product INCI Name Physical Form/Solids Features/Benefits Application General hand CalBlend® CLEAR is a clear, high-foaming soaps for pump Sodium Laureth Sulfate, performance blend with good foam stability, and foam CalBlend® CLEAR Cocamidopropyl Betaine, Liquid/35% excellent lather, high flash foam, and great dispensers, body cleansing properties. All surfactants in Cocamide DEA wash, and CalBlend® CLEAR are biodegradable. pet care products DEA alternative blend that produces Sodium Laureth Sulfate, formulations which easily build viscosity levels, Shampoo, body Sodium Lauryl Sulfate, while yielding premium instant flash foam. wash, liquid hand CalBlend® DF Liquid/33% Cocamidopropyl Betaine, CalBlend® DF is environmentally friendly, VOC soap, and pet Cocamide MIPA alternative, and solvent altnerative. Offers shampoo deep cleansing and leaves a silky afterfeel. CalBlend® ECO-1 is an environmentally and Sodium Lauryl Sulfate, Shampoos, economically friendly performance blend that Sodium Laureth Sulfate, body wash, pet CalBlend® ECO-1 Liquid/35% is biodegradable. Offers excellent cleansing, Cocamide MEA, care products and viscosity, flash foam, luxurious lather, and skin hand soaps Cocamidopropyl Betaine mildness characteristics. General hand CalBlend® ICE is a DEA alternative, clear, high- soaps for pump Sodium Laureth Sulfate, foaming performance blend with good foam and foam CalBlend® ICE Cocamide MIPA, Liquid/35% stability, excellent lather, high flash foam, and dispensers, body great cleansing properties. All surfactants in Cocamidopropyl Betaine wash, and pet care CalBlend® ICE are biodegradable. products Baby shampoo, Ultra-mild optimized blend of gentle foaming Sodium Laureth Sulfate, baby bath, puppy and cleansing agents with excellent viscosity PEG-80 Sorbitan Laurate, shampoo, ultra- CalBlend® MILD Liquid/38% characteristics, low eye irritation, contains no mild personal Lauramidopropyl Betaine, solvents, is naturally derived, DEA alternative, and pet care PEG-150 Distearate and VOC alternative. applications CalBlend® PEARL is a ready-to-use pearlescent, Sodium Laureth Sulfate, high-foaming performance blend with good Pearlescent body CalBlend® PEARL Cocamidopropyl Betaine, Liquid/36% foam stability, excellent lather, flash foam, and wash, shampoos, Cocamide DEA, EGMS great cleansing properties. All surfactants in and hand soaps CalBlend® PEARL are biodegradable. ® Sodium Laureth Sulfate, CalBlend PXS is a DEA alternative, ready-to- use pearlescent, high-foaming performance Sodium Lauryl Sulfate, Glycol Pearlescent body blend with good foam stability, excellent CalBlend®
Recommended publications
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • Amine Oxide SIAR
    OECD SIDS AMINE OXIDES SIDS Initial Assessment Report For SIAM 22 Paris, France, 18-21 April 2006 Category Name: Amine Oxides CAS Numbers: 1643-20-5 1-Dodecanamine, N,N-dimethyl-, N-oxide 3332-27-2 1-Tetradecanamine, N,N-dimethyl-, N-oxide 70592-80-2 Amines, C10-16-alkyldimethyl, N-oxides 68955-55-5 Amines, C12-18-alkyldimethyl, N-oxides 2605-79-0 Decanamine, N,N-dimethyl-, N-oxide 7128-91-8 Hexadecanamine, N,N-dimethyl-, N-oxide 2571-88-2 Octadecanamine, N,N-dimethyl-, N-oxide 61788-90-7 Amine oxides, cocoalkyldimethyl 85408-48-6 Amines, C10-18-alkyldimethyl, N-oxides 85408-49-7 Amines, C12-16-alkyldimethyl, N-oxides 61791-47-7 Ethanol, 2,2'-iminobis-, N-coco alkyl derivs., N- oxides 2530-44-1 Ethanol, 2,2'-(dodecyloxidoimino)bis- 14048-77-2 Ethanol, 2,2'-(octadecyloxidoimino)bis- 61791-46-6 Ethanol, 2,2'-iminobis-, N-tallow alkyl derivs., N- oxides 93962-62-0 Ethanol, 2,2'-[(9Z)-9-octadecenyloxidoimino]bis- 3. Sponsor Country: United States 4. Shared Partnership with: Amine Oxides Consortium 5. Roles/Responsibilities of Industry was the main preparer; U.S. EPA was the main reviewer the Partners: Name of industry sponsor or Amine Oxides Consortium consortium Process used Industry coalition conducted a comprehensive literature search, including all generally accepted databases, reference books, unpublished studies and data in company files, and prepared first drafts; U.S. EPA reviewed and edited drafts to achieve a final document. 6. Sponsorship History How was the chemical or The industry coalition agreed to sponsor AOs in the SIDS-ICCA category brought into the program, with the U.S.
