Holothuriidae 1165

Total Page:16

File Type:pdf, Size:1020Kb

Holothuriidae 1165 click for previous page Order Aspidochirotida - Holothuriidae 1165 Order Aspidochirotida - Holothuriidae HOLOTHURIIDAE iagnostic characters: Body dome-shaped in cross-section, with trivium (or sole) usually flattened Dand dorsal bivium convex and covered with papillae. Gonads forming a single tuft appended to the left dorsal mesentery. Tentacular ampullae present, long, and slender. Cuvierian organs present or absent. Dominant spicules in form of tables, buttons (simple or modified), and rods (excluding C-and S-shaped rods). Key to the genera and subgenera of Holothuriidae occurring in the area (after Clark and Rowe, 1971) 1a. Body wall very thick; podia and papillae short, more or less regularly arranged on bivium and trivium; spicules in form of rods, ovules, rosettes, but never as tables or buttons ......→ 2 1b. Body wall thin to thick; podia irregularly arranged on the bivium and scattered papillae on the trivium; spicules in various forms, with tables and/or buttons present ...(Holothuria) → 4 2a. Tentacles 20 to 30; podia ventral, irregularly arranged on the interradii or more regularly on the radii; 5 calcified anal teeth around anus; spicules in form of spinose rods and rosettes ...........................................Actinopyga 2b. Tentacles 20 to 25; podia ventral, usually irregularly arranged, rarely on the radii; no calcified anal teeth around anus, occasionally 5 groups of papillae; spicules in form of spinose and/or branched rods and rosettes ............................→ 3 3a. Podia on bivium arranged in 3 rows; spicules comprise rocket-shaped forms ....Pearsonothuria 3b. Podia on bivium not arranged in 3 rows; spicules not comprising rocket-shaped forms . Bohadschia 4a. Spicules in form of well-developed tables, rods and perforated plates, never as buttons .....→ 5 4b. Spicules in form of tables, occurring alone or along with buttons, rods, or rosettes .......→ 7 5a. Spicules never in form of rosettes;tables with no or reduced disc, bearing spines terminating in form of a maltese cross; body cylindrical; body wall soft ........Holothuria (Semperothuria) 5b. Spicules in form of rosettes ....................................→ 6 6a. Podia in 3 rows on trivium; small papillae dispersed on bivium; spicules in form of rosettes, and tables with reduced disc, bearing a spine ending in a maltese cross (when viewed from above) .............................Holothuria (Halodeima) 6b. Podia not very numerous, irregularly arranged in 10 rows (radial and interradial); papillae on bivium irregularly arranged in 10 rows; spicules in form of rosettes, and tables with disc in a “cup and saucer form”, bearing a low, wide spire ending in a spinose crown ......................................Holothuria (Acanthotrapeza) 7a. Spicules in form of smooth buttons or pseudo-buttons; tables variously developed .......→ 8 7b. Spicules in form of buttons, always knobby, occasionally in form of ellipsoids; tables strongly developed ........................................→ 10 8a. Tables well developed, their disc usually squarish with smooth rim and 8 holes, occasionally strongly perforated ......................Holothuria (Thymiosycia) 8b. Tables moderately developed, their disc with usually notched rim; buttons of variable shape ................................................→ 9 9a. Tentacles 16 to 30; tables with notched rim and a low spire terminating in a ring of irregular spines; pseudo-buttons abundant, irregular; collar of papillae present around base of tentacles and anus ........................Holothuria(Lessonothuria) 9b. Tentacles 18 to 20; some tables often with narrow disc, spire reduced; other tables having a well-developed disc and spire with 4 columns; buttons irregular; no collar of papillae around base of tentacles ...................Holothuria(Mertensiothuria) 10a. Buttons never modified to form fenestrated ellipsoids ......................→ 11 10b. Buttons modified to form fenestrated ellipsoids, and buttons ..................