David Kyle Phd Co-Founder Martek Senior Executive Evolve Biosystems Inc

Total Page:16

File Type:pdf, Size:1020Kb

David Kyle Phd Co-Founder Martek Senior Executive Evolve Biosystems Inc Targets, Metrics and Education for the future of Individualized Health J. Bruce German University of California, Davis Foods for Health Institute Foods for Health Institute Building the Science, Technologies and Education to Guide Diet and Health in the 21st Century The History: How did we get here? The 20th Century Science: Spectacular success! Chemistry –Reductionist Industrialization of Simple Chemicals Key = Purify The Successes Reductionist Chemistry literally took humans to the stars. Nutrition’s History Nutrient Deficiency Diseases Unpredictable – devastating Variable by geography, class GOITER SCURVY RICKETS Essential Nutrients One of chemistry’s great achievements: Identifying all of the essential nutrients for humans Nutrition’s 1st Era Success of the 20th Century: Essential Nutrients and their Deficiencies Industrial ‘nutrified’ foods Population Solutions – ‘Overdose’ Result: Blissful Ignorance Consequences of Success • Without fear of deficiency, nutrition and food became an education ‘elective’ • Result: a profoundly ignorant public • The Science of ‘Diet and Health’ divorced into the separate fields of Nutrition and Food Hostile Environment? But, we’re not healthy We should be enjoying the greatest health in history and some are, ………..but most are not Jaring Roger Gentilhomme Timmerman strategic opportunity: Health and disease prevention – Prevention 1 Efficacy chronic 2 Safety total 3 Value $$$ The Challenge: How to do it! Targets What does diet act upon that improves the health of healthy individuals? Nutrition’s New Toolsets Biology guided R&D The 21st Century Biology - Evolution Integrative Industrialization of Organisms and Systems for Individuals 21st Century Chemistry Comprehensive – Entire classes of molecules Sensitive – Parts per trillion Accurate – Detailed complex structures st 21 Century Mathematics Computational methods Massive Databases • Annotating Genomes to Neighborhood Maps Global networks • Economies to Ecosystems Industrialization of Research • Egalitarianism of Knowledge Courtesy Matthias Friedrich -AND- Engineering . Complex Systems measure – adjust – measure - adjust . Devices Fast, furious, cheap . Smart Processing Networked, controlled Genomics: the Footsteps of Evolution Humans: Plants: Animals Microorganisms: What can they tell us about Diet and Health? Evolutionary Nutrition What evolved under the Darwinian Pressure to be Nourishing? Lactation The Darwinian Engine of Nutrition Maternal Optima B<C Benefits Costs Time Infant Optima B<(r)C Evolving a cost – benefit solution for Katie Hinde UCLA Health Proof of Principle: milk’s paradox Lactation The Darwinian Engine of Diet, Health & Sustainability Maternal Optima B<C Benefits Costs Time Infant Optima B<(r)C Katie Hinde UCLA Functions of Milk? The 3rd most abundant class of biomolecule in human breast milk is un-digestible by humans! What are they? Milk Oligosaccharides Carlito Lebrilla •World’s Leading Analytical GlycoChemist Analytical tools for oligosaccharide analysis Biological sample to MS PNGase F Glycan Release 1990’s -10 days with Microwave Reactor 2000’s - 5 days Now - hours Microchip separation MALDI FTICR MS Automated SPE High performance MS Human Milk Glycans HMOs ProteinProteins Lipids Lactose Garrido et al Microbiology 2013 Human milk oligosaccharides Chain HMOs Length HMOs 4 ProteinProteins 5 Carlito Lebrilla UCD Chemistry 6 Lipids 7 8 Lactose 8 • Human indigestible and 9 highly variable 10 • Higher proportion of fucosylated (40-70%) than Other HMOs of longer lengths sialyated (4-38%) • Nearly 200 species in Nature 468 S5-S7 (23 December 2010) pooled human milk Garrido et al Microbiology (2013) Primate milk