    [Show full text]
  • United States Patent Office Patented Aug
    3,755,559 United States Patent Office Patented Aug. 28, 1973 1. 2 of 11 to 18 carbon atoms. Soaps of dicarboxylic acids 3,755,559 may also be used such as the soaps of dimerized linoleic HIGH-LATHERNG CONDITIONING SHAMPOO COMPOSTON acid. Soaps of such other higher molecular weight acids Gordon Trent Hewitt, Upper Montclair, N.J., assignor to such as rosin or tall oil acids, e.g. abietic acid, may also Colgate-Palmolive Company, New York, N.Y. be employed. Specific examples include triethanolamine No Drawing. Continuation of abandoned application Ser. myristrate, triethanolamine cocoate, potassium isostearate, No. 816,395, Apr. 15, 1969. This application Aug. 23, potassium myristate and the like. The soap functions as 1971, Ser. No. 174,192 an opacifier and thickener and contributes some condi The portion of the term of the patent subsequent to tioning properties to the instant composition. Since fatty Jan. 16, 1990 has been disclaimed 10 acids are a natural ingredient of the skin, the usefulness Int, Cl, A61k 7/08, C11d 1/84 of soap for cosmetic purposes as an ingredient of a sham U.S. C. 424-70 7 Claims poo is desirable. The water-soluble tertiary amine oxide which con ABSTRACT OF THE DISCLOSURE stitutes the major ingredient of this composition may be This disclosure relates to a stable, creamy-foam sham 15 represented by the general formula: RR2R3N->O where poo comprising a tertiary amine oxide, a higher alkyl in R1 is a higher alkyl radical having from 10 to 18 betaine or sulphobetaine and a soap in the ratio of carbon atoms, such as lauryl, decyl, cetyl, oleyl, stearyl, 2:1:1, respectively.