→ 12 1166 Holothurians 11a. Tables with wavy disc, bearing a small spire ending in small spines, giving the table a tack-like shape, with a large central hole surrounded by peripheral holes variable in number; presence of buttons, pseudo-buttons, and small irregular C-, S-, or O-shaped spicules ..................................Holothuria (Stichothuria) 11b. Tables well developed, with smooth disc, spire ending in a cluster of small spines, never giving the table a tack-like shape; presence of buttons with irregular knobs . Holothuria (Metriatyla) 12a. Calcified anal papillae absent; collar of papillae around base of tentacles present or absent ..............................................→ 13 12b. Calcified anal papillae present; no collar of papillae around base of tentacles; body wall very thick and rigid; tables with wavy disc, bearing a low and massive spire ending in a very spinose crown .............................Holothuria (Microthele) 13a. Collar of papillae around base of tentacles; anal teeth present or absent; tables with notched disc and a low to moderate spire, ending in a cluster of very small, or numerous spines; a fringe of rather large papillae between bivium and trivium . Holothuria (Theelothuria) 13b. No collar of papillae around base of tentacles; anal teeth absent; tables with knobby disc and low spire, ending in a cluster of spines; buttons knobby, occasionally modified to fenestrated ellipsoids .............................Holothuria(Cystipus) List of species of interest to fisheries occurring in the area The symbol * is given when species accounts are included. *Actinopyga echinites (Jaeger, 1833) *Actinopyga mauritiana (Quoy and Gaimard, 1833) *Actinopyga miliaris (Quoy and Gaimard, 1833) *Actinopyga palauensis Panning, 1944 *Actinopyga spinea Cherbonnier, 1980 *Bohadschia argus Jaeger, 1833 *Bohadschia similis (Semper,1868) *Bohadschia vitiensis (Semper, 1868) *Holothuria (Acanthotrapeza) coluber Semper, 1868 *Holothuria (Halodeima) atra Jaeger, 1833 *Holothuria (Halodeima) edulis Lesson, 1830 *Holothuria (Mertensiothuria) leucospilota (Brandt, 1835) *Holothuria (Metriatyla) scabra Jaeger, 1833 [including H. (M.) scabra var. versicolor (Conand, 1986)] *Holothuria (Microthele) fuscogilva Cherbonnier, 1980 *Holothuria (Microthele) fuscopunctata Jaeger, 1833 *Holothuria (Microthele) nobilis (Selenka, 1867) *Pearsonothuria graeffei (Semper, 1868) References Cannon, L.R.G and H. Silver. 1986. Sea cucumbers of Northern Australia. Brisbane, Queensland Museum, 60 p. Clark, A.M. and F.W. Rowe. 1971. Holothurioidea. In Monograph of shallow water Indo-West Pacific echinoderms. London, Trustees of the British Museum, pp. 171-210. Conand, C. 1989. Les holothuries aspidochirotes du lagon de Nouvelle-Calédonie: biologie, écologie et exploitation. Paris, Etudes et thèses ORSTOM, 393 p. Conand, C. 1990. The fishery resources of Pacific island countries. Part 2: Holothurians. Rome, FAO Fish. Tech.Pap., (272.2):143 p. Conand, C. 1997. Are holothurian fisheries for export sustainable? Intern. Cong. Reefs Panama, 2:2021-2026. Feral, J.P.and G. Cherbonnier. 1986. Les holothurides. In Guide des étoiles de mer, oursins et autres échinodermes du lagon de Nouvelle-Calédonie, edited by Guille, Laboute, and Menou. Paris, ORSTOM, pp. 56-107. Tan Tiu, A. 1981. The intertidal Holothurian fauna (Echinodermata: Holothuroidea) of Mactan and the neighbouring islands, Central Philippines. Philipp. Sci., 18:45-119. Order Aspidochirotida - Holothuriidae 1167 Actinopyga echinites (Jaeger, 1833) Frequent synonyms / misidentifications: None / Actinopyga mauritiana (Quoy and Gaimard, 1833). FAO names: En - Deep-water redfish. radial anus with 5 teeth interradial bivium with slender papillae calcareous ring mouth ventral, with 20 short and stout tentacles spicules of spicules of spicules of ventral tegument tentacles ventral podia spicules of dorsal tegument (after Féral and Cherbonnier, 1986) Diagnostic characters: Body elongate, arched dorsally (bivium) and flattened ventrally (trivium). Bivium sometimes wrinkled and covered by sediment, wider in the middle and tapering towards both ends. Papillae on bivium long and slender; podia on trivium arranged more or less regularly in 3 rows; calcareous disc of podia around 350 µm in diameter. Mouth ventral, surrounded by 20 short, stout tentacles. Anus surrounded by 5 anal teeth. Calcareous ring with large radial pieces and narrow interradials. Cuvierian tubules few (10), short, pink, and never expelled. Colour: bivium brown, varying from light to dark among specimens; trivium lighter, sometimes orange, with