Predator Defense Mechanisms in Shallow Water Sea Cucumbers (Holothuroidea)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fucosylated Chondroitin Sulfates from the Sea Cucumbers Paracaudina Chilensis and Holothuria Hilla: Structures and Anticoagulant Activity
marine drugs Article Fucosylated Chondroitin Sulfates from the Sea Cucumbers Paracaudina chilensis and Holothuria hilla: Structures and Anticoagulant Activity Nadezhda E. Ustyuzhanina 1,*, Maria I. Bilan 1, Andrey S. Dmitrenok 1 , Alexandra S. Silchenko 2, Boris B. Grebnev 2, Valentin A. Stonik 2, Nikolay E. Nifantiev 1 and Anatolii I. Usov 1,* 1 N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; [email protected] (M.I.B.); [email protected] (A.S.D.); [email protected] (N.E.N.) 2 G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, 690022 Vladivostok, Russia; [email protected] (A.S.S.); [email protected] (B.B.G.); [email protected] (V.A.S.) * Correspondence: [email protected] (N.E.U.); [email protected] (A.I.U.); Tel.: +7-495-135-8784 (N.E.U.) Received: 29 September 2020; Accepted: 26 October 2020; Published: 28 October 2020 Abstract: Fucosylated chondroitin sulfates (FCSs) PC and HH were isolated from the sea cucumbers Paracaudina chilensis and Holothuria hilla, respectively. The purification of the polysaccharides was carried out by anion-exchange chromatography on a DEAE-Sephacel column. The structural characterization of the polysaccharides was performed in terms of monosaccharide and sulfate content, as well as using a series of nondestructive NMR spectroscopic methods. Both polysaccharides were shown to contain a chondroitin core [ 3)-β-d-GalNAc (N-acethyl galactosamine)-(1 4)-β-d-GlcA ! ! (glucuronic acid)-(1 ]n, bearing sulfated fucosyl branches at O-3 of every GlcA residue in the ! chain. -
Petition to List the Black Teatfish, Holothuria Nobilis, Under the U.S. Endangered Species Act
Before the Secretary of Commerce Petition to List the Black Teatfish, Holothuria nobilis, under the U.S. Endangered Species Act Photo Credit: © Philippe Bourjon (with permission) Center for Biological Diversity 14 May 2020 Notice of Petition Wilbur Ross, Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected], [email protected] Dr. Neil Jacobs, Acting Under Secretary of Commerce for Oceans and Atmosphere U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected] Petitioner: Kristin Carden, Oceans Program Scientist Sarah Uhlemann, Senior Att’y & Int’l Program Director Center for Biological Diversity Center for Biological Diversity 1212 Broadway #800 2400 NW 80th Street, #146 Oakland, CA 94612 Seattle,WA98117 Phone: (510) 844‐7100 x327 Phone: (206) 324‐2344 Email: [email protected] Email: [email protected] The Center for Biological Diversity (Center, Petitioner) submits to the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (NOAA) through the National Marine Fisheries Service (NMFS) a petition to list the black teatfish, Holothuria nobilis, as threatened or endangered under the U.S. Endangered Species Act (ESA), 16 U.S.C. § 1531 et seq. Alternatively, the Service should list the black teatfish as threatened or endangered throughout a significant portion of its range. This species is found exclusively in foreign waters, thus 30‐days’ notice to affected U.S. states and/or territories was not required. The Center is a non‐profit, public interest environmental organization dedicated to the protection of native species and their habitats. -
Sea Cucumber Abundance, Diversity and Fisheries in Samoa; an Assessment of Lagoon Occurring Sea Cucumbers
2006-05-17 Sea cucumber abundance, diversity and fisheries in Samoa; an assessment of lagoon occurring sea cucumbers Part I: A wide approached survey to assess status of commercial beche-de-mer species in Samoa. & Part II: The subsistence and artisanal sea cucumber fishery, with particular focus on Stichopus horrens, in Samoa. B.G.H. Eriksson Preface This study was performed in Samoa from 2005-09-20 to 2005-12-20 and finalises my university studies at Uppsala University towards an M.Sc in Biology. The work presented in this paper came about after a series of events and I owe greatly to all of those that are mentioned in the acknowledgement section. During 2005 a request was put forward to The Secretariat of the Pacific Community (SPC) from