Learning Objectives Opportunistic Parasites of Humans General

Total Page:16

File Type:pdf, Size:1020Kb

Learning Objectives Opportunistic Parasites of Humans General 06/07/64 Learning objectives Human Pathogens 2 • After class, students will be able to: Protozoa infections in • Describe morphology, life cycle, signs and symptoms, immunocompromised host epidemiology, prevention and control, laboratory diagnosis and treatment of opportunistic protozoan Nimit Morakote, Ph.D. parasites of man. 23 July 2021 1 2 General characteristics of Opportunistic parasites of humans apicomplixans • Sporozoa (Phylum • Fungi • Obligate intracellular parasite Apicomplexa) • Pneumocystis jirovecii • Apical complex organelles for • Toxoplasma gondii • Microsporidia host cell invasion • Conoid • Cystoisospora belli • Polar ring • Cryptosporidium spp. • Rhoptry • Cyclospora cayetanensis • Microneme • Subpellicular microtubules • Sexual and asexual reproduction http://www.nature.com/scitable/topicpage/the-apicoplast-an-organelle-with-a-green-14231555 3 4 1 06/07/64 Eukaryote classification, 2019 • Apicomplexa • Aconoidasida • Haemospororida (Plasmodium, etc.) • Piroplasmida • Conoidasia • Coccidia • Adeleorina • Eimeriorina (Cystoisospora, Toxoplasma, Sarcocystis, Cyclospora, etc.) • Gregarinasina • Archigregarinorida • Eugregarinorida • Neogregarinorida Drawing showing conoid structure • Cryptogregarinorida (Cryptosporidium) Anderson-White B, et al. Int Rev Cell Mol Biol 2012;298:1-31. Adl SM, et al. Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. J Eukaryot Microbiol 2019, 66, 4–119. 5 6 Host cell invasion- parasite active mechanism Asexual reproduction Internal budding • Endodyogeny (1 mother cell → 2 daughter cells) • Endopolygeny (1 mother cell → many daughter cells) Bang Shen, L David Sibley. The moving junction, a key portal to host cell invasion by apicomplexan parasites. Current Opinion in Microbiology, Volume 15, Issue 4, 2012, 449–455 7 8 2 06/07/64 Multiple fission (merogony or schizogony) 1 cell/ 1 nucleus ↓ 1 cell/ multiple nuclei (schizont or meront) ↓ many cells (merozoites) Apicomplexan asexual cell division by endodyogeny. (A–E) Show progressive steps of cell division as observed for T. gondii tachyzoites. Two daughters bud internally, while the mother’s cytoskeleton is maintained and only destabilized just before emergence of nearly mature daughters (E). Daughter buds emerge and the plasma membrane from the mother is incorporated onto the daughters. The mother falls away as a residual body. (Gubbels M-J, et al. (2020) Fussing About Fission: Defining Variety Among Mainstream and Exotic Apicomplexan Cell Division Modes. Front. Cell. Infect. Microbiol. 10:269.) 9 10 Sexual reproduction Macrogametes Macrogamonts Zoite #1 (female sex cells) Asexual schizont Microgametes Microgamonts Zoite #2 multiplication (male sex cells) 2, Disassembly of the mother’s cytoskeleton shortly following completion of host cell invasion, resulting in an amoeboid or pleomorphic cell. Fertilization 3, Several cycles of DNA replication and nuclear division. Mitotic cycle not synchronous. Sexual Zygote 4, The last cycle of nuclear division is synchronous and coupled to the (Sporogony) Sporulated synchronous budding of the daughters at the end of schizogony. oocysts Oocysts (Sporozoites Gubbels M-J, et al. Fussing About Fission: Defining Variety Among Mainstream and Exotic Apicomplexan Cell Division Modes. sporulation inside) Front. Cell. Infect. Microbiol. 2020;10:269. 