yellow podia. Spicules: ventral tegument with a variety of small rosettes and rods, occasionally perforated; dorsal tegument with larger rosettes and branched plates; ventral podia with some straight, spinous rods; tentacles with rods large, straight, or curved, and very spiny at their extremities. Size: Maximum length about 35 cm, commonly to about 20 cm; mean live weight 0.3 kg (up to 1 kg); body-wall thickness about 7 mm. Habitat, biology, and fisheries: Dwelling in moderately shallow waters (despite its English common name), rarely found in depths of more than 12 m; mostly on reef flats of fringing and lagoon-islet reefs. Abundant in seagrass beds, on rubble reef flats, and compact flats where populations can reach high densities (up to 1/m2). Sexual reproduction during the warm season. A species with a high potential fecundity and early sexual maturity. Harvested in artisanal fisheries throughout the area. Collected by hand while wading on the reefs
Recommended publications
  • Fucosylated Chondroitin Sulfates from the Sea Cucumbers Paracaudina Chilensis and Holothuria Hilla: Structures and Anticoagulant Activity
    marine drugs Article Fucosylated Chondroitin Sulfates from the Sea Cucumbers Paracaudina chilensis and Holothuria hilla: Structures and Anticoagulant Activity Nadezhda E. Ustyuzhanina 1,*, Maria I. Bilan 1, Andrey S. Dmitrenok 1 , Alexandra S. Silchenko 2, Boris B. Grebnev 2, Valentin A. Stonik 2, Nikolay E. Nifantiev 1 and Anatolii I. Usov 1,* 1 N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; [email protected] (M.I.B.); [email protected] (A.S.D.); [email protected] (N.E.N.) 2 G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, 690022 Vladivostok, Russia; [email protected] (A.S.S.); [email protected] (B.B.G.); [email protected] (V.A.S.) * Correspondence: [email protected] (N.E.U.); [email protected] (A.I.U.); Tel.: +7-495-135-8784 (N.E.U.) Received: 29 September 2020; Accepted: 26 October 2020; Published: 28 October 2020 Abstract: Fucosylated chondroitin sulfates (FCSs) PC and HH were isolated from the sea cucumbers Paracaudina chilensis and Holothuria hilla, respectively. The purification of the polysaccharides was carried out by anion-exchange chromatography on a DEAE-Sephacel column. The structural characterization of the polysaccharides was performed in terms of monosaccharide and sulfate content, as well as using a series of nondestructive NMR spectroscopic methods. Both polysaccharides were shown to contain a chondroitin core [ 3)-β-d-GalNAc (N-acethyl galactosamine)-(1 4)-β-d-GlcA ! ! (glucuronic acid)-(1 ]n, bearing sulfated fucosyl branches at O-3 of every GlcA residue in the ! chain.
    [Show full text]
  • Petition to List the Black Teatfish, Holothuria Nobilis, Under the U.S. Endangered Species Act
    Before the Secretary of Commerce Petition to List the Black Teatfish, Holothuria nobilis, under the U.S. Endangered Species Act Photo Credit: © Philippe Bourjon (with permission) Center for Biological Diversity 14 May 2020 Notice of Petition Wilbur Ross, Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected], [email protected] Dr. Neil Jacobs, Acting Under Secretary of Commerce for Oceans and Atmosphere U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected] Petitioner: Kristin Carden, Oceans Program Scientist Sarah Uhlemann, Senior Att’y & Int’l Program Director Center for Biological Diversity Center for Biological Diversity 1212 Broadway #800 2400 NW 80th Street, #146 Oakland, CA 94612 Seattle,WA98117 Phone: (510) 844‐7100 x327 Phone: (206) 324‐2344 Email: [email protected] Email: [email protected] The Center for Biological Diversity (Center, Petitioner) submits to the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (NOAA) through the National Marine Fisheries Service (NMFS) a petition to list the black teatfish, Holothuria nobilis, as threatened or endangered under the U.S. Endangered Species Act (ESA), 16 U.S.C. § 1531 et seq. Alternatively, the Service should list the black teatfish as threatened or endangered throughout a significant portion of its range. This species is found exclusively in foreign waters, thus 30‐days’ notice to affected U.S. states and/or territories was not required. The Center is a non‐profit, public interest environmental organization dedicated to the protection of native species and their habitats.