oligosaccharides Over 230 Species of Primates mammals Apes Siamang Orangutan Gorilla Chimpanzee Bonobo Human 15-20 Million New World Years ago Monkeys Squirrel Golden Lion Common Monkey Tamarin Marmoset Old World Monkeys -Rhesus -Mangabay 55 Million Years ago Functions of Milk? The 3rd most abundant class of biomolecule in human breast milk is un-digestible by humans! Why? Bacteria? David Mills Shields Endowed Chair Structure, Function and Health Benefits of Food Borne Bacteria Bifidobacterium Infantis 1 2.5 Mb B. infantis Glc 2,832,748 Mb 0.5 Mb Fucosidase Hexosaminidase Gal GlcNAc Sialidase galactosidase Fuc Neu5Ac 1.0 Mb ESB ?- HMO utilization by Bifidobacteria Bifidobacterial HMO Glycoprofiling HMO abundance in pooled breast milk 25 B. infantis 2.5 20 2 15 1.5 10 OD (600 nm) 5 1 B. breve 0 % HMO abundance in breast milk abundancein breast HMO % 0.5 B. longum HMO m/z . B. infantis 0 consumption Time(hours) 100 50 Several small MW oligosaccharides 0 consumed by B. infantis 50 Single HMO composition % HMO Consumed consumed by other 100 bifidobacteria HMO m/z Locascio et al JAFC 2007 Tripartite Evolutionary Relationship Milk Host Milk-Oriented Microbiota (MOM) Model for bifidobacterial enrichment in the infant GIT Model for bifidobacteria enrichment in the infant GIT Complex milk glycans enhance efficacy of specific bifidobacteria Caco-2 Growth on milk oligosaccharides helps some bifidobacteria bind intestinal cells HMO vs Lac grown cells: HT-29 • Induce TJ proteins • Induce anti- inflammatory cytokines (IL-10) Chichlowski et al JPGN 2012 Prebiotic milk oligosaccharides + B. infantis restore impaired gut barrier function and body weight Experimental Approach: Kristi Hamilton paracellular transcellular pathway pathway - Mice fed Western diet (high in fat) with or without supplementation with bovine milk oligosaccharides (BMO) + B. infantis. - Measure food intake, body weight, and Helen Raybould FD4 Horseradish intestinal barrier function peroxidase 40kDa (HRP) Paracellular permeability Transcellular permeability Mucosal inflammation Hamilton, Boudry, Mills et al, unpublished Infant microbial succession over breastfeeding USDA #2 Glycoprofiling of milk oligosaccharides in feces m/z Different oligosaccharide compositions in feces as determined by Mass Spec Infant microbial succession over breastfeeding USDA #2 Bacterial families Pyrosequencing of 16S rDNA present Other Staphylococcaceae Enterobacteriaceae Bifidobacteriaceae Coriobacteriaceae % % ofTotal Bacteroidaceae Streptococcaceae 0 1 2 12 Weeks What have we learned: We’re not alone! Opportunity: BioProfessionals Our minions! Bring to Practice: Personal Microbiota Management Milk oligos in action Infant transitioning to B. Infantis Infant failing to establish B. Infantis Neonatology: Translation Premature Infants Necrotizing Enterocolitis Combination of human milk oligosaccharides plus Bifidobacterium longum subsp. infantis: – Protection from infection – Growth Mark Underwood Chuck Bevins Med School Med Micro & Immunology Conflict of Interest Statement David Kyle PhD Co-Founder Martek Senior Executive Evolve Biosystems Inc. ’Bugs’ of Health Personal microbiome management: premature infants to weaning from athletes to hospitals Oligosaccharide Biology in Bovine Medrano Lab A4GNT B3GNT 1-9 ST3GAL 1-6 GCNT 1-4 ST6GAL 1,2 OGT ST6GALNAC 1-6 MFNG ST8SIA 1-6 LFNG B3GALNT 1,2 RFNG FUT 1-11 B4GALNT 1-4 POMGNT1 POFUT 1,2 GALNT 1-14 B3GALT 1-6 GBGT 1 C1GALT 1 B4GALT 1-7 A4GALT UGT8 POMT 1,2 MGAT 1,2,3 MGAT4A, 4B MGAT5, 5B GNE NANS NANP CMAS CMAH SLC35A1-A5 FUC A1,A2 SNP in coding SLC35B1 GLA SLC35C1 GLB1 FUK regions SLC35D2 GLB1L FPGT SLC17A5 HEXA GMDS ↓ HEXB TSTA3 HEXDC Genotyping array NEU1-4 GAA ↓ GANAB GBA Association study in GBA3 500 cows UCD Milk Processing Lab Daniela Barile Asst Prof FST •Pilot-scale filtration from MMS AG Systems •Fourier Transform Advanced