Diversity of Echinoderms in Intertidal and Shallow-Water Areas of Samal Island, Philippines

Total Page:16

File Type:pdf, Size:1020Kb

Diversity of Echinoderms in Intertidal and Shallow-Water Areas of Samal Island, Philippines Philippine Journal of Science 150 (S1): 281-297, Special Issue on Biodiversity ISSN 0031 - 7683 Date Received: 22 Sep 2020 Diversity of Echinoderms in Intertidal and Shallow-water Areas of Samal Island, Philippines Maybelle A. Fortaleza*, Joemarie J. Lanutan, Junissa M. Consuegra, and Cleto L. Nañola Jr. Coral Reef Resiliency and Ecology Studies Laboratory College of Science and Mathematics, University of the Philippines Mindanao Mintal, Davao City, Davao del Sur 8000 Philippines Echinoderms are immediately observable around the coastal shores of Samal Island. Unfortunately, studies on echinoderm diversity are lacking despite its relevance to coastal and marine ecosystems management. This study attempts to update the existing records of echinoderms in Samal Island, however, limited to the intertidal and shallow-water areas. Field surveys from January 2018 to January 2019 yielded a total of 30 echinoderm species belonging to 17 families. Most of the echinoderms encountered belonged to Classes Asteroidea (sea stars, nine species) and Ophiuroidea (brittle stars, nine species), followed by Echinoidea (regular and irregular urchins, six species) and Holothuroidea (sea cucumbers, six species). Of the 1,015 individuals, sea urchins comprised the majority of the total individuals recorded (43.15%), succeeded by sea stars (30.44%), brittle stars (18.04%), and sea cucumbers (8.37%). Richest diversity was observed in Catagman with 23 echinoderm species recorded. This was followed by Camudmud (14 species), Pangubatan (eight species), Balet (seven species), Aundanao (six species), and Kaputian (three species). The five most commonly occurring species were the Echinometra mathaei (Blainville, 1825), Archaster typicus (Müller and Troschel, 1840), Ophiocoma scolopendrina (Lamarck, 1816), Diadema setosum (Leske, 1778), and Linckia laevigata (Linnaeus, 1758). Differences in distribution and abundance may be attributed to the variability of habitats available across sites. An intensive biodiversity assessment is recommended to evaluate how the physicochemical parameters and extent of anthropogenic activities shape the diversity and distribution of echinoderms on the island. The current work also provides the first documentation of ophiuroid diversity and the first record of the brittle stars, Breviturma krohi (Stöhr, Boissin & Hoareau, 2013) and Ophiocoma cf. cynthiae (Benavides- Serrato and O’Hara, 2008) in Samal Island, Philippines. Keywords: diversity, echinoderms, intertidal areas, Samal Island INTRODUCTION unsurprising given that holothuroids and asteroids are highly regarded for their economic and aesthetic values. Echinoderms from Classes Holothuroidea and Asteroidea In contrast, studies related to Crinoidea, Echinoidea, are among the well-studied taxa in Mindanao, particularly and Ophiuroidea are relatively few. Crinoids are popular in Davao Gulf (Gamboa et al. 2004; Bos et al. 2008a) subjects in underwater photography; however, taxonomic and Sarangani Bay (Pitogo et al. 2018). This comes works concerning feather stars in the Philippines are *Corresponding Author: [email protected] limited (Clark 1909; Messing 2003; Arguelles et al. 281 Philippine Journal of Science Fortaleza et al.: Echinoderms of Samal Island Vol. 150 No. S1, Special Issue on Biodiversity 2010). Philippine studies on echinoids have focused eTrex20). Each site was characterized in terms of mostly on economically important sea urchins such as monsoonal exposure (Matsumoto et al. 2020), slope the gracious sea urchin Tripneustes gratilla (Linnaeus, (Emery 1961), relief (Benkendorff and Thomas 2007), 1758) (Juinio-Meñez et al. 2008; Casilagan et al. 2013), and substrate type (Table 1). whereas ophiuroid studies date back to Domantay and Domantay (1966) and Domantay and Conlu’s (1968) Macro-invertebrate surveys consisted of day and night works. Although echinoderms are among the most observations conducted once every full moon week conspicuous components of intertidal and shallow-water of the month. Two 50-m belt transects with two-meter areas, it is evident that reports on biodiversity or species observation width were laid on the intertidal (high, mid, composition are lacking (Bos et al. 2008a). and low) and shallow-water areas parallel to the shore. Sampling for the echinoderms included low tide reef Published works that provided diversity information