the Samoan Fisheries Division to perform a survey on the coastal resources (including sea cucumber resources) around the country of Samoa in the South Pacific. The coastal component of the Pacific Region Oceanic and Coastal Fisheries (PROCFish/C) section of SPC started up this work in collaboration with the Samoan Fisheries Division in June and August 2005 and covered finfish and invertebrate resources in parts of Upolu and Savaii. The invertebrate surveys included fisheries dependent and fisheries independent data collection. The fisheries independent surveys were in-water assessments of stock and habitat in grounds that was pre-selected because of fishing activities in that area. The data collected was generally density estimates (incl. species composition) across shifting habitats, but also biological data, such as length and weight measurements. Alongside this information fishery dependent data was also collected. -
Holothuriidae 1165
click for previous page Order Aspidochirotida - Holothuriidae 1165 Order Aspidochirotida - Holothuriidae HOLOTHURIIDAE iagnostic characters: Body dome-shaped in cross-section, with trivium (or sole) usually flattened Dand dorsal bivium convex and covered with papillae. Gonads forming a single tuft appended to the left dorsal mesentery. Tentacular ampullae present, long, and slender. Cuvierian organs present or absent. Dominant spicules in form of tables, buttons (simple or modified), and rods (excluding C-and S-shaped rods). Key to the genera and subgenera of Holothuriidae occurring in the area (after Clark and Rowe, 1971) 1a. Body wall very thick; podia and papillae short, more or less regularly arranged on bivium and trivium; spicules in form of rods, ovules, rosettes, but never as tables or buttons ......→ 2 1b. Body wall thin to thick; podia irregularly arranged on the bivium and scattered papillae on the trivium; spicules in various forms, with tables and/or buttons present ...(Holothuria) → 4 2a. Tentacles 20 to 30; podia ventral, irregularly arranged on the interradii or more regularly on the radii; 5 calcified anal teeth around anus; spicules in form of spinose rods and rosettes ...........................................Actinopyga 2b. Tentacles 20 to 25; podia ventral, usually irregularly arranged, rarely on the radii; no calcified anal teeth around anus, occasionally 5 groups of papillae; spicules in form of spinose and/or branched rods and rosettes ............................→ 3 3a. Podia on bivium arranged in 3 rows; spicules comprise rocket-shaped forms ....Pearsonothuria 3b. Podia on bivium not arranged in 3 rows; spicules not comprising rocket-shaped forms . Bohadschia 4a. Spicules in form of well-developed tables, rods and perforated plates, never as buttons .....→ 5 4b. -
Morphology of an Endosymbiotic Bivalve, Entovalva Nhatrangensis (Bristow, Berland, Schander & Vo, 2010) (Galeommatoidea)
Molluscan Research 31(2): 114–124 ISSN 1323-5818 http://www.mapress.com/mr/ Magnolia Press Morphology of an endosymbiotic bivalve, Entovalva nhatrangensis (Bristow, Berland, Schander & Vo, 2010) (Galeommatoidea) J. LÜTZEN1, B. BERLAND2, & G.A.BRISTOW2* 1Biological Institute, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark 2Department of Biology, University of Bergen, N-5020 Bergen, Norway *Corresponding author, Email: [email protected] Abstract We describe the morphology of Entovalva nhatrangensis Bristow, Berland, Schander & Vo, 2010, an endosymbiontic bivalve living in the oesophagus of Holothuria spinifera and H. leucospilota in Vietnam. The delicate shells are entirely internalized. The body is very small compared to the foot, which is dorso-ventrally flattened and contains the digestive diverticula and the fertile parts of the gonads. Even though the gills are small, they probably serve in collecting suspended matter, and in addition, the species clearly feeds on benthic diatoms, which it probably sorts out from the contents of the host’s gut. The species is a protandric hermaphrodite. Most males have a total length of 1.5–3.0 mm and above that size start changing sex to become females, which may attain a total length of nearly nine mm. Sperm is transferred in spermatophores with a solid wall produced by glands within the male siphon. One to three spermatophores are placed on the gills of females and the ova become fertilized as they pass from the genital pores to the siphon, where they are brooded until released as D-larvae. Key words: functional anatomy, hermaphroditism, protandry, spermatophore, Holothuria spinifera, Holothuria leucospilota, Bivalvia, Heterodonta Introduction following morning. -