    [Show full text]
  • Echinodermata) of Yap, Federated States of Micronesia
    Shallow-water holothuroids (Echinodermata) of Yap, Federated States of Micronesia By Sun W. Kim*, Allison K. Miller, Catherine Brunson, Kristin Netchy, Ronald M. Clouse, Daniel Janies, Emmanuel Tardy, and Alexander M. Kerr Abstract In December 2002, July 2007 and December 2009, we surveyed the sea cucumber fauna of the western Caroline Island of Yap (Federated States of Micronesia). We collected 37 species of holothuroids, including 32 species of aspidochirotes and five species of apodans. We found all 13 of the previously reported species and 24 new records for the islands—19 aspidochirotes and five apodans. At least two of the new records appear to be previously undescribed species. Types of microhabitats and reef zonation were closely correlated with the species distributions of Yapese holothuroids.. *Corresponding Author E-mail: [email protected] Pacific Science, vol. 68, no. 3 February, 10, 2014 (Early view) Introduction Coral reefs are among the most biologically diverse marine ecosystems, yet they are threatened by climate change, overexploitation, eutrophication and ocean acidification (Hughes 1994, Reaka-Kudla 1997, Bruno et al. 2009). The currently known 93,000 coral reef associated species are estimated to only represent a small portion of the actual diversity (Reaka- Kudla 1997). In addition, many species have not been seen since their original descriptions, often over a century ago, causing ongoing taxonomic confusion. This taxonomic confusion is not limited to rare species; statuses of even some common species remain in flux. We clearly have much to learn about the alpha diversity of coral reefs (Reaka-Kudla 1997, Bouchet et al. 2002, Michonneau et al.
    [Show full text]
  • Predator Defense Mechanisms in Shallow Water Sea Cucumbers (Holothuroidea)
    PREDATOR DEFENSE MECHANISMS IN SHALLOW WATER SEA CUCUMBERS (HOLOTHUROIDEA) JESSICA A. CASTILLO Environmental Science Policy and Management, University of California, Berkeley, California 94720 USA Abstract. The various predator defense mechanisms possessed by shallow water sea cucumbers were surveyed in twelve different species and morphs. While many defense mechanisms such as the presence of Cuverian tubules, toxic secretions, and unpalatability have been identified in holothurians, I hypothesized that the possession of these traits as well as the degree to which they are utilized varies from species to species. The observed defense mechanisms were compared against a previously-derived phylogeny of the sea cucumbers of Moorea. Furthermore, I hypothesized that while the presence of such structures is most likely a result of the species’ placement on a phylogenetic tree, the degree to which they utilize such structures and their physical behavior are influenced by their individual ecologies. The presence of a red liquid secretion was restricted to individuals of the genus Holothuria (Linnaeus 1767) however not all members of the genus exhibited this trait. With the exception of H. leucospilota, which possessed both Cuverian tubules and a red secretion, Cuverian tubules were observed in members of the genus Bohadschia (Ostergren 1896). In accordance with the hypothesis, both the phylogenetics and individual ecology appear to influence predator defense mechanisms. However, even closely related species of similar ecology may differ considerably. Key words: holothurians; defense; toxicity; Cuverian tubules; Moorea, French Polynesia INTRODUCTION (Sakthivel et. Al, 1994). Approximately 20 species in two families and five genera, Sea cucumbers belong to the phylum including Holothuria, Bohadschia, and Thenelota, Echinodermata and the class Holothuroidea.
    [Show full text]
  • Review, the (Medical) Benefits and Disadvantage of Sea Cucumber
    IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN:2278-3008, p-ISSN:2319-7676. Volume 12, Issue 5 Ver. III (Sep. – Oct. 2017), PP 30-36 www.iosrjournals.org Review, The (medical) benefits and disadvantage of sea cucumber Leonie Sophia van den Hoek, 1) Emad K. Bayoumi 2). 1 Department of Marine Biology Science, Liberty International University, Wilmington, USA. Professional Member Marine Biological Association, UK. 2 Department of General Surgery, Medical Academy Named after S. I. Georgiesky of Crimea Federal University, Crimea, Russia Corresponding Author: Leonie Sophia van den Hoek Abstract: A remarkable feature of Holothurians is the catch collagen that forms their body wall. Catch collagen has two states, soft and stiff, that are under neurological control [1]. A study [3] provides evidence that the process of new organ formation in holothurians can be described as an intermediate process showing characteristics of both epimorphic and morphallactic phenomena. Tropical sea cucumbers, have a previously unappreciated role in the support of ecosystem resilience in the face of global change, it is an important consideration with respect to the bêche-de-mer trade to ensure sea cucumber populations are sustained in a future ocean [9]. Medical benefits of the sea cucumber are; Losing weight [19], decreasing cholesterol [10], improved calcium solubility under simulated gastrointestinal digestion and also promoted calcium absorption in Caco-2 and HT-29 cells [20], reducing arthritis pain [21], HIV therapy [21], treatment osteoarthritis [21], antifungal steroid glycoside [22], collagen protein [14], alternative to mammalian collagen [14], alternative for blood thinners [29], enhancing immunity and disease resistance [30].