walks, snorkeling in shallow-water areas, and inspection on some echinoderms in Davao Gulf include Bos et al. of the underside of rocks and crevices. All echinoderms (2008a) who documented 11 asteroid species from Samal encountered every 5 m were recorded and photographed. and Talikud Islands, Davao del Norte, and Sonico (2018) The corresponding habitat type where they were seen was who reported five regular sea urchin species from Punta also noted. Dumalag, Davao City. Other studies that were related to echinoderms of Davao Gulf have focused on the The list of echinoderms, common names, pooled relative population dynamics of the horned sea star Protoreaster abundance, and conservation status is reported in Table 2. nodosus (Linnaeus, 1758) (Bos et al. 2008b), population Following the criteria of Pearse (2009), the pooled relative biology of the sand-sifting sea star Archaster typicus abundance of echinoderms was considered “scarce” (Müller and Troschel, 1840) (Bos et al. 2011), spatio- when only 1–4 individuals were found. “Common” was temporal distribution of the crown-of-thorns starfish assigned to echinoderms with 5–25 individuals present (COTS) Acanthaster planci (Linnaeus, 1758) (Agustin and “abundant” when there were more than 25 individuals and Nañola 2013), and its management during outbreaks observed. The corresponding conservation status of (Bos et al. 2013), documentation of the gleaning, drying, echinoderms listed was based on the International Union and marketing practices of sea cucumbers (Subaldo 2011), for Conservation of Nature (IUCN) Red List of Threatened and the supply chains and cost-benefit analyses of its Species (IUCN 2020). fishery and trade in Davao del Sur (Shuck et al. 2013). All echinoderms were identified using published While there are a number of research efforts concerning literature (see Table 3). Initial species identifications echinoderms of Davao Gulf, most of these were only and those that were unidentified were verified by limited to particular echinoderm taxa. Our knowledge of experts through personal communication. Diagnoses of their overall diversity, including those coming from other the echinoderm species encountered in Samal Island, classes, remains insufficient. Moreover, it is important Philippines are provided in Table 3. Species descriptions to consider that previous works may have been done discuss the morphological characteristics that served as the but have remained unpublished, which unfortunately basis for their identification. Habitat refers to the actual adds to the existing research gap as far as documenting habitat where the echinoderms were observed, including the local marine biodiversity is concerned. The current additional information from published literature. Lastly, work provides a preliminary report on the diversity and the information on local distribution is based on published distribution of echinoderms limited to the intertidal and sources, although most echinoderms listed are commonly shallow-water areas of Samal Island. Documenting the encountered by tourists, recreational divers, or underwater local diversity is of utmost importance to strengthen the enthusiasts anywhere in the country. protection and management efforts in Davao Gulf as one of the marine key biodiversity areas in the country. RESULTS AND DISCUSSION A total of 30 echinoderm species belonging to 17 METHODS families were recorded from six intertidal and shallow- Six rocky intertidal areas located in Barangays Aundanao, water areas of Samal Island, Davao del Norte (Table 2). Balet, Camudmud, Catagman, Kaputian, and Pangubatan Most of the echinoderm species recorded came from the in the Island Garden City of Samal, Davao del Norte Classes Asteroidea (Figure 2) and Ophiuroidea (Figure 3) were visited monthly from January 2018 to January 2019 with nine species, followed by Echinoidea (Figure 4) and (Figure 1). The geographic coordinates of each site Holothuroidea (Figure 5) with six species. Of the 1,015 were recorded using a handheld GPS device (Garmin individuals observed, echinoderms from Class Echinoidea 282 Philippine Journal of Science Fortaleza et al.: Echinoderms of Samal Island Vol. 150 No. S1, Special Issue on Biodiversity Figure 1. Map showing the six study sites in Samal Island, Davao del Norte, Philippines where the macro-invertebrate surveys were conducted. Map was created in R software (R Core Team 2018) using the shape file downloaded from the Philippine GIS Data Clearinghouse (retrieved on 10 Sep 2020 from http://philgis.org). Table 1. Description of the six intertidal and shallow-water areas studied in Samal Island, Davao del Norte, Philippines. Habitat characteristics such as monsoonal exposure (Matsumoto et al. 2020), relief (Benkendorff and Thomas 2007), and substrate types are indicated. Study areas Coordinates Monsoonal exposure Site description Aundanao 7° 5' 24" N, 125° 46' 58.08" E Northeast Medium relief; slope is steep relative to other study areas; sandy, coral rubble. The upper intertidal zone is a creviced rock wall descending into boulders, rocks, and sandy-coral debris substrate in the lower intertidal and shallow-water area. Balet 7° 9' 54" N, 125°