    [Show full text]
  • Department of Homeland Security (Dhs) Appendix a Chemicals of Interest (Coi)
    DEPARTMENT OF HOMELAND SECURITY (DHS) APPENDIX A CHEMICALS OF INTEREST (COI) Acetaldehyde Bromine trifluoride Acetone Cyanohydrin, stabilized Bromothrifluorethylene Acetyl bromide 1,3-Butadiene Acetyl chloride Butane Acetyl iodide Butene Acetylene 1-Butene Acrolein 2-Butene Acrylonitrile 2-Butene-cis Acrylyl chloride 2-Butene-trans Allyl alcohol Butyltrichlorosilane Allylamine Calcium hydrosulfite Allyltrichlorosilane, stabilized Calcium phosphide Aluminum (powder) Carbon disulfide Aluminum Bromide, anhydrous Carbon oxysulfide Aluminum Chloride, anhydrous Carbonyl fluoride Aluminum phosphide Carbonyl sulfide Ammonia (anhydrous) Chlorine Ammonia (conc 20% or greater) Chlorine dioxide Ammonium nitrate, note #1 Chlorine monoxide Ammonium nitrate, note #2 Chlorine pentafluoride Ammonium perchlorate Chlorine trifluoride Ammonium picrate Chloroacetyl chloride Amyltrichlorosilane 2-Chloroethylchloro-methylsulfide Antimony pentafluoride Chloroform Arsenic trichloride Chloromethyl ether Arsine Chloromethyl methyl ether Barium azide 1-Chloropropylene 1,4-Bis(2-chloroethylthio)-n-butane 2-Chloropropylene Bis(2-chloroethylthio) methane Chlorosarin Bis(2-chloroethylthiomethyl)ether Chlorosoman 1,5-Bis(2-chloroethylthio)-n-pentane Chlorosulfonic acid 1,3-Bis(2-chloroethylthio)-n-propane Chromium oxychloride Boron tribromide Crotonaldehyde Boron trichloride Crotonaldehyde, (E)- Boron trifluoride Cyanogen Boron trifluoride compound with methyl Cyanogen chloride ether (1:1) Cyclohexylamine Bromine Cyclohexyltrichlorosilane Bromine chloride Cyclopropane
    [Show full text]
  • Determination of Dimethylamine and Triethylamine in Hydrochloride
    Short Communications Determination of Dimethylamine and Triethylamine in Hydrochloride Salts of Drug Substances by Headspace Gas Chromatography using Dimethyl Sulphoxide- imidazole as Diluent J. GOPALAKRISHNAN* AND S. ASHA DEVI1 Piramal Enterprises Limited, Analytical Development Laboratory, 1, Nirlon complex, Off Western expressway, Goregaon (E), Mumbai-400 101, 1School of Biosciences and Technology, VIT University, Vellore-632 014, India Gopalakrishnan and Asha Devi: Determination of Amines in Drug by Headspace Gas Chromatography A simple, rapid, accurate and precise analytical method for determination of secondary and tertiary amines in hydrochloride salt form of drug substances in non-aqueous medium, which does not require any derivatization, was developed by headspace gas chromatography. Dimethylamine hydrochloride and triethylamine hydrochloride were analyzed in metformin hydrochloride. The sample was dissolved in a vial containing dimethyl sulphoxide and imidazole. The vials were incubated at 100°, for 20 min. The syringe temperature was maintained at 110°. DB624 column with 30 m×0.32 mm i.d., 1.8 µm film thickness was used. The injector and detector temperature were 200° and 250°, respectively. The analytical program used was carrier gas (nitrogen) flow rate: 1 ml/min; injected gas volume: 1.0 ml; split ratio: 1:10; oven temperature program: 40° for 10 min, followed by an increase up to 240° at 40°/min. The analytical method was validated with respect to precision, recovery, limit of detection and quantification and linearity. Key words: Aliphatic amines, dimethylamine, triethylamine, metformin hydrochloride, DMSO, imidazole, headspace gas chromatography Organic solvents are used in the synthesis of limit for unspecified impurities is 0.10%, i.e., 1000 pharmaceutical compounds and they must be controlled ppm[4].
    [Show full text]
  • Reaction of CS2 and CO2 with Amidines and Guanidines
    Reaction of CS2 and CO2 with Amidines and Guanidines By Aliyah Khamis Alshamrani A thesis submitted to the Department of Chemistry In conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada July 2018 Copyright ©Aliyah Khamis Alshamrani, 2018 Abstract Reaction of CS2 and CO2 with Amidines and Guanidines Neutral organic bases such as amidines and guanidines are very useful in studies of the reactivity of heterocumulenes such as carbon disulfide (CS2) and carbon dioxide (CO2) to build C-C or C-N bonds. Reaction of amidines with CS2 in the absence of water and without adding desulfurization reagents or solvents is less documented. In this research I have investigated different types of sulfur and nitrogen containing products obtained upon reaction of carbon disulfide with cyclic and acyclic amidines. The reactivity behaviour and the resulting products depend on the structure of the starting amidines. Our observations for the contrasting reactivity were supported by calculations of the free energy of the reaction. 1,4,5,6-Tetrahydropyrimidine derivatives, as examples of cyclic amidines, follow different reactivity compared to acyclic amidines. They also follow different patterns of reaction with CS2 depending on their structures. Possessing an N-H bond allows the cyclic amidine to form a + - dithiocarbamate salt {[BH ] [(B-CS 2)-(H)]}, where B is the starting amidine, analogous to those formed by secondary amines [R2NH2][R2NCO2] and [R2NH2][R2NCS2] with CO2 or CS2, respectively. If the molecule does not possess an N-H bond then observed reactivity depends on whether there is a methylene alpha to the amidine carbon.