IR MilkoScope •Speed vacuum MiVac Quattro Concentrator •Industrial freeze dryer The Breast Milk, Gut Microbiome and Immunity (BMMI) Project UC Davis Team David Mills (PI) Bruce German Carlito Lebrilla Ruslan Medzhitov Rob Knight Yale U. Colorado Jeff Gordon Wash U http://ffhi.ucdavis.edu/ Implications to Ag 2.0 Selective Polysaccharides will become a new component of human diets. Total opportunity ~ 1 trillion calories/day A new quality target for agriculture: structure/function polysaccharides Opportunity: ’Bugs’ of Delight From chocolate to coffee, wine to beer, yogurt to cheese, bread Metrics We are not the same We don’t all respond Health benefits must be DEMONSTRATED! Goal: Diagnostics of Health You cannot manage What You cannot measure 'Measure what is measurable, and make measurable what is not so', Galileo Galilei. Equation of Life Phenotype = Genotype + now Environment + ∫Genotype x Environment <birth The machine in health’s future • Genotyping is poised to become as easy as blood typing Nutrigenomix • Dieticians as the clinicians of health • Nutrigenomix.com Perfect Phenotypes Not just Genetics 20 years 10,000,000 calories Is Genotyping Enough? • NO • Science: multi-genic conditions, age, environment • Economics: we will only pay for demonstrated improvements in health Genotype + Environment UCD Phenotyping People Nutrition Metabolism Vitamins Immunity Glucose Minerals Innate Lipids Amino acids Glycans Acquired Inflammation Sensation The Metrics of Taste Activity Olfaction Human Health Sleep Trigeminal Calories Microbiome Genetics Metabolites Anthropometry Conjugates Bone Signaling Muscle Endocrine Adipose Oxylipins Peptides Urinary Metabolites as Microbiome Diagnostics Monitor the development of appropriate microflora in infants Carolyn Slupsky Opportunity: Feed to ‘Target’ Prevention Strategy 1 6 Example: Fatty Liver Diseases The insidious accumulation of fat in non-adipose storage tissues is emerging as the core pathology of metabolic diseases. Can phenotyping determine if
Recommended publications
  • Characterization of Α-L-Fucosidase and Other Digestive Hydrolases From
    Acta Tropica 141 (2015) 118–127 Contents lists available at ScienceDirect Acta Tropica journal homepage: www.elsevier.com/locate/actatropica Characterization of ␣-L-fucosidase and other digestive hydrolases from Biomphalaria glabrata Natalia N. Perrella a,b, Rebeca S. Cantinha c,d, Eliana Nakano c, Adriana R. Lopes a,∗ a Laboratory of Biochemistry and Biophysics—Instituto Butantan, São Paulo, Brazil b Programa de Pós Graduac¸ ão Interunidades em Biotecnologia PPIB, Universidade de São Paulo, São Paulo, SP, Brazil c Laboratory of Parasitology—Instituto Butantan, São Paulo, Brazil d Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, SP, Brazil article info abstract Article history: Schistosoma mansoni is one of the major agents of the disease Schistosomiasis, which is one of the Received 10 February 2014 major global public health concerns. Biomphalaria glabrata is an obligate intermediate mollusc host of Received in revised form 3 July 2014 S. mansoni. Although the development of S. mansoni occurs in the snail hepatopancreas, studies that Accepted 12 August 2014 focus on this organ remain limited. In this study, we biochemically identified five distinct carbohy- Available online 16 September 2014 drases (amylase, maltase, ␣-glucosidase, trehalase, and ␣-L-fucosidase), lipases, and peptidases in the B. glabrata hepatopancreas and focused on the isolation and characterization of the activity of ␣-L- Keywords: fucosidase. The isolated ␣-L-fucosidase has a molecular mass of 141 kDa, an optimum pH of 5.8, and Hepatopancreas ␣ Enzymes is inhibited by Tris, fucose, and 1-deoxyfuconojirimycin. B. glabrata -L-fucosidase is an exoglycosidase ␮ ␣-L-Fucosidase that can hydrolyze the natural substrate fucoidan to fucose residues.