11 12 3 06/07/64 Oocyst sporulation Opportunistic protozoan parasites Meiosis and Life cycle Affected organs/ Oocyst wall mitosis Disease in man Zygote sporoblasts sporocysts sporozoite or 1N Toxoplasma gondii Heteroxenous Brain-Toxoplasmic encephalitis sporont (haploid) Cat=DH Developing organs-Congenital 2N (diploid) toxoplasmosis Cystoisospora belli homoxenous Small intestine-Diarrhea Cryptospridium homoxenous Small intestine-Diarrhea Cyclospora cayetanensis homoxenous Small intestine-Diarrhea Unsporulated Sporulated oocyst oocyst 13 14 Toxoplasma gondii Intermediate hosts Asexual reproduction in cells and tissues • Disease: toxoplasmosis • Congenital toxoplasmosis Immature oocysts -> sporulated oocysts • Toxoplasmic encephalitis in AIDS • Stages in life cycle • Tachyzoites, 6 x 2 µm: during acute stage of infection carnivorism Definitive host • Bradyzoites, during chronic stage of infection Sexual reproduction in • with glycogen granules the small intestine • Pepsin-resistant Toxon = arc • Oocyst, 10 x 12 µm Gondii= gundi rodent tissue cysts containing bradyzoites Image from https://www2.bc.edu/~gubbelsj/Toxoplasma.html 15 16 4 06/07/64 Watch video Phase in cats (enteroepithelial) • Toxoplasma gondii - Life • Ingestion of tissue cysts containing cycle and Invasion bradyzoites. https://www.youtube.com/ • Bradyzoites infect the small intestine. watch?v=25SjWK9smnw • Enteroepithelial stage: schizogony, gametogony, fertilization. • Immature oocysts released in feces. Prepatent period 3-10 days. Toxoplasma cyst. Attias M, et al. Parasites Vectors (2020) 13:588. 17 18 Sporulation in environment Asexual phase in intermediate hosts • Immature oocysts undergo sporulation to mature, infective oocysts in soil or environment. • Sporulation requires 1-5 days • Ingestion of sporulated oocysts • Sporozoites enter epithelial cells, multiply by endodyogeny -> tachyzoites, hematogenous www2.bc.edu spread (acute phase) 19 20 5 06/07/64 Chronic phase of infection Bradyzoites in tissue cyst Human infection • Tissue cysts • Consumption of improperly cooked meat (bradyzoites) • Sporulated oocysts • Drinking unfiltered water (oocysts) • Toxoplasma cyst in mouse brain. Contaminated hand (oocysts) Attias M, et al. Parasites Vectors (2020) 13:588. • Tachyzoites • Organ transplant, blood transfusion (tachyzoites) From: Structures of Toxoplasma gondii Tachyzoites, Bradyzoites, and Sporozoites and Biology and Development of Tissue Cysts. Clin. Microbiol. Rev. 1998 11(2): 267-299; published 1 April 1998 21 22 Pathogenesis, Signs and Symptoms Diagnosis, prevention & treatment • Acute phase- tachyzoites invade and destroy • Isolation of parasite impractical host cells • Primarily diagnosed by serology (antibody detection) • Lymphadenopathy, flu-like symptoms • Chronic phase • Serological survey shows worldwide distribution including • Immune pressure: Tachyzoites bradyzoites Thailand (tissue cysts) in brain, muscle • Prevention by cook meat, proper handling of cat’s feces • Become asymptomatic • • Reactivate in AIDS toxoplasmic encephalitis Treatment: pyrimethamine and sulfadiazine, plus folinic acid. • Congenital toxoplasmosis: chorioretinitis, Austincc.edu hydrocephalus, intracerebral calcification 23 24 6 06/07/64 Laboratory demonstrations http://www.cdc.gov/parasites/toxoplasmosis/resources/printresources/catowners.pdf 25 26 Cystoisospora belli • Former name= Isospora belli • Diagnosis: • Only in human and primate • Fecal exam: simple smear or acid fast stain • Unsporulated oocyst, 20-23 x 10-19 m • Merogony, gametogony, oocyst formation in epithelial cell • of the small intestine Contains 1 or 2 sporoblasts • Treatment: trimethoprim and • Oocyst sporulation outside host: 1-5 days sulfamethoxazole • Acute infection: diarrhea, self-limited • Immunodeficient person: severe diarrhea 27 28 7 06/07/64 Unstained faecal smear Laboratory demonstrations Cryptosporidium (marvistavet.com) • Facultative gregarine parasite (Order Cryptogregarinorida) • Parasite of mammals, birds, reptiles, fish, amphibians: rather host-nonspecific • Human: mostly C. parvum, C. hominis • Oocyst 5 µm in diameter, smallest of all oocysts of human parasites • 4 naked sporozoites (oocyst without sporocyst) Jstor.org 29 30 • Life cycle similar to Cystoisospora belli (development occurs in GI epithelium) except: • Organism is intracellular, extracytoplasmic • Sporulation in host cells- • 80%=thick-wall oocysts • 20%=thin-wall oocysts (autoinfective) • Prepatent Period app. 2 days, Sateriale E, et al. PNAS 2021 Vol. 118 No. 2 Cunha FS, et al. New insights into the detection and molecular characterization of Cryptosporidium • Incubation Period app. 7-10 days e2007807118 with emphasis in Brazilian studies: a review. Rev Inst Med Trop Sao Paulo. 2019;61:e28. 31 32 8 06/07/64 • Emerging infectious disease • Infected persons secrete large • Impaired intestinal absorption + amount of oocysts in feces enhanced secretion • Infectious dose 10-100 oocysts • Watery diarrhea, abdominal cramp, fever • The median maximum number of stool per day is 12 • Self-limited in 2 wk. From: Davies AP, Chalmers RM. Cryptosporidiosis. BMJ | 24 october 2009 | Volume 339:963. 33 34 • An important opportunist in • Outbreak in EU: settings or • Outbreaks associated AIDS patients vehicle with untreated • Fulminant infection, 2L • Nursery school recreational water- US watery stool daily (CD4 < • Playing on floodplain 2000-2014 50/microliter) • Open farm • Veterinary students • 4,958 cases of disease • Extraintestinal dissemination and two deaths can occur, most common= • Frisée salad biliary tract • Bird contact • 12% by Cryptosporidium • Swimming pool • In population, most • Drinking water • Multiply in biofilms prevalent in children under Caccio SM and Chalmers RM. Human 5 years cryptosporidiosis in Europe. Clinical Microbiology and Infection 2016: 22(6) : 471-480. MMWR Weekly / Vol. 67 / No. 25 June 29, 2018 35 36 9 06/07/64 • Infection worldwide including Thailand • Account for 5% of patient diarrhea • Contaminated drinking water, food, direct contact • Clam • Outbreak in the past involving 403,000 persons in Milwaukee, USA, associated with drinking water • No effective, specific chemotherapy • nitazoxanide resolves
Recommended publications
  • Interactions Between Cryptosporidium Parvum and the Intestinal Ecosystem
    Interactions between Cryptosporidium parvum and the Intestinal Ecosystem Thesis by Olga Douvropoulou In Partial Fulfillment of the Requirements For the Degree of Master of Science King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia April, 2017 2 EXAMINATION COMMITTEE PAGE The thesis of Olga Douvropoulou is approved by the examination committee. Committee Chairperson: Professor Arnab Pain Committee Co-Chair: Professor Giovanni Widmer Committee Members: Professor Takashi Gojobori, Professor Peiying Hong 3 © April, 2017 Olga Douvropoulou All Rights Reserved 4 ABSTRACT Interactions between Cryptosporidium parvum and the Intestinal Ecosystem Olga Douvropoulou Cryptosporidium parvum is an apicomplexan protozoan parasite commonly causing diarrhea, particularly in infants in developing countries. The research challenges faced in the development of therapies against Cryptosporidium slow down the process of drug discovery. However, advancement of knowledge towards the interactions of the intestinal ecosystem and the parasite could provide alternative approaches to tackle the disease. Under this perspective, the primary focus of this work was to study interactions between Cryptosporidium parvum and the intestinal ecosystem in a mouse model. Mice were treated with antibiotics with different activity spectra and the resulted perturbation of the native gut microbiota was identified by microbiome studies. In particular, 16S amplicon sequencing and Whole Genome Sequencing (WGS) were used to determine the bacterial composition