    [Show full text]
  • View Is Primarily on Addressing the Issues of Non-Permanently Charged Reactivators and the Development of Treatments for Aged Ache
    Design, Synthesis, and Evaluation of Therapeutics for the Treatment of Organophosphorus Poisoning by Nerve Agents and Pesticides Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Andrew Joseph Franjesevic Graduate Program in Chemistry The Ohio State University 2019 Dissertation Committee Professor Christopher M. Hadad, Advisor Professor Thomas J. Magliery Professor David Nagib Professor Jonathan R. Parquette Copyrighted by Andrew Joseph Franjesevic 2019 2 Abstract Organophosphorus (OP) compounds, both pesticides and nerve agents, are some of the most lethal compounds known to man. Although highly regulated for both military and agricultural use in Western societies, these compounds have been implicated in hundreds of thousands of deaths annually, whether by accidental or intentional exposure through agricultural or terrorist uses. OP compounds inhibit the function of the enzyme acetylcholinesterase (AChE), and AChE is responsible for the hydrolysis of the neurotransmitter acetylcholine (ACh), and it is extremely well evolved for the task. Inhibition of AChE rapidly leads to accumulation of ACh in the synaptic junctions, resulting in a cholinergic crisis which, without intervention, leads to death. Approximately 70-80 years of research in the development, treatment, and understanding of OP compounds has resulted in only a handful of effective (and approved) therapeutics for the treatment of OP exposure. The search for more effective therapeutics is limited by at least three major problems: (1) there are no broad scope reactivators of OP-inhibited AChE; (2) current therapeutics are permanently positively charged and cannot cross the blood-brain barrier efficiently; and (3) current therapeutics are ineffective at treating the aged, or dealkylated, form of AChE that forms following inhibition of of AChE by various OPs.
    [Show full text]
  • Chemical Compatibility Chart
    Chemical Compatibility Chart 1 Inorganic Acids 1 2 Organic acids X 2 3 Caustics X X 3 4 Amines & Alkanolamines X X 4 5 Halogenated Compounds X X X 5 6 Alcohols, Glycols & Glycol Ethers X 6 7 Aldehydes X X X X X 7 8 Ketone X X X X 8 9 Saturated Hydrocarbons 9 10 Aromatic Hydrocarbons X 10 11 Olefins X X 11 12 Petrolum Oils 12 13 Esters X X X 13 14 Monomers & Polymerizable Esters X X X X X X 14 15 Phenols X X X X 15 16 Alkylene Oxides X X X X X X X X 16 17 Cyanohydrins X X X X X X X 17 18 Nitriles X X X X X 18 19 Ammonia X X X X X X X X X 19 20 Halogens X X X X X X X X X X X X 20 21 Ethers X X X 21 22 Phosphorus, Elemental X X X X 22 23 Sulfur, Molten X X X X X X 23 24 Acid Anhydrides X X X X X X X X X X 24 X Represents Unsafe Combinations Represents Safe Combinations Group 1: Inorganic Acids Dichloropropane Chlorosulfonic acid Dichloropropene Hydrochloric acid (aqueous) Ethyl chloride Hydrofluoric acid (aqueous) Ethylene dibromide Hydrogen chloride (anhydrous) Ethylene dichloride Hydrogen fluoride (anhydrous) Methyl bromide Nitric acid Methyl chloride Oleum Methylene chloride Phosphoric acid Monochlorodifluoromethane Sulfuric acid Perchloroethylene Propylene dichloride Group 2: Organic Acids 1,2,4-Trichlorobenzene Acetic acid 1,1,1-Trichloroethane Butyric acid (n-) Trichloroethylene Formic acid Trichlorofluoromethane Propionic acid Rosin Oil Group 6: Alcohols, Glycols and Glycol Ethers Tall oil Allyl alcohol Amyl alcohol Group 3: Caustics 1,4-Butanediol Caustic potash solution Butyl alcohol (iso, n, sec, tert) Caustic soda solution Butylene
    [Show full text]
  • Chemical Weapons Technology Section 4—Chemical Weapons Technology