Sexual Reproduction in a Fissiparous Holothurian Species, Holothuria
SPC Beche-de-mer Information Bulletin #18 – May 2003 33 D’Silva, D. 2001. The Torres Strait beche-de-mer Skewes, T.D. Dennis, D.M. and Burridge, C. 2000. (sea cucumber) fishery. SPC Beche-de-Mer Survey of Holothuria scabra (sandfish) on Information Bulletin 15:2–4. Warrior Reef, Torres Strait, January 2000. CSIRO Division of Marine Research. Jaquemet, S. and Conand, C. 1999. The Beche-de- Mer trade in 1995/1996 and an assessment of TRAFFIC South America. 2000. Evaluation of the exchanges between main world markets. SPC trade of sea cucumber Isostichopus fuscus Beche-de-Mer Information Bulletin 12:11–14. (Echinodermata: Holothuroidea) in the Galapagos during 1999. Quito. 19 p. Lokani, P. 1990. Beche-de-mer research and devel- opment in Papua New Guinea. SPC Beche-de- Uthicke, S. and Benzie, J.A.H. 2001. Effect of beche- Mer Information Bulletin 2:1–18. de-mer fishing on densities and size structure of Holothuria nobilis (Echinodermata: Secretariat of the Pacific Community. 1994. Sea cu- Holothuridae) populations on the Great cumbers and beche-de-mer of the tropical Barrier Reef. Coral Reefs 19:271–276. Pacific. A handbook for fishers. Handbook no. 18. SPC, Noumea New Caledonia. 51 p. Sexual reproduction in a fissiparous holothurian species, Holothuria leucospilota Clark 1920 (Echinodermata: Holothuroidea) Pradina Purwati1,2 and Jim Thinh Luong-van2 Abstract Holothuria leucospilota Clark 1920 inhabiting tropical Darwin waters primarily undergo asexual reproduc- tion by fission throughout the year (Purwati 2001). However, there is also evidence of sexual reproduction. Monthly sampling from August 1998 to January 2000 revealed that the gonadal tubules within each indi- vidual of H. -
SPC Beche-De-Mer Infomation Bulletin
SPC Beche-de-mer Information Bulletin #23 – February 2006 39 AbstractsAbstracts && publicationspublications beche-de-merbeche-de-mer SPC translates two chapters of Chantal Conand’s 1989 thesis1:“Aspidochirote holothurians of the New Caledonia lagoon: Biology, ecology and exploitation” SPC's Reef Fisheries Observatory has organised the translation of two chapters of Chantal Conand's semi- nal thesis on the ecology and biology of sea cucumbers. Although this thesis was published in French in 1989, a long time ago, many results were never made available to the wider audience of non-French speak- ers. Since the initial publication of this work, interest on holothurian resources and their management has only increased, and SPC hopes this translation will be of use to fishers, researchers and managers alike. Chantal Conand is now Professor Emeritus at La Reunion University. Her PhD was undertaken at the ORSTOM (now IRD) Center in New Caledonia, and the Laboratory Océanographie Biologique of the University of Bretagne Occidentale in France. She is still involved in sea cucumber research, as the sci- entific editor of this Beche-de-mer Bulletin published by SPC and several programmes of regional and international interest. The translated parts of the PhD thesis are listed below: Part of Chapter two: Ecology of the aspidochirote holothurians 4. Autoecology 4.1 Analytical methods 4.2 General results on distribution, density and biomass 4.3 Ecology of main species 4.4 Discussion of results 5. Taxocoenoses 5.1 Methods 5.2 Richness of the various biotopes 5.3 Main taxocoenosess 5.4 Discussion 5.5 Factors of the distribution 6. -
Review, the (Medical) Benefits and Disadvantage of Sea Cucumber
IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN:2278-3008, p-ISSN:2319-7676. Volume 12, Issue 5 Ver. III (Sep. – Oct. 2017), PP 30-36 www.iosrjournals.org Review, The (medical) benefits and disadvantage of sea cucumber Leonie Sophia van den Hoek, 1) Emad K. Bayoumi 2). 1 Department of Marine Biology Science, Liberty International University, Wilmington, USA. Professional Member Marine Biological Association, UK. 2 Department of General Surgery, Medical Academy Named after S. I. Georgiesky of Crimea Federal University, Crimea, Russia Corresponding Author: Leonie Sophia van den Hoek Abstract: A remarkable feature of Holothurians is the catch collagen that forms their body wall. Catch collagen has two states, soft and stiff, that are under neurological control [1]. A study [3] provides evidence that the process of new organ formation in holothurians can be described as an intermediate process showing characteristics of both epimorphic and morphallactic phenomena. Tropical sea cucumbers, have a previously unappreciated role in the support of ecosystem resilience in the face of global change, it is an important consideration with respect to the bêche-de-mer trade to ensure sea cucumber populations are sustained in a future ocean [9]. Medical benefits of the sea cucumber are; Losing weight [19], decreasing cholesterol [10], improved calcium solubility under simulated gastrointestinal digestion and also promoted calcium absorption in Caco-2 and HT-29 cells [20], reducing arthritis pain [21], HIV therapy [21], treatment osteoarthritis [21], antifungal steroid glycoside [22], collagen protein [14], alternative to mammalian collagen [14], alternative for blood thinners [29], enhancing immunity and disease resistance [30]. -
Fundamental Differences in Diversity and Biosynthetic Pathways
marine drugs Review Triterpenoids in Echinoderms: Fundamental Differences in Diversity and Biosynthetic Pathways Emily J. S. Claereboudt 1,2,*, Guillaume Caulier 1 , Corentin Decroo 1,3, Emmanuel Colson 1,3, Pascal Gerbaux 3 , Michel R. Claereboudt 4, Hubert Schaller 5 , Patrick Flammang 1 , Magali Deleu 2 and Igor Eeckhaut 1 1 Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons-UMONS, 7000 Mons, Belgium; [email protected] (G.C.); patrick.fl[email protected] (P.F.); [email protected] (I.E.) 2 Laboratory of molecular biophysics of interfaces, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium; [email protected] 3 Organic Synthesis and Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry, Research Institute for Biosciences, University of Mons—UMONS, 7000 Mons, Belgium; [email protected] (C.D.); [email protected] (E.C.); [email protected] (P.G.) 4 Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, 123 Al-Khod, Oman; [email protected] 5 Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 67084 Strasbourg Cedex, France; [email protected] * Correspondence: [email protected]; Tel.: +32-65373433 Received: 18 April 2019; Accepted: 4 June 2019; Published: 13 June 2019 Abstract: Echinoderms form a remarkable phylum of marine invertebrates that present specific chemical signatures unique in the animal kingdom. It is particularly the case for essential triterpenoids that evolved separately in each of the five echinoderm classes. Indeed, while most animals have D5-sterols, sea cucumbers (Holothuroidea) and sea stars (Asteroidea) also possess D7 and D9(11)-sterols, a characteristic not shared with brittle stars (Ophiuroidea), sea urchins (Echinoidea), and crinoids (Crinoidea). -
Taxonomy of the Heavily Exploited Indo-Pacific Sandfish
Zoological Journal of the Linnean Society, 2009, 155, 40–59. With 10 figures Taxonomy of the heavily exploited Indo-Pacific sandfish complex (Echinodermata: Holothuriidae) CLAUDE MASSIN1*, SVEN UTHICKE2, STEVEN W. PURCELL3, FRANK W. E. ROWE, FLS4† and YVES SAMYN5 1Department of Invertebrates, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium 2Australian Institute of Marine Science, PMB No 3, Townsville, Qld 4810, Australia 3The WorldFish Center, c/o SPC – Secretariat of the Pacific Community, B.P. D5, 98848 Noumea Cedex, New Caledonia 4Research Associate, Australian Museum, Sydney, NSW, 2000, Australia 5Global Taxonomy Initiative, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium Received 5 September 2007; accepted for publication 18 October 2007 Two commercially valuable holothurians, the sandfish and golden sandfish, vary in colour and have a confused taxonomy, lending uncertainty to species identifications. A recent molecular study showed that the putative variety Holothuria (Metriatyla) scabra var. versicolor Conand, 1986 (‘golden sandfish’) is a distinct species from, but could hybridize with, H. (Metriatyla) scabra Jaeger, 1833 (’sandfish’). Examination of the skeletal elements and external morphology of these species corroborates these findings. The identity of H. (M.) scabra is unambiguously defined through the erection and description of a neotype, and several synonyms have been critically re-examined. The nomenclaturally rejected taxon H. (Metriatyla) timama Lesson, 1830 and H. (M.) scabra var. versicolor (a nomen nudum) are herein recognized as conspecific and are allocated to a new species, Holothuria lessoni sp. nov., for which type specimens are described. The holotype and only known specimen of H. aculeata Semper, 1867, has been found and is redescribed. -