    [Show full text]
  • ABSTRACT Gregarine Parasitism in Dragonfly Populations of Central
    ABSTRACT Gregarine Parasitism in Dragonfly Populations of Central Texas with an Assessment of Fitness Costs in Erythemis simplicicollis Jason L. Locklin, Ph.D. Mentor: Darrell S. Vodopich, Ph.D. Dragonfly parasites are widespread and frequently include gregarines (Phylum Apicomplexa) in the gut of the host. Gregarines are ubiquitous protozoan parasites that infect arthropods worldwide. More than 1,600 gregarine species have been described, but only a small percentage of invertebrates have been surveyed for these apicomplexan parasites. Some consider gregarines rather harmless, but recent studies suggest otherwise. Odonate-gregarine studies have more commonly involved damselflies, and some have considered gregarines to rarely infect dragonflies. In this study, dragonfly populations were surveyed for gregarines and an assessment of fitness costs was made in a common and widespread host species, Erythemis simplicicollis. Adult dragonfly populations were surveyed weekly at two reservoirs in close proximity to one another and at a flow-through wetland system. Gregarine prevalences and intensities were compared within host populations between genders, among locations, among wing loads, and through time. Host fitness parameters measured included wing load, egg size, clutch size, and total egg count. Of the 37 dragonfly species surveyed, 14 species (38%) hosted gregarines. Thirteen of those species were previously unreported as hosts. Gregarine prevalences ranged from 2% – 52%. Intensities ranged from 1 – 201. Parasites were aggregated among their hosts. Gregarines were found only in individuals exceeding a minimum wing load, indicating that gregarines are likely not transferred from the naiad to adult during emergence. Prevalence and intensity exhibited strong seasonality during both years at one of the reservoirs, but no seasonal trend was detected at the wetland.
    [Show full text]
  • Extended-Spectrum Antiprotozoal Bumped Kinase Inhibitors: a Review
    University of Kentucky UKnowledge Veterinary Science Faculty Publications Veterinary Science 9-2017 Extended-Spectrum Antiprotozoal Bumped Kinase Inhibitors: A Review Wesley C. Van Voorhis University of Washington J. Stone Doggett Portland VA Medical Center Marilyn Parsons University of Washington Matthew A. Hulverson University of Washington Ryan Choi University of Washington Follow this and additional works at: https://uknowledge.uky.edu/gluck_facpub See next page for additional authors Part of the Animal Sciences Commons, Immunology of Infectious Disease Commons, and the Parasitology Commons Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Repository Citation Van Voorhis, Wesley C.; Doggett, J. Stone; Parsons, Marilyn; Hulverson, Matthew A.; Choi, Ryan; Arnold, Samuel L. M.; Riggs, Michael W.; Hemphill, Andrew; Howe, Daniel K.; Mealey, Robert H.; Lau, Audrey O. T.; Merritt, Ethan A.; Maly, Dustin J.; Fan, Erkang; and Ojo, Kayode K., "Extended-Spectrum Antiprotozoal Bumped Kinase Inhibitors: A Review" (2017). Veterinary Science Faculty Publications. 45. https://uknowledge.uky.edu/gluck_facpub/45 This Article is brought to you for free and open access by the Veterinary Science at UKnowledge. It has been accepted for inclusion in Veterinary Science Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Wesley C. Van Voorhis, J. Stone Doggett, Marilyn Parsons, Matthew A. Hulverson, Ryan Choi, Samuel L. M. Arnold, Michael W. Riggs, Andrew Hemphill, Daniel K. Howe, Robert H. Mealey, Audrey O. T. Lau, Ethan A. Merritt, Dustin J. Maly, Erkang Fan, and Kayode K. Ojo Extended-Spectrum Antiprotozoal Bumped Kinase Inhibitors: A Review Notes/Citation Information Published in Experimental Parasitology, v.