    SECTION IV CHEMICAL WEAPONS TECHNOLOGY SECTION 4—CHEMICAL WEAPONS TECHNOLOGY Scope Highlights 4.1 Chemical Material Production ........................................................II-4-8 4.2 Dissemination, Dispersion, and Weapons Testing ..........................II-4-22 • Chemical weapons (CW) are relatively inexpensive to produce. 4.3 Detection, Warning, and Identification...........................................II-4-27 • CW can affect opposing forces without damaging infrastructure. 4.4 Chemical Defense Systems ............................................................II-4-34 • CW can be psychologically devastating. • Blister agents create casualties requiring attention and inhibiting BACKGROUND force efficiency. • Defensive measures can be taken to negate the effect of CW. Chemical weapons are defined as weapons using the toxic properties of chemi- • Donning of protective gear reduces combat efficiency of troops. cal substances rather than their explosive properties to produce physical or physiologi- • Key to employment is dissemination and dispersion of agents. cal effects on an enemy. Although instances of what might be styled as chemical weapons date to antiquity, much of the lore of chemical weapons as viewed today has • CW are highly susceptible to environmental effects (temperature, its origins in World War I. During that conflict “gas” (actually an aerosol or vapor) winds). was used effectively on numerous occasions by both sides to alter the outcome of • Offensive use of CW complicates command and control and battles. A significant number of battlefield casualties were sustained. The Geneva logistics problems. Protocol, prohibiting use of chemical weapons in warfare, was signed in 1925. Sev- eral nations, the United States included, signed with a reservation forswearing only the first use of the weapons and reserved the right to retaliate in kind if chemical weapons were used against them.
    [Show full text]
  • Safety Data Sheet - Version 5.0 Preparation Date 9/18/2015 Latest Revision Date (If Revised) SDS Expiry Date 9/16/2018
    Safety Data Sheet - Version 5.0 Preparation Date 9/18/2015 Latest Revision Date (If Revised) SDS Expiry Date 9/16/2018 1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1 Product Identifier Chemical Name Lauramine Oxide-d6 Catalogue # L178532 1.2 Relevant Identified Uses of the Substance or Mixture and Uses Advised Against Product Uses To be used only for scientific research and development. Not for use in humans or animals. 1.3 Details of the Supplier of the Safety Data Sheet Company Toronto Research Chemicals 2 Brisbane Road Toronto, ON M3J 2J8 CANADA Telephone +14166659696 FAX +14166654439 Email [email protected] 1.4 Emergency Telephone Number Emergency# +14166659696 between 0800-1700 (GMT-5) 2. HAZARDS IDENTIFICATION WHMIS Classification (Canada) WHMIS Symbols (Canada) D2B Toxic Material Causing Other Toxic Effects Moderate Eye Irritant E Corrosive Material 2.1/2.2 Classification of the Substance or Mixture and Label Elements GHS Hazards Classification (According to EU Regulation 1272/2008 and US OSHA 1910.1200) Acute Toxicity, Oral (Category 5) Skin Corrosion (Category 1B) Serious Eye Damage (Category 1) EU Classification (According to EU Regulation 67/548/EEC) Harmful if swallowed. Causes severe burns. Risk of serious damage to the eyes. EU Risk and Safety Statements (According to EU Regulation 67/548/EEC) Hazard Statements Hazard Codes Corrosive C Risk Codes and Phrases R22 Harmful if swallowed. R35 Causes severe burns. R41 Risk of serious damage to the eyes. Safety Precaution Codes and Phrases S36/37/39 Wear suitable protective clothing, gloves and eye/face protection.
