[Palaeontology, Vol. 61, Part 4, 2018, pp. 511–541] COMPUTED TOMOGRAPHY SCANNING AS A TOOL FOR LINKING THE SKELETAL AND OTOLITH-BASED FOSSIL RECORDS OF TELEOST FISHES by WERNER SCHWARZHANS1,HERMIONET.BECKETT2 ,JASOND. SCHEIN3 and MATT FRIEDMAN2,4 1Zoological Museum, Natural History Museum of Denmark, Copenhagen, Denmark;
[email protected] 2Department of Earth Sciences, University of Oxford, Oxford, UK;
[email protected] 3Bighorn Basin Paleontological Institute, Willow Grove, PA USA;
[email protected] 4Department of Earth & Environmental Sciences, & Museum of Paleontology, University of Michigan, Ann Arbor, MI USA;
[email protected] Typescript received 11 August 2017; accepted in revised form 27 November 2017 Abstract: Micro-computed tomography (lCT) scanning that do not appear in the body fossil record until the Palaeo- now represents a standard tool for non-destructive study of gene. This striking example of convergence suggests con- internal or concealed structure in fossils. Here we report on straints on otolith geometry in pelagic predators. The otoliths found in situ during routine lCT scanning of three- otoliths of Apateodus show a primitive geometry for aulopi- dimensionally preserved skulls of Palaeogene and Cretaceous forms and lack the derived features of Alepisauroidea, the fishes. Comparisons are made with isolated otolith-based lizardfish clade to which the genus is often attributed. In situ taxa to attempt correlations between the body fossil and oto- otoliths of Early Cretaceous fishes (Apsopelix and an uniden- lith fossil records. In situ otoliths previously extracted tified taxon) are not well preserved, and we are unable to mechanically from specimens of Apogon macrolepis and Den- identify clear correlations with isolated otolith morphologies.