    [Show full text]
  • A New Species of Sarcocystis in the Brain of Two Exotic Birds1
    © Masson, Paris, 1979 Annales de Parasitologie (Paris) 1979, t. 54, n° 4, pp. 393-400 A new species of Sarcocystis in the brain of two exotic birds by P. C. C. GARNHAM, A. J. DUGGAN and R. E. SINDEN * Imperial College Field Station, Ashurst Lodge, Ascot, Berkshire and Wellcome Museum of Medical Science, 183 Euston Road, London N.W.1., England. Summary. Sarcocystis kirmsei sp. nov. is described from the brain of two tropical birds, from Thailand and Panama. Its distinction from Frenkelia is considered in some detail. Résumé. Une espèce nouvelle de Sarcocystis dans le cerveau de deux Oiseaux exotiques. Sarcocystis kirmsei est décrit du cerveau de deux Oiseaux tropicaux de Thaïlande et de Panama. Les critères de distinction entre cette espèce et le genre Frenkelia sont discutés en détail. In 1968, Kirmse (pers. comm.) found a curious parasite in sections of the brain of an unidentified bird which he had been given in Panama. He sent unstained sections to one of us (PCCG) and on examination the parasite was thought to belong to the Toxoplasmatea, either to a species of Sarcocystis or of Frenkelia. A brief description of the infection was made by Tadros (1970) in her thesis for the Ph. D. (London). The slenderness of the cystozoites resembled those of Frenkelia, but the prominent spines on the cyst wall were more like those of Sarcocystis. The distri­ bution of the cystozoites within the cyst is characteristic in that the central portion is practically empty while the outer part consists of numerous pockets of organisms, closely packed together.
    [Show full text]
  • Statistical Comparison of Excystation Methods in Cryptosporidium Parvum Oocysts
    MASARYK UNIVERSITY FACULTY OF SCIENCE DEPT . OF BOTANY AND ZOOLOG Y BIOLOGICAL LY ACTIVE COMPOUNDS WIT H POTENTIAL ANTIPARASI TIC EFFECT AND THEIR IMPACT ON THE COURSE OF SELECTED PARASITOSES Ph.D. Dissertation Radka Pecková Supervisor: MVDr. Ivona Foitová, Ph.D . Brno 2018 Bibliographic Entry Author Mgr. Radka Pecková Faculty of Science, Masaryk University Department of Botany and Zoology Biological ly active compounds with potential Title of Thesis: antiparasitic effect and their impact on the processes of selected parasitoses Degree programme: Biology Field of Study: Parasitology Supervisor: MVDr. Ivona Foitová, Ph.D. Academic Year: 2017/2018 Number of Pages: 139 Keywords: Giardia intestinalis ; Cryptosporidium ; Anti - protozoal activity; Plant extracts; Drug of Choice; Natural Antiparasitics; Parasites; Archidendron fagifolium ; Diospyros sumatrana ; Piper betle ; Shorea sumatrana Bibliografický záznam Autor: Mgr. Radka Pecková Přírodovědecká fakulta, Masarykova univerzita Ústav botaniky a zoologie Biologicky aktivní látky s potencionálním Název práce: antiparazitárním účinkem a jejich působení na průběh vybraných parazitóz Studijní program: Biologie Studijní obor: Parazitologie Vedoucí práce: MVDr. Ivona Foitová, Ph.D. Akademický rok: 2017/2018 Počet stran: 139 Klíčová slova: Giardia intestinalis ; Cryptosporidium ; Antiprotozoární aktivita; Rostlinné extrakty; Alternativní léčiva; Přírodní antiparazitika; Paraziti; Archidendron fagifolium ; Diospyros sumatrana ; Piper betle ; Shorea sumatrana ABSTRAK T ABSTRACT This thesis deals with the study of the influence of extracts of selected plants from Indonesia on parasites Giardia intestinalis (Lambl) Alexeieff, 1914 and Cryptosporidium proliferans Kváč, Havrdová, Hlásková, Daňková, Kanděra, Ježková, Vítovec, Sak, Ortega, Xiao, Modrý, Jesudoss Chelladural, Prantlová & McEvoy, 2016 . Tested plants were selected based on behavioural data and the ability to reduce the intensity of parasitic infection in Sumatran orangutans.