    [Show full text]
  • Parameters for the Evaluation of the Fate, Transport, and Environmental Impacts of Chemical Agents in Marine Environments July 2007
    Parameters for the Evaluation of the Fate, Transport, and Environmental Impacts of Chemical Agents in Marine Environments July 2007 3150 Fairview Park Drive South Falls Church, VA 22042-4519 Tel 703.610.2002 noblis.org 2007 Noblis, Inc. Company Confidential/ Parameters for the Evaluation of the Fate, Transport, and Environmental Impacts of Chemical Agents in Marine Environments July 2007 George O. Bizzigotti, Ph. D. Harry Castelly Ahmed M. Hafez, Ph. D. Wade H. B. Smith, Ph. D. Mark T. Whitmire Abstract 313 references were reviewed to obtain data relevant to the fate, transport, and environmental impacts of chemical agents in marine environments. The review covers the chemical agents phosgene, cyanogen chloride, hydrogen cyanide, sulfur mustard, Lewisite, nitrogen mustard (HN1), Tabun, Sarin, and VX. Parameters covered in the review are boiling point, melting point, density, vapor pressure, solubility, Henry’s Law constant, partition coefficients, dissociation constants, and hydrolysis rate constants and products. Recent ecotoxicity data are also discussed. Data gaps for these parameters and agents are identified and prioritized. In addition to the specific data gaps, the authors have identified several general issues that extend beyond single compounds or types of data. Given the available data and what they suggest will be the dominant fate and transport mechanisms, there are no data gaps that leave one unable to conduct a reasonable assessment for any agent. The primary source of uncertainty in the evaluation of the fate, transport, and environmental impacts of these agents remains the rate at which they are released into the environment. The data gaps identified in this work appear to cause a significantly smaller level of uncertainty.
    [Show full text]
  • Equilibrium Constants for the Formation of Silver
    EQUILIBRIUM CONSTANTS FOR THE FORMATION OF SILVER AMMINES IN ETHANOL-WATER MIXTURES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Charles Thomas Anderson, A.B ****** The Ohio State University Approved by* Adviser Department of Chemistry .•■--•.sia-ji • c--.\'--~t ' -.- ■?-..-_ _ _ _ _ __ ACKNOWLEDGMENT I -wish to express my deep appreciation to my preoeptor. Professor Prank Verhoek, for suggesting this problem, and for his advice and encouragement during the course of the work. 1 also wish to thank the Cincinnati Chemical Works for providing a fellowship under which much of this work was done. ii PREFACE This dissertation is & report of experimental studies on the equilibrium constants of a number of silver ammine complexes in ethanol-water solution, with the purpose of examining the relation­ ship between the stabilities of these complexes and the basio strengths and structures of the amines. Formation constants of the complex silver ions and dissociation constants of the amines were obtained at 25°C in 50 mole % ethanol-water mixtures from pH measurements of solutions containing known amounts of silver ion, acid, amine and neutral salt. The glass eleotrode used was calibrated on solutions for which the pH had been determined by potentiometric measurements with hydrogen electrodes and by spectrophotometric measurements using an indicator. - iii - TABLE OF CONTENTS ACKNOWLEDGMENT ....................................... ii PREFACE............................................... iii LIST OF T A B L E S ......................................... vi LIST OF ILLUSTRATIONS................................... ix LIST OF AMINES (ALPHABETICAL).......................... x LIST OF AMINES (BY NUMBER SYMBOL)........................ xi I.
    [Show full text]