Community Structure, Diversity, and Distribution Patterns of Sea Cucumber
Community structure, diversity, and distribution patterns of sea cucumber (Holothuroidea) in the coral reef area of Sapeken Islands, Sumenep Regency, Indonesia 1Abdulkadir Rahardjanto, 2Husamah, 2Samsun Hadi, 1Ainur Rofieq, 2Poncojari Wahyono 1 Biology Education, Postgraduate Directorate, Universitas Muhammadiyah Malang, Malang, East Java, Indonesia; 2 Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Malang, Malang, Indonesia. Corresponding author: A. Rahardjanto, [email protected] Abstract. Sea cucumbers (Holothuroidea) are one of the high value marine products, with populations under very critical condition due to over exploitation. Data and information related to the condition of sea cucumber communities, especially in remote islands, like the Sapeken Islands, Sumenep Regency, East Java, Indonesia, is still very limited. This study aimed to determine the species, community structure (density, frequency, and important value index), species diversity index, and distribution patterns of sea cucumbers found in the reef area of Sapeken Islands, using a quantitative descriptive study. This research was conducted in low tide during the day using the quadratic transect method. Data was collected by making direct observations of the population under investigation. The results showed that sea cucumbers belonged to 11 species, from 2 orders: Aspidochirotida, with the species Holothuria hilla, Holothuria fuscopunctata, Holothuria impatiens, Holothuria leucospilota, Holothuria scabra, Stichopus horrens, Stichopus variegates, Actinopyga lecanora, and Actinopyga mauritiana and order Apodida, with the species Synapta maculata and Euapta godeffroyi. The density ranged from 0.162 to 1.37 ind m-2, and the relative density was between 0.035 and 0.292 ind m-2. The highest density was found for H. hilla and the lowest for S. -
Cop 18 Doc XXX- P. 1
Original language: English CoP18 Prop.XX CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Eighteenth meeting of the Conference of the Parties Colombo (Sri Lanka), 23 May – 3 June 2019 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A Proposal Inclusion of the following three species belonging to the subgenus Holothuria (Microthele): Holothuria (Microthele) fuscogilva, Holothuria (Microthele) nobilis and Holothuria (Microthele) whitmaei in Appendix II, in accordance with Article II paragraph 2 (a) of the Convention and satisfying Criteria A and B in Annex 2a of Resolution Conf. 9.24 (Rev. CoP17). B. Proponent European Union, Kenya [insert other proponents here] C. Supporting statement 1. Taxonomy (WoRMS 2017) 1.1. Class: Holothuroidea 1.2. Order: Aspidochirotida 1.3. Family: Holothuriidae 1.4. Genus, species or subspecies, including author and year in the three species belong to the subgenus Holothuria (Microthele) Brandt, 1835: Holothuria (Microthele) fuscogilva Cherbonnier, 19801 Holothuria (Microthele) nobilis (Selenka, 1867)1,2 including Holothuria (Microthele) sp. “pentard” 3 Holothuria (Microthele) whitmaei Bell, 18872 1 Holothuria (Microthele) fuscogilva was considered as the same species as Holothuria (Microthele) nobilis until 1980 (Cherbonnier). 2 Holothuria (Microthele) whitmaei, occurring in the Pacific Ocean, was separated from Holothuria (Microthele) nobilis, present in the Indian Ocean, in 2004. 3 Holothuria (Microthele) nobilis taxa seems to be considered as a group of species where Holothuria sp. “pentard” is a form that is currently being described. This species, locally named ‘pentard or flower teatfish’, is important for the Seychelles’ exploitation (Aumeeruddy & Conand 2008; Conand 2008). CoP 18 Doc XXX- p.