Recommended publications
  • Taxonomía Y Biogeografía Ecológica De Los Equinoideos Irregulares (Echinoidea: Irregularia) De México
    Taxonomía y biogeografía ecológica de los equinoideos irregulares (Echinoidea: Irregularia) de México Alejandra Martínez-Melo1, 2, Francisco Alonso Solís-Marín2, Blanca Estela Buitrón-Sánchez3 & Alfredo Laguarda-Figueras2 1. Posgrado de Ciencias del Mar y Limnología (PCML), Universidad Nacional Autónoma de México (UNAM). México, D. F. 04510, México; [email protected] 2. Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), UNAM. Apdo. Post. 70-305, México, D. F. 04510, México; [email protected] 3. Departamento de Paleontología, Instituto de Geología (IG), UNAM, Cd. Universitaria, Delegación Coyoacán, México, D. F. 04510, México; [email protected] Recibido 04-VI-2014. Corregido 09-X-2014. Aceptado 04-XI-2014. Abstract: Taxonomy and ecologic biogeography of the irregular Echinoids (Echinoidea: Irregularia) from Mexico. Mexico owns 643 species of echinoderms, almost 10% of the known echinoderm species in the planet. Its geographic location -between the oceanic influences of the Western Central Atlantic and the Eastern Central Pacific- largely explains its enormous biological and ecological diversity. Research on echinoderms in Mexico began in the late nineteenth century; however, there are no reviews on its irregular echinoids. This work reviews the taxonomic and geographic information of irregular echinoids from Mexico, housed in four collections: 1) Colección Nacional de Equinodermos “Ma. Elena Caso Muñoz” from the Instituto de Ciencias del Mar y Limnología (ICML), Universidad Nacional Autónoma de México (UNAM); 2) Invertebrate Zoology Collection, Smithsonian Museum of Natural History, Washington, D.C., United States of America (USA); 3) Invertebrate Collection, Museum of Comparative Zoology, University of Harvard, Boston, Massachusetts, USA and 4) Invertebrate Zoology, Peabody Museum, Yale University, New Haven, Connecticut, USA.
    [Show full text]
  • Juvenile Trapezia Spp. Crabs Can Increase Juvenile Host Coral Survival by Protection from Predation
    Vol. 515: 151–159, 2014 MARINE ECOLOGY PROGRESS SERIES Published November 18 doi: 10.3354/meps10970 Mar Ecol Prog Ser Juvenile Trapezia spp. crabs can increase juvenile host coral survival by protection from predation H. Rouzé1,2,*, G. Lecellier1,2,3, S. C. Mills2,4, S. Planes1,2, V. Berteaux-Lecellier1,2, H. Stewart1,5 1CRIOBE USR 3278 CNRS-EPHE-UPVD, BP 1013, Moorea, 98729 French Polynesia 2Laboratoire d’Excellence ‘CORAIL’, 58 avenue Paul Alduy, 66860 Perpignan, France 3Université de Versailles-Saint Quentin, 55 Avenue de Paris, Versailles Cedex, France 4CRIOBE USR 3278 CNRS-EPHE-UPVD, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France 5Department of Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, British Columbia V7V 1N6, Canada ABSTRACT:Adult crabs are known to play critical roles in the survival of their adult coral hosts, but little is known of the mutualism between juvenile crabs (≤0.5 cm) and their juvenile hosts. Field and laboratory experiments both demonstrated that the presence of juvenile crabs of the genus Trapezia in young host Pocillopora corals (2 to 3 cm diameter) increased coral survival by 32% and reduced consumption by the corallivorous seastar Acanthaster planci. These experi- ments also showed that juvenile Trapezia were not effective at deterring predation by another common predatory seastar, Culcita novaeguineae. Finally, our work highlights that the defensive ability of symbiotic crabs may be genus-specific, as juvenile Tetralia spp. crabs, obligate sym- bionts of Acropora spp., displayed no protection against either A. planci or C. novaeguineae. KEY WORDS: Juvenile · Trapeziid · Corals · Acanthaster planci · Culcita novaeguineae · Mutualism · Predation · Defence Resale or republication not permitted without written consent of the publisher INTRODUCTION fered the highest predation around Moorea (Leray et al.