    [Show full text]
  • Glycoproteomics-Based Signatures for Tumor Subtyping and Clinical Outcome Prediction of High-Grade Serous Ovarian Cancer
    ARTICLE https://doi.org/10.1038/s41467-020-19976-3 OPEN Glycoproteomics-based signatures for tumor subtyping and clinical outcome prediction of high-grade serous ovarian cancer Jianbo Pan 1,2,3, Yingwei Hu1,3, Shisheng Sun 1,3, Lijun Chen1, Michael Schnaubelt1, David Clark1, ✉ Minghui Ao1, Zhen Zhang1, Daniel Chan1, Jiang Qian2 & Hui Zhang 1 1234567890():,; Inter-tumor heterogeneity is a result of genomic, transcriptional, translational, and post- translational molecular features. To investigate the roles of protein glycosylation in the heterogeneity of high-grade serous ovarian carcinoma (HGSC), we perform mass spectrometry-based glycoproteomic characterization of 119 TCGA HGSC tissues. Cluster analysis of intact glycoproteomic profiles delineates 3 major tumor clusters and 5 groups of intact glycopeptides. It also shows a strong relationship between N-glycan structures and tumor molecular subtypes, one example of which being the association of fucosylation with mesenchymal subtype. Further survival analysis reveals that intact glycopeptide signatures of mesenchymal subtype are associated with a poor clinical outcome of HGSC. In addition, we study the expression of mRNAs, proteins, glycosites, and intact glycopeptides, as well as the expression levels of glycosylation enzymes involved in glycoprotein biosynthesis pathways in each tumor. The results show that glycoprotein levels are mainly controlled by the expression of their individual proteins, and, furthermore, that the glycoprotein-modifying glycans cor- respond to the protein levels of glycosylation enzymes. The variation in glycan types further shows coordination to the tumor heterogeneity. Deeper understanding of the glycosylation process and glycosylation production in different subtypes of HGSC may provide important clues for precision medicine and tumor-targeted therapy.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Supplementary Table 2
    Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942
    [Show full text]
  • Selective Loss of Glucocerebrosidase Activity in Sporadic Parkinsonłs
    Chiasserini et al. Molecular Neurodegeneration (2015) 10:15 DOI 10.1186/s13024-015-0010-2 SHORT REPORT Open Access Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies Davide Chiasserini1†, Silvia Paciotti2†, Paolo Eusebi1,3, Emanuele Persichetti2, Anna Tasegian2, Marzena Kurzawa-Akanbi4,5, Patrick F Chinnery4,5, Christopher M Morris6, Paolo Calabresi1,7, Lucilla Parnetti1* and Tommaso Beccari2* Abstract Background: Lysosomal dysfunction is thought to be a prominent feature in the pathogenetic events leading to Parkinson’s disease (PD). This view is supported by the evidence that mutations in GBA gene, coding the lysosomal hydrolase β-glucocerebrosidase (GCase), are a common genetic risk factor for PD. Recently, GCase activity has been shown to be decreased in substantia nigra and in cerebrospinal fluid of patients diagnosed with PD or dementia with Lewy Bodies (DLB). Here we measured the activity of GCase and other endo-lysosomal enzymes in different brain regions (frontal cortex, caudate, hippocampus, substantia nigra, cerebellum) from PD (n = 26), DLB (n = 16) and age-matched control (n = 13) subjects, screened for GBA mutations. The relative changes in GCase gene expression in substantia nigra were also quantified by real-time PCR. The role of potential confounders (age, sex and post-mortem delay) was also determined. Findings: Substantia nigra showed a high activity level for almost all the lysosomal enzymes assessed. GCase activity was significantly decreased in the caudate (−23%) and substantia nigra (−12%) of the PD group; the same trend was observed in DLB. In both groups, a decrease in GCase mRNA was documented in substantia nigra.