    [Show full text]
  • Supplementary Material Parameter Unit Average ± Std NO3 + NO2 Nm
    Supplementary Material Table S1. Chemical and biological properties of the NRS water used in the experiment (before amendments). Parameter Unit Average ± std NO3 + NO2 nM 140 ± 13 PO4 nM 8 ± 1 DOC μM 74 ± 1 Fe nM 8.5 ± 1.8 Zn nM 8.7 ± 2.1 Cu nM 1.4 ± 0.9 Bacterial abundance Cells × 104/mL 350 ± 15 Bacterial production μg C L−1 h−1 1.41 ± 0.08 Primary production μg C L−1 h−1 0.60 ± 0.01 β-Gl nM L−1 h−1 1.42 ± 0.07 APA nM L−1 h−1 5.58 ± 0.17 AMA nM L−1·h−1 2.60 ± 0.09 Chl-a μg/L 0.28 ± 0.01 Prochlorococcus cells × 104/mL 1.49 ± 02 Synechococcus cells × 104/mL 5.14 ± 1.04 pico-eukaryot cells × 103/mL 1.58 × 0.1 Table S2. Nutrients and trace metals concentrations added from the aerosols to each mesocosm. Variable Unit Average ± std NO3 + NO2 nM 48 ± 2 PO4 nM 2.4 ± 1 DOC μM 165 ± 2 Fe nM 2.6 ± 1.5 Zn nM 6.7 ± 2.5 Cu nM 0.6 ± 0.2 Atmosphere 2019, 10, 358; doi:10.3390/atmos10070358 www.mdpi.com/journal/atmosphere Atmosphere 2019, 10, 358 2 of 6 Table S3. ANOVA test results between control, ‘UV-treated’ and ‘live-dust’ treatments at 20 h or 44 h, with significantly different values shown in bold. ANOVA df Sum Sq Mean Sq F Value p-value Chl-a 20 H 2, 6 0.03, 0.02 0.02, 0 4.52 0.0634 44 H 2, 6 0.02, 0 0.01, 0 23.13 0.002 Synechococcus Abundance 20 H 2, 7 8.23 × 107, 4.11 × 107 4.11 × 107, 4.51 × 107 0.91 0.4509 44 H 2, 7 5.31 × 108, 6.97 × 107 2.65 × 108, 1.16 × 107 22.84 0.0016 Prochlorococcus Abundance 20 H 2, 8 4.22 × 107, 2.11 × 107 2.11 × 107, 2.71 × 106 7.77 0.0216 44 H 2, 8 9.02 × 107, 1.47 × 107 4.51 × 107, 2.45 × 106 18.38 0.0028 Pico-eukaryote
    [Show full text]
  • Control of Intestinal Protozoa in Dogs and Cats
    Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 1 ESCCAP Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3SZ, United Kingdom First Edition Published by ESCCAP in August 2011 Second Edition Published in February 2018 © ESCCAP 2018 All rights reserved This publication is made available subject to the condition that any redistribution or reproduction of part or all of the contents in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise is with the prior written permission of ESCCAP. This publication may only be distributed in the covers in which it is first published unless with the prior written permission of ESCCAP. A catalogue record for this publication is available from the British Library. ISBN: 978-1-907259-53-1 2 TABLE OF CONTENTS INTRODUCTION 4 1: CONSIDERATION OF PET HEALTH AND LIFESTYLE FACTORS 5 2: LIFELONG CONTROL OF MAJOR INTESTINAL PROTOZOA 6 2.1 Giardia duodenalis 6 2.2 Feline Tritrichomonas foetus (syn. T. blagburni) 8 2.3 Cystoisospora (syn. Isospora) spp. 9 2.4 Cryptosporidium spp. 11 2.5 Toxoplasma gondii 12 2.6 Neospora caninum 14 2.7 Hammondia spp. 16 2.8 Sarcocystis spp. 17 3: ENVIRONMENTAL CONTROL OF PARASITE TRANSMISSION 18 4: OWNER CONSIDERATIONS IN PREVENTING ZOONOTIC DISEASES 19 5: STAFF, PET OWNER AND COMMUNITY EDUCATION 19 APPENDIX 1 – BACKGROUND 20 APPENDIX 2 – GLOSSARY 21 FIGURES Figure 1: Toxoplasma gondii life cycle 12 Figure 2: Neospora caninum life cycle 14 TABLES Table 1: Characteristics of apicomplexan oocysts found in the faeces of dogs and cats 10 Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 3 INTRODUCTION A wide range of intestinal protozoa commonly infect dogs and cats throughout Europe; with a few exceptions there seem to be no limitations in geographical distribution.