    [Show full text]
  • Diversity and Phylogeography of Southern Ocean Sea Stars (Asteroidea)
    Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Thesis submitted by Camille MOREAU in fulfilment of the requirements of the PhD Degree in science (ULB - “Docteur en Science”) and in life science (UBFC – “Docteur en Science de la vie”) Academic year 2018-2019 Supervisors: Professor Bruno Danis (Université Libre de Bruxelles) Laboratoire de Biologie Marine And Dr. Thomas Saucède (Université Bourgogne Franche-Comté) Biogéosciences 1 Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Camille MOREAU Thesis committee: Mr. Mardulyn Patrick Professeur, ULB Président Mr. Van De Putte Anton Professeur Associé, IRSNB Rapporteur Mr. Poulin Elie Professeur, Université du Chili Rapporteur Mr. Rigaud Thierry Directeur de Recherche, UBFC Examinateur Mr. Saucède Thomas Maître de Conférences, UBFC Directeur de thèse Mr. Danis Bruno Professeur, ULB Co-directeur de thèse 2 Avant-propos Ce doctorat s’inscrit dans le cadre d’une cotutelle entre les universités de Dijon et Bruxelles et m’aura ainsi permis d’élargir mon réseau au sein de la communauté scientifique tout en étendant mes horizons scientifiques. C’est tout d’abord grâce au programme vERSO (Ecosystem Responses to global change : a multiscale approach in the Southern Ocean) que ce travail a été possible, mais aussi grâce aux collaborations construites avant et pendant ce travail. Cette thèse a aussi été l’occasion de continuer à aller travailler sur le terrain des hautes latitudes à plusieurs reprises pour collecter les échantillons et rencontrer de nouveaux collègues. Par le biais de ces trois missions de recherches et des nombreuses conférences auxquelles j’ai activement participé à travers le monde, j’ai beaucoup appris, tant scientifiquement qu’humainement.
    [Show full text]
  • Holothuriidae 1165
    click for previous page Order Aspidochirotida - Holothuriidae 1165 Order Aspidochirotida - Holothuriidae HOLOTHURIIDAE iagnostic characters: Body dome-shaped in cross-section, with trivium (or sole) usually flattened Dand dorsal bivium convex and covered with papillae. Gonads forming a single tuft appended to the left dorsal mesentery. Tentacular ampullae present, long, and slender. Cuvierian organs present or absent. Dominant spicules in form of tables, buttons (simple or modified), and rods (excluding C-and S-shaped rods). Key to the genera and subgenera of Holothuriidae occurring in the area (after Clark and Rowe, 1971) 1a. Body wall very thick; podia and papillae short, more or less regularly arranged on bivium and trivium; spicules in form of rods, ovules, rosettes, but never as tables or buttons ......→ 2 1b. Body wall thin to thick; podia irregularly arranged on the bivium and scattered papillae on the trivium; spicules in various forms, with tables and/or buttons present ...(Holothuria) → 4 2a. Tentacles 20 to 30; podia ventral, irregularly arranged on the interradii or more regularly on the radii; 5 calcified anal teeth around anus; spicules in form of spinose rods and rosettes ...........................................Actinopyga 2b. Tentacles 20 to 25; podia ventral, usually irregularly arranged, rarely on the radii; no calcified anal teeth around anus, occasionally 5 groups of papillae; spicules in form of spinose and/or branched rods and rosettes ............................→ 3 3a. Podia on bivium arranged in 3 rows; spicules comprise rocket-shaped forms ....Pearsonothuria 3b. Podia on bivium not arranged in 3 rows; spicules not comprising rocket-shaped forms . Bohadschia 4a. Spicules in form of well-developed tables, rods and perforated plates, never as buttons .....→ 5 4b.
    [Show full text]
  • The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates.