    [Show full text]
  • Population Genetics and Phylogeography of Hawaiian Coral Reef Echinoderms
    ISLANDS, ARCHIPELAGOS, AND BEYOND: POPULATION GENETICS AND PHYLOGEOGRAPHY OF HAWAIIAN CORAL REEF ECHINODERMS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY AUGUST 2012 By Derek J. Skillings Dissertation Committee: Robert Toonen, Chairperson Brian Bowen Charles Birkeland Andrew Taylor Ronald Bontekoe i DEDICATION This dissertation is dedicated to my wife, Melissa Kay Skillings. ii ACKNOWLEDGEMENTS First, I would like to thank my committee members who provided essential guidance and encouragement throughout my graduate career. Foremost, I would like to thank my advisor and committee chair Rob Toonen. He has generously offered me a near endless supply of advice and guidance, as he does for anyone who knocks on his door. He also gave me the flexibility and encouragement needed to make getting two simultaneous graduate degrees possible. My graduate career has been very unconventional, and Rob has supported me every step of the way. I would like to thank Brian Bowen for giving me the structure I needed to succeed. Given my tendency to get lost in an always increasing number of projects, I would have never finished in a reasonable amount of time without his firm hand at setting deadlines and his enthusiastic encouragement to meet those deadlines. Rob and Brian gave me the perfect balance of freedom and focus that I needed to succeed. I would like to thank Chuck Birkeland for helping me to put my work in the larger perspective of coral reef ecosystems. Chuck also encouraged my philosophical and historical investigations into biology through insightful conversation; every time I saw he seemed to have a valuable and important text that he wanted to give me for my collection, many from his personal library.
    [Show full text]
  • ACKNOWLEDGEMENTS the Author Is Grateful to Dr. B. K. Tikader
    298 Records oj the Zoological Survey of 1ndia ACKNOWLEDGEMENTS The author is grateful to Dr. B. K. Tikader, Director, Zoological Survey of India, Calcutta and the OfIicer-in-Charge, High Altitude Zoology Field Station, Zoological Survey of India, Solan, for providing the necessary facilities for the present investigation. Thanks are also due to the staff of the High Altitude Zoology Field Station, particularly Dr. J. M. Julka, Shri T. R. Sharma and Mr. Rathin Mukherjee for their help in the field and as well as in the laboratory. REFERENCES BHATIA, M. L. 1939. On some leeches from Kashmir. Bull Punj. Univ. Zool.,2: 1-17. BHATIA,. M. L. 1934. Nouve1:le sangsue rhynchobdellide Glossiphonia Zobata n. sp., de lestablishment de pisiculture d' A chabal, Kashmir. Ann. Parasite hum. comp., 12; 121-129. CHANDRA, M. 1983. A check-list of leeches of India. Ree. wolf Surv. India, 80 : 265-290. HARDING, W. A. AND MOORE, P. J. 1927. Fauna of British. [nilia, Hirudinea, Taylor and Francis, London. SOOTA, T. D. 1959 (1956). Fauna of the Kashmir Valley-Leeches. Ree. Indian M,us., S4 (1-2): 1-4 . \ .. Ree. zoot. Surv. India, 81 : 299-314, 1983 ON A COLLECTION OF SHALLOW -WATER HOLOTHURIANS FROM THE LAKSHADWEEP By S. K. MUKHOPADHYAY AND T. K. SA~4ANTA Zoological Survey of India, Oalcutta (With 11 Text-figures) INTRODUCTION The taxonomic account of the echinoderms of the Lakshadweep excepting Holothuroidea was first published by Bell (1902), based on the collections made by Stanley Gardiner. The holothurian component was reported, by Pearson (1913, 1914), but this did not contain.