    [Show full text]
  • A Study of the Molecular Basis of the Lysosomal Storage Disorder
    P\ ■Studies of the Molecular Basis of the Lysosomal Storage Disorder Fucosidosis by Helen Marie Cragg Thesis submitted for the degree of Doctor of Philosophy University of London Division of Biochemistry and Genetics Institute of Child Health ProQuest Number: U541539 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U541539 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Fucosidosis is a rare, autosomal recessive, lysosomal storage disorder resulting from a deficiency of the enzyme a-fucosidase. This defect leads to the accumulation in the lysosomes of tissues and excretion in urine of fucose-containing oligosaccharides, glycoasparagines, and glycolipids. The gene encoding lysosomal a-fucosidase has been mapped to the short arm of chromosome 1 at position lp34.1-36.1 and consists of eight exons spanning 23kb ofDNA. In this thesis the molecular basis of the enzyme defect has been investigated in thirteen fucosidosis patients. The residual a-fucosidase activity in extracts of fibroblasts, leukocytes and plasma has been characterised and the urinary oligosaccharides investigated by thin layer chromatography.
    [Show full text]
  • Characterization of Aspartylglucosaminidase Activation and Aspartylglucosaminuria Mutations
    Arto Pennanen Publications of the National Public Health Institute A 1 / 2004 — INDOOR AIR POLLUTION AND HEALTH RISKS IN FINNISH ICE ARENAS RISKSINFINNISHICE AND HEALTH AIR POLLUTION INDOOR Jani Saarela CHARACTERIZATION OF ASPARTYLGLUCOSAMINIDASE ACTIVATION AND ASPARTYLGLUCOSAMINURIA MUTATIONS ISBN 951-740-485-9 ISSN 0359-3584 ISBN 951-740-486-7 (pdf) Department of Molecular Medicine, ISSN 1458-6290 (pdf) National Public Health Institute, Helsinki, Finland and http://www.ktl.fi /portal/suomi/julkaisut/julkaisusarjat/ Department of Medical Genetics, kansanterveyslaitoksen_julkaisuja_a/ University of Helsinki, Finland Kopijyvä Kuopio 2005 Helsinki 2004 PPennanen_kansi.inddennanen_kansi.indd 1 117.2.20057.2.2005 115:26:195:26:19 CHARACTERIZATION OF ASPARTYLGLUCOSAMINIDASE ACTIVATION AND ASPARTYLGLUCOSAMINURIA MUTATIONS Jani Saarela Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland and Department of Medical Genetics, University of Helsinki, Finland Academic Dissertation To be publicly discussed with the permission of the Medical Faculty of the University of Helsinki, in the lecture room 3 of Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, on January 30th, 2004, at 12 o’clock noon. Helsinki 2004 Supervised by Professor Leena Peltonen-Palotie National Public Health Institute and Department of Medical Genetics University of Helsinki, Helsinki, Finland Reviewed by Professor Ole Kristian Tollersrud and Docent Marc Baumann Department of Medical Biochemistry Protein Chemistry/Proteomics Unit University of Tromsoe and Neuroscience Research Program Tromsoe, Norway University of Helsinki, Helsinki, Finland To be publicly discussed with Professor Marja Makarow Institute of Biotechnology and Department of Applied Biochemistry and Molecular Biology University of Helsinki, Helsinki, Finland Julkaisija-Utgivare-Publisher Kansanterveyslaitos (KTL) Mannerheimintie 166 00300 Helsinki puh. vaihde 09-47441, felefax 09-4744 8408 Folkhälsoinstitutet Mannerheimvägen 166 00300, Helsinki tel.