    [Show full text]
  • Supplementary Figure 1 Multicenter Randomised Control Trial 2746 Randomised
    Supplementary Figure 1 Multicenter randomised control trial 2746 randomised 947 control 910 MNP without zinc 889 MNP with zinc 223 lost to follow up 219 lost to follow up 183 lost to follow up 34 refused 29 refused 37 refused 16 died 12 died 9 died 3 excluded 4 excluded 1 excluded 671 in follow-up 646 in follow-up 659 in follow-up at 24mo of age at 24mo of age at 24mo of age Selection for Microbiome sequencing 516 paired samples unavailable 469 paired samples unavailable 497 paired samples unavailable 69 antibiotic use 63 antibiotic use 67 antibiotic use 31 outside of WLZ criteria 37 outside of WLZ criteria 34 outside of WLZ criteria 6 diarrhea last 7 days 2 diarrhea last 7 days 7 diarrhea last 7 days 39 WLZ > -1 at 24 mo 10 WLZ < -2 at 24mo 58 WLZ > -1 at 24 mo 17 WLZ < -2 at 24mo 48 WLZ > -1 at 24 mo 8 WLZ < -2 at 24mo available for selection available for selection available for selection available for selection available for selection1 available for selection1 14 selected 10 selected 15 selected 14 selected 20 selected1 7 selected1 1 Two subjects (one in the reference WLZ group and one undernourished) had, at 12 months, no diarrhea within 1 day of stool collection but reported diarrhea within 7 days prior. Length, cm kg Weight, Supplementary Figure 2. Length (left) and weight (right) z-scores of children recruited into clinical trial NCT00705445 during the first 24 months of life. Median and quantile values are shown, with medians for participants profiled in current study indicated by red (undernourished) and black (reference WLZ) lines.
    [Show full text]
  • Why the –Omic Future of Apicomplexa Should Include Gregarines Julie Boisard, Isabelle Florent
    Why the –omic future of Apicomplexa should include Gregarines Julie Boisard, Isabelle Florent To cite this version: Julie Boisard, Isabelle Florent. Why the –omic future of Apicomplexa should include Gregarines. Biology of the Cell, Wiley, 2020, 10.1111/boc.202000006. hal-02553206 HAL Id: hal-02553206 https://hal.archives-ouvertes.fr/hal-02553206 Submitted on 24 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article title: Why the –omic future of Apicomplexa should include Gregarines. Names of authors: Julie BOISARD1,2 and Isabelle FLORENT1 Authors affiliations: 1. Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Département Adaptations du Vivant (AVIV), Muséum National d’Histoire Naturelle, CNRS, CP52, 57 rue Cuvier 75231 Paris Cedex 05, France. 2. Structure et instabilité des génomes (STRING UMR 7196 CNRS / INSERM U1154), Département Adaptations du vivant (AVIV), Muséum National d'Histoire Naturelle, CP 26, 57 rue Cuvier 75231 Paris Cedex 05, France. Short Title: Gregarines –omics for Apicomplexa studies
    [Show full text]
  • Enteric Protozoa in the Developed World: a Public Health Perspective
    Enteric Protozoa in the Developed World: a Public Health Perspective Stephanie M. Fletcher,a Damien Stark,b,c John Harkness,b,c and John Ellisa,b The ithree Institute, University of Technology Sydney, Sydney, NSW, Australiaa; School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, NSW, Australiab; and St. Vincent’s Hospital, Sydney, Division of Microbiology, SydPath, Darlinghurst, NSW, Australiac INTRODUCTION ............................................................................................................................................420 Distribution in Developed Countries .....................................................................................................................421 EPIDEMIOLOGY, DIAGNOSIS, AND TREATMENT ..........................................................................................................421 Cryptosporidium Species..................................................................................................................................421 Dientamoeba fragilis ......................................................................................................................................427 Entamoeba Species.......................................................................................................................................427 Giardia intestinalis.........................................................................................................................................429 Cyclospora cayetanensis...................................................................................................................................430