    [Show full text]
  • Morphology of an Endosymbiotic Bivalve, Entovalva Nhatrangensis (Bristow, Berland, Schander & Vo, 2010) (Galeommatoidea)
    Molluscan Research 31(2): 114–124 ISSN 1323-5818 http://www.mapress.com/mr/ Magnolia Press Morphology of an endosymbiotic bivalve, Entovalva nhatrangensis (Bristow, Berland, Schander & Vo, 2010) (Galeommatoidea) J. LÜTZEN1, B. BERLAND2, & G.A.BRISTOW2* 1Biological Institute, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark 2Department of Biology, University of Bergen, N-5020 Bergen, Norway *Corresponding author, Email: [email protected] Abstract We describe the morphology of Entovalva nhatrangensis Bristow, Berland, Schander & Vo, 2010, an endosymbiontic bivalve living in the oesophagus of Holothuria spinifera and H. leucospilota in Vietnam. The delicate shells are entirely internalized. The body is very small compared to the foot, which is dorso-ventrally flattened and contains the digestive diverticula and the fertile parts of the gonads. Even though the gills are small, they probably serve in collecting suspended matter, and in addition, the species clearly feeds on benthic diatoms, which it probably sorts out from the contents of the host’s gut. The species is a protandric hermaphrodite. Most males have a total length of 1.5–3.0 mm and above that size start changing sex to become females, which may attain a total length of nearly nine mm. Sperm is transferred in spermatophores with a solid wall produced by glands within the male siphon. One to three spermatophores are placed on the gills of females and the ova become fertilized as they pass from the genital pores to the siphon, where they are brooded until released as D-larvae. Key words: functional anatomy, hermaphroditism, protandry, spermatophore, Holothuria spinifera, Holothuria leucospilota, Bivalvia, Heterodonta Introduction following morning.
    [Show full text]
  • Sexual Reproduction in a Fissiparous Holothurian Species, Holothuria
    SPC Beche-de-mer Information Bulletin #18 – May 2003 33 D’Silva, D. 2001. The Torres Strait beche-de-mer Skewes, T.D. Dennis, D.M. and Burridge, C. 2000. (sea cucumber) fishery. SPC Beche-de-Mer Survey of Holothuria scabra (sandfish) on Information Bulletin 15:2–4. Warrior Reef, Torres Strait, January 2000. CSIRO Division of Marine Research. Jaquemet, S. and Conand, C. 1999. The Beche-de- Mer trade in 1995/1996 and an assessment of TRAFFIC South America. 2000. Evaluation of the exchanges between main world markets. SPC trade of sea cucumber Isostichopus fuscus Beche-de-Mer Information Bulletin 12:11–14. (Echinodermata: Holothuroidea) in the Galapagos during 1999. Quito. 19 p. Lokani, P. 1990. Beche-de-mer research and devel- opment in Papua New Guinea. SPC Beche-de- Uthicke, S. and Benzie, J.A.H. 2001. Effect of beche- Mer Information Bulletin 2:1–18. de-mer fishing on densities and size structure of Holothuria nobilis (Echinodermata: Secretariat of the Pacific Community. 1994. Sea cu- Holothuridae) populations on the Great cumbers and beche-de-mer of the tropical Barrier Reef. Coral Reefs 19:271–276. Pacific. A handbook for fishers. Handbook no. 18. SPC, Noumea New Caledonia. 51 p. Sexual reproduction in a fissiparous holothurian species, Holothuria leucospilota Clark 1920 (Echinodermata: Holothuroidea) Pradina Purwati1,2 and Jim Thinh Luong-van2 Abstract Holothuria leucospilota Clark 1920 inhabiting tropical Darwin waters primarily undergo asexual reproduc- tion by fission throughout the year (Purwati 2001). However, there is also evidence of sexual reproduction. Monthly sampling from August 1998 to January 2000 revealed that the gonadal tubules within each indi- vidual of H.