    [Show full text]
  • Taxonomy of the Heavily Exploited Indo-Pacific Sandfish
    Zoological Journal of the Linnean Society, 2009, 155, 40–59. With 10 figures Taxonomy of the heavily exploited Indo-Pacific sandfish complex (Echinodermata: Holothuriidae) CLAUDE MASSIN1*, SVEN UTHICKE2, STEVEN W. PURCELL3, FRANK W. E. ROWE, FLS4† and YVES SAMYN5 1Department of Invertebrates, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium 2Australian Institute of Marine Science, PMB No 3, Townsville, Qld 4810, Australia 3The WorldFish Center, c/o SPC – Secretariat of the Pacific Community, B.P. D5, 98848 Noumea Cedex, New Caledonia 4Research Associate, Australian Museum, Sydney, NSW, 2000, Australia 5Global Taxonomy Initiative, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium Received 5 September 2007; accepted for publication 18 October 2007 Two commercially valuable holothurians, the sandfish and golden sandfish, vary in colour and have a confused taxonomy, lending uncertainty to species identifications. A recent molecular study showed that the putative variety Holothuria (Metriatyla) scabra var. versicolor Conand, 1986 (‘golden sandfish’) is a distinct species from, but could hybridize with, H. (Metriatyla) scabra Jaeger, 1833 (’sandfish’). Examination of the skeletal elements and external morphology of these species corroborates these findings. The identity of H. (M.) scabra is unambiguously defined through the erection and description of a neotype, and several synonyms have been critically re-examined. The nomenclaturally rejected taxon H. (Metriatyla) timama Lesson, 1830 and H. (M.) scabra var. versicolor (a nomen nudum) are herein recognized as conspecific and are allocated to a new species, Holothuria lessoni sp. nov., for which type specimens are described. The holotype and only known specimen of H. aculeata Semper, 1867, has been found and is redescribed.
    [Show full text]
  • Community Structure, Diversity, and Distribution Patterns of Sea Cucumber
    Community structure, diversity, and distribution patterns of sea cucumber (Holothuroidea) in the coral reef area of Sapeken Islands, Sumenep Regency, Indonesia 1Abdulkadir Rahardjanto, 2Husamah, 2Samsun Hadi, 1Ainur Rofieq, 2Poncojari Wahyono 1 Biology Education, Postgraduate Directorate, Universitas Muhammadiyah Malang, Malang, East Java, Indonesia; 2 Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Malang, Malang, Indonesia. Corresponding author: A. Rahardjanto, [email protected] Abstract. Sea cucumbers (Holothuroidea) are one of the high value marine products, with populations under very critical condition due to over exploitation. Data and information related to the condition of sea cucumber communities, especially in remote islands, like the Sapeken Islands, Sumenep Regency, East Java, Indonesia, is still very limited. This study aimed to determine the species, community structure (density, frequency, and important value index), species diversity index, and distribution patterns of sea cucumbers found in the reef area of Sapeken Islands, using a quantitative descriptive study. This research was conducted in low tide during the day using the quadratic transect method. Data was collected by making direct observations of the population under investigation. The results showed that sea cucumbers belonged to 11 species, from 2 orders: Aspidochirotida, with the species Holothuria hilla, Holothuria fuscopunctata, Holothuria impatiens, Holothuria leucospilota, Holothuria scabra, Stichopus horrens, Stichopus variegates, Actinopyga lecanora, and Actinopyga mauritiana and order Apodida, with the species Synapta maculata and Euapta godeffroyi. The density ranged from 0.162 to 1.37 ind m-2, and the relative density was between 0.035 and 0.292 ind m-2. The highest density was found for H. hilla and the lowest for S.