    [Show full text]
  • Survey of Diagnosis of Lysosomal Storage Disorders
    Survey of diagnosis of lysosomal storage disorders Milan Elleder Institute of Inherited Metabolic Disorders Charles University, 1st Faculty of Medicine and University Hospital Prague October 5, 2006 prehistory – empirical part of the story clinical reports by Tay (1881), Gaucher (1882) and Sachs (1896) and by others modern history of the lysosomes their discovery: C. de Duve et al. (Biochem. J. 60, 604, 1955) Nobel Prize 1974 modern history of the lysosomal storage •H.G. Hers et al. (1963) Acid glucosidase deficiency in GSD II •Austin et al. (1963) Arylsulphatase deficiency in MLD present state of the art (2006) – 48 defined entities of different molecular basis (groups Ia,b and II) neuronal lipofuscinosesceroid t r P i a p l e m pt i enzymopathies t i o d y Ca l- y due to mutant GSD II p l r p t o e h te p ep i t enzyme a n i se c d i a id t n at α h a h -1 i s D protein lp o e e u ,4 e s s lysosomal storage -g s I a e te (n=30) d t luc r i ha a n lp os se ro u se disorders Ia β a ida u -s ta -glu ci d -2 fa cos d l se -i te l ylc ip L a -su era ase - on N dase mid α ur an ini MPS ase Id ar sam ep luco n=10 cera h D-g midase c-α- lysosome NA β-galactosylceramidase * expanded by CoA:α-glucosaminide NAc-transferase ase G yelin storage lcNAc- 6-su gom lphate sulph sphin A GalNAc-6-sulphate sulphataseatase lipidoses tase G sulfa alN n=9 aryl β Ac B -g -4- luc sul ase * h ur pha id A ya on te in e lu id su s A * r ase lp m a N o hat d e * a -a n as sa i s id e o e s c c n ase p e a a s s u i e e t e l d e a s d s a y ( -g m i s r l h a a - a d y n a t α β osi i a s i d - t d y - l s u i d c o c i l g r s i a c o A m s g o 2006 N u la s luc la n o l a n i o c g r co c t n - n t a ga u u o c c o - a i n s -β e a d F a s ) α a m c n - l a - M α a m i A - n α M g N α i * - in d - a β β i s glycoproteinoses d e a s n=7 e 29 hydrolases 1 transferase I.A lysosomal enzymopathies caused by mutation of the enzyme protein mutated enzymes degrading lipids, 20.
    [Show full text]
  • Storage Disorders
    GENETIC TESTING SOLUTIONS FOR: STORAGE DISORDERS EGL Genetics has nearly 50 years of genetic testing history built upon a strong academic foundation. Our expertise spans common and rare genetic disease testing, genomic variant interpretation, test development and research. As we have grown, we have evolved into a high-science and high-performing CLIA-certifi ed and CAP-accredited laboratory with over 1,100 test offerings across biochemical genetics, cytogenetics, and molecular genetic testing. COMPREHENSIVE OFFERINGS Lysosomal storage disorders and glycogen storage disorders (GSDs) with numerous subtypes, wide-ranging phenotypes and multi-organ and system involvement, which are often impossible to diagnose based on clinical features alone. EGL Genetics offers disease-specifi c, as well as, comprehensive biochemical and molecular testing to pinpoint the underlying cause of symptoms. Identifi cation of a causative genetic defect may provide information for prognosis and therapeutic intervention, and is required for carrier testing and early prenatal diagnosis. Lysosomal Storage Disorders • Mucopolysaccharidoses • Sphingolipidoses • Oligosaccharidoses Glycogen Storage Disorders ADVANTAGES OF PARTNERING WITH EGL GENETICS: • Board-certifi ed laboratory directors & genetic counselors to answer clinical and analytical questions • EGL Genetics’ oligosaccharide screening method provides additional information and more targeted follow-up pathways than traditional qualitative screens • Customizable NGS panels with add-on genes available upon request
    [Show full text]
  • Structural and Biochemical Insights Into Biosynthesis and Degradation of and Degradation Into Insights Biosynthesis and Biochemical Structural
    Tom Reichenbach Tom kth royal institute of technology Structuralbiochemicaland biosynthesisinsights into degradation and of Doctoral Thesis in Biotechnology Structural and biochemical insights into biosynthesis and degradation of N-glycans TOM REICHENBACH N -glycans ISBN 978-91-7873-660-7 TRITA-CBH-FOU-2020:41 KTH2020 www.kth.se Stockholm, Sweden 2