    [Show full text]
  • Echinodermata) of Yap, Federated States of Micronesia
    Shallow-water holothuroids (Echinodermata) of Yap, Federated States of Micronesia By Sun W. Kim*, Allison K. Miller, Catherine Brunson, Kristin Netchy, Ronald M. Clouse, Daniel Janies, Emmanuel Tardy, and Alexander M. Kerr Abstract In December 2002, July 2007 and December 2009, we surveyed the sea cucumber fauna of the western Caroline Island of Yap (Federated States of Micronesia). We collected 37 species of holothuroids, including 32 species of aspidochirotes and five species of apodans. We found all 13 of the previously reported species and 24 new records for the islands—19 aspidochirotes and five apodans. At least two of the new records appear to be previously undescribed species. Types of microhabitats and reef zonation were closely correlated with the species distributions of Yapese holothuroids.. *Corresponding Author E-mail: [email protected] Pacific Science, vol. 68, no. 3 February, 10, 2014 (Early view) Introduction Coral reefs are among the most biologically diverse marine ecosystems, yet they are threatened by climate change, overexploitation, eutrophication and ocean acidification (Hughes 1994, Reaka-Kudla 1997, Bruno et al. 2009). The currently known 93,000 coral reef associated species are estimated to only represent a small portion of the actual diversity (Reaka- Kudla 1997). In addition, many species have not been seen since their original descriptions, often over a century ago, causing ongoing taxonomic confusion. This taxonomic confusion is not limited to rare species; statuses of even some common species remain in flux. We clearly have much to learn about the alpha diversity of coral reefs (Reaka-Kudla 1997, Bouchet et al. 2002, Michonneau et al.
    [Show full text]
  • Population Genetics and Phylogeography of Hawaiian Coral Reef Echinoderms
    ISLANDS, ARCHIPELAGOS, AND BEYOND: POPULATION GENETICS AND PHYLOGEOGRAPHY OF HAWAIIAN CORAL REEF ECHINODERMS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY AUGUST 2012 By Derek J. Skillings Dissertation Committee: Robert Toonen, Chairperson Brian Bowen Charles Birkeland Andrew Taylor Ronald Bontekoe i DEDICATION This dissertation is dedicated to my wife, Melissa Kay Skillings. ii ACKNOWLEDGEMENTS First, I would like to thank my committee members who provided essential guidance and encouragement throughout my graduate career. Foremost, I would like to thank my advisor and committee chair Rob Toonen. He has generously offered me a near endless supply of advice and guidance, as he does for anyone who knocks on his door. He also gave me the flexibility and encouragement needed to make getting two simultaneous graduate degrees possible. My graduate career has been very unconventional, and Rob has supported me every step of the way. I would like to thank Brian Bowen for giving me the structure I needed to succeed. Given my tendency to get lost in an always increasing number of projects, I would have never finished in a reasonable amount of time without his firm hand at setting deadlines and his enthusiastic encouragement to meet those deadlines. Rob and Brian gave me the perfect balance of freedom and focus that I needed to succeed. I would like to thank Chuck Birkeland for helping me to put my work in the larger perspective of coral reef ecosystems. Chuck also encouraged my philosophical and historical investigations into biology through insightful conversation; every time I saw he seemed to have a valuable and important text that he wanted to give me for my collection, many from his personal library.
    [Show full text]
  • Assessment of Marine Resources in the University of Eastern Philippines, Catarman, Northern Samar
    International Conference on Emerging Trends in Computer and Image Processing (ICETCIP'2014) Dec. 15-16, 2014 Pattaya (Thailand) Assessment of Marine Resources in the University of Eastern Philippines, Catarman, Northern Samar Divina M. Galenzoga, and Geraldine A. Quinones Part of the coastline of UEP, where there is fine white sand Abstract—This study aimed to assess the marine resources of and panoramic view of the Pacific Ocean, is developed. It is the University in terms of the following: algae, birds,corals, made into UEP White Beach Resort. Local and foreign crustaceans, echinoderms, fishes, mangroves, molluscs, seagrasses, tourists, faculty members, and students are welcomed to the and sponges; determine their abundance and distribution; determine resort. The resort is located near the exit gate (landmark) of the environmental parameters, ie. pH, current, temperature, salinity the University. The part of the coastline which is not and substrate; and determine their economic uses. The study was developed lay the mangrove areas, the coralline seashore, and conducted during the first semester SY 2014-2015 (June-October, 2014). There were 18 species of algae, 7 species of birds, 10 species the fishing ground of the people. The coastline runs around of corals, 17 species of crustaceans, 16 species of echinoderms, 10 5km parallel to the National Highway species of fishes, 20 species of mangroves, 27 species of molluscs, 7 species of seagrasses, and 2 species of sponges. Most abundant alga II. OBJECTIVES - Sargassum cristaefolium; bird -Egretta sacra; coral - Porite slutea; The objectives of this study are: crustacean - Pagurus longicarpus; echinoderm- Archaster rtypicus; 1. To identify the marine resources of a University Town fish – Siganus virgatus; mangrove - Rhizophora apiculata; mollusk – Cypraea moneta; seagrass – Thalassia hemprechii; and sponge- in terms of: algae, birds, corals, crustaceans, Halichondria panicea.