    [Show full text]
  • Cop 18 Doc XXX- P. 1
    Original language: English CoP18 Prop.XX CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Eighteenth meeting of the Conference of the Parties Colombo (Sri Lanka), 23 May – 3 June 2019 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A Proposal Inclusion of the following three species belonging to the subgenus Holothuria (Microthele): Holothuria (Microthele) fuscogilva, Holothuria (Microthele) nobilis and Holothuria (Microthele) whitmaei in Appendix II, in accordance with Article II paragraph 2 (a) of the Convention and satisfying Criteria A and B in Annex 2a of Resolution Conf. 9.24 (Rev. CoP17). B. Proponent European Union, Kenya [insert other proponents here] C. Supporting statement 1. Taxonomy (WoRMS 2017) 1.1. Class: Holothuroidea 1.2. Order: Aspidochirotida 1.3. Family: Holothuriidae 1.4. Genus, species or subspecies, including author and year in the three species belong to the subgenus Holothuria (Microthele) Brandt, 1835: Holothuria (Microthele) fuscogilva Cherbonnier, 19801 Holothuria (Microthele) nobilis (Selenka, 1867)1,2 including Holothuria (Microthele) sp. “pentard” 3 Holothuria (Microthele) whitmaei Bell, 18872 1 Holothuria (Microthele) fuscogilva was considered as the same species as Holothuria (Microthele) nobilis until 1980 (Cherbonnier). 2 Holothuria (Microthele) whitmaei, occurring in the Pacific Ocean, was separated from Holothuria (Microthele) nobilis, present in the Indian Ocean, in 2004. 3 Holothuria (Microthele) nobilis taxa seems to be considered as a group of species where Holothuria sp. “pentard” is a form that is currently being described. This species, locally named ‘pentard or flower teatfish’, is important for the Seychelles’ exploitation (Aumeeruddy & Conand 2008; Conand 2008). CoP 18 Doc XXX- p.
    [Show full text]
  • Phylogeny of Labidodemas and the Holothuriidae (Holothuroidea: Aspidochirotida) As Inferred from Morphology
    Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2005? 2005 144? 103120 Original Article PHYLOGENY OF THE HOLOTHURIIDAEY. SAMYN ET AL . Zoological Journal of the Linnean Society, 2005, 144, 103–120. With 6 figures Phylogeny of Labidodemas and the Holothuriidae (Holothuroidea: Aspidochirotida) as inferred from morphology YVES SAMYN1*, WARD APPELTANS1† and ALEXANDER M. KERR2‡ 1Unit for Ecology & Systematics, Free University Brussels (VUB), Pleinlaan 2, B-1050 Brussels, Belgium 2Department of Ecology and Evolutionary Biology, Osborn Zoölogical Laboratories, Yale University, New Haven CT 06520, USA Received July 2003; accepted for publication November 2004 The Holothuriidae is one of the three established families within the large holothuroid order Aspidochirotida. The approximately 185 recognized species of this family are commonly classified in five nominal genera: Actinopyga, Bohadschia, Holothuria, Pearsonothuria and Labidodemas. Maximum parsimony analyses on morphological char- acters, as inferred from type and nontype material of the five genera, revealed that Labidodemas comprises highly derived species that arose from within the genus Holothuria. The paraphyletic status of the latter, large (148 assumed valid species) and morphologically diverse genus has recently been recognized and is here confirmed and discussed. Nevertheless, we adopt a Darwinian or eclectic classification for Labidodemas, which we retain at generic level within the Holothuriidae. We compare our phylogeny
    [Show full text]
  • High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review
    Mar. Drugs 2011, 9, 1761-1805; doi:10.3390/md9101761 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review Sara Bordbar 1, Farooq Anwar 1,2 and Nazamid Saari 1,* 1 Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mails: [email protected] (S.B.); [email protected] (F.A.) 2 Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +60-389-468-385; Fax: +60-389-423-552. Received: 3 August 2011; in revised form: 30 August 2011 / Accepted: 8 September 2011 / Published: 10 October 2011 Abstract: Sea cucumbers, belonging to the class Holothuroidea, are marine invertebrates, habitually found in the benthic areas and deep seas across the world. They have high commercial value coupled with increasing global production and trade. Sea cucumbers, informally named as bêche-de-mer, or gamat, have long been used for food and folk medicine in the communities of Asia and Middle East. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as Vitamin A, Vitamin B1 (thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin), and minerals, especially calcium, magnesium, iron and zinc. A number of unique biological and pharmacological activities including anti-angiogenic, anticancer, anticoagulant, anti-hypertension, anti-inflammatory, antimicrobial, antioxidant, antithrombotic, antitumor and wound healing have been ascribed to various species of sea cucumbers. Therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives especially triterpene glycosides (saponins), chondroitin sulfates, glycosaminoglycan (GAGs), sulfated polysaccharides, sterols (glycosides and sulfates), phenolics, cerberosides, lectins, peptides, glycoprotein, glycosphingolipids and essential fatty acids.
    [Show full text]