    [Show full text]
  • Tracing the Origin of Planktonic Protists in an Ancient Lake
    microorganisms Article Tracing the Origin of Planktonic Protists in an Ancient Lake Nataliia V. Annenkova 1,* , Caterina R. Giner 2,3 and Ramiro Logares 2,* 1 Limnological Institute Siberian Branch of the Russian Academy of Sciences 3, Ulan-Batorskaya St., 664033 Irkutsk, Russia 2 Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, ES08003 Barcelona, Spain; [email protected] 3 Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada * Correspondence: [email protected] (N.V.A.); [email protected] (R.L.) Received: 26 February 2020; Accepted: 7 April 2020; Published: 9 April 2020 Abstract: Ancient lakes are among the most interesting models for evolution studies because their biodiversity is the result of a complex combination of migration and speciation. Here, we investigate the origin of single celled planktonic eukaryotes from the oldest lake in the world—Lake Baikal (Russia). By using 18S rDNA metabarcoding, we recovered 1414 Operational Taxonomic Units (OTUs) belonging to protists populating surface waters (1–50 m) and representing pico/nano-sized cells. The recovered communities resembled other lacustrine freshwater assemblages found elsewhere, especially the taxonomically unclassified protists. However, our results suggest that a fraction of Baikal protists could belong to glacial relicts and have close relationships with marine/brackish species. Moreover, our results suggest that rapid radiation may have occurred among some protist taxa, partially mirroring what was already shown for multicellular organisms in Lake Baikal. We found 16% of the OTUs belonging to potential species flocks in Stramenopiles, Alveolata, Opisthokonta, Archaeplastida, Rhizaria, and Hacrobia.
    [Show full text]
  • Cyclosporiasis: an Update
    Cyclosporiasis: An Update Cirle Alcantara Warren, MD Corresponding author Epidemiology Cirle Alcantara Warren, MD Cyclosporiasis has been reported in three epidemiologic Center for Global Health, Division of Infectious Diseases and settings: sporadic cases among local residents in an International Health, University of Virginia School of Medicine, MR4 Building, Room 3134, Lane Road, Charlottesville, VA 22908, USA. endemic area, travelers to or expatriates in an endemic E-mail: [email protected] area, and food- or water-borne outbreaks in a nonendemic Current Infectious Disease Reports 2009, 11:108–112 area. In tropical and subtropical countries (especially Current Medicine Group LLC ISSN 1523-3847 Haiti, Guatemala, Peru, and Nepal) where C. cayetanen- Copyright © 2009 by Current Medicine Group LLC sis infection is endemic, attack rates appear higher in the nonimmune population (ie, travelers, expatriates, and immunocompromised individuals). Cyclosporiasis was a Cyclosporiasis is a food- and water-borne infection leading cause of persistent diarrhea among travelers to that affects healthy and immunocompromised indi- Nepal in spring and summer and continues to be reported viduals. Awareness of the disease has increased, and among travelers in Latin America and Southeast Asia outbreaks continue to be reported among vulnera- [8–10]. Almost half (14/29) the investigated Dutch attend- ble hosts and now among local residents in endemic ees of a scientifi c meeting of microbiologists held in 2001 areas. Advances in molecular techniques have in Indonesia had C. cayetanensis in stool, confi rmed by improved identifi cation of infection, but detecting microscopy and/or polymerase chain reaction (PCR), and food and water contamination remains diffi cult.
    [Show full text]