    [Show full text]
  • Biological and Taxonomic Perspective of Triterpenoid Glycosides of Sea Cucumbers of the Family Holothuriidae (Echinodermata, Holothuroidea)
    Comparative Biochemistry and Physiology, Part B 180 (2015) 16–39 Contents lists available at ScienceDirect Comparative Biochemistry and Physiology, Part B journal homepage: www.elsevier.com/locate/cbpb Review Biological and taxonomic perspective of triterpenoid glycosides of sea cucumbers of the family Holothuriidae (Echinodermata, Holothuroidea) Magali Honey-Escandón a,⁎, Roberto Arreguín-Espinosa a, Francisco Alonso Solís-Marín b,YvesSamync a Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, C.P. 04510 México, D. F., Mexico b Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apartado Postal 70-350, C.P. 04510 México, D. F., Mexico c Scientific Service of Heritage, Invertebrates Collections, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium article info abstract Article history: Since the discovery of saponins in sea cucumbers, more than 150 triterpene glycosides have been described for Received 20 May 2014 the class Holothuroidea. The family Holothuriidae has been increasingly studied in search for these compounds. Received in revised form 18 September 2014 With many species awaiting recognition and formal description this family currently consists of five genera and Accepted 18 September 2014 the systematics at the species-level taxonomy is, however, not yet fully understood. We provide a bibliographic Available online 28 September 2014 review of the triterpene glycosides that has been reported within the Holothuriidae and analyzed the relationship of certain compounds with the presence of Cuvierian tubules. We found 40 species belonging to four genera and Keywords: Cuvierian tubules 121 compounds.
    [Show full text]
  • PREFERENSI HABITAT BINTANG LAUT (Asteroidea) DI PADANG LAMUN PERAIRAN DESA LANGARA BAJO, KONAWE KEPULAUAN
    Sapa Laut Februari 2019. Vol. 4(1): 23-29 E- ISSN 2503-0396 PREFERENSI HABITAT BINTANG LAUT (Asteroidea) DI PADANG LAMUN PERAIRAN DESA LANGARA BAJO, KONAWE KEPULAUAN Habitat Preference Of Sea Star (Asteroidea) In Seagrass Beds in The Langara Bajo Waters Konawe Islands Nur Alfatmadina1, Ira2, La Ode Muhammad Yasir Haya3 1,2,3 Jurusan Ilmu Kelautan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Halu Oleo. Jl. H.E.A Mokodompit Kampus Hijau Bumi Tridharma Anduonohu Kendari 93232 1Email: [email protected] Abstrak Bintang laut merupakan salah satu kelompok hewan dalam Filum Echinodermata yang ditemukan hampir di semua perairan di Indonesia. Bintang laut biasanya ditemukan pada ekosistem yang ada di pesisir, termasuk ekosistem lamun. Lamun merupakan tempat bagi sebagian besar organisme khususnya bintang laut untuk mencari makan, berpijah dan tempat berlindung dari predator. Perbedaan pemilihan habitat pada organisme biasanya disebabkan oleh faktor internal (genetik) dan eksternal (kemampuan adaptasi dengan lingkungannya). Tujuan dari penelitian ini adalah untuk mengetahui jenis dan kepadatan bintang laut dan lamun di Perairan Desa Langara Bajo berdasarkan jenis substratnya. Penelitian ini dilaksanakan pada bulan April-Juni 2018 di perairan Desa Langara Bajo Konawe Kepulauan. Pengambilan data dilakukan dengan menggunakan metode transek kuadrat sebanyak tiga kali pengulangan pada sertiap stasiun pengamatan.Penelitian ini menemukan tiga jenis bintang laut, yaitu Protoreaster nodosus, Linckia laevigata dan Archaster typicus dengan kepadatan berkisar 1.63-2 ind/m2. Jenis lamun yang ditemukan berasal dari jenis Enhalus acoroides dengan kepadatan berkisar 189.7-589.7 tegakan/m2. Jenis bintang laut P.nodosus banyak ditemukan di stasiun yang kerapatan lamunnya tinggi denan substrat berpasir, sedangkan jenis A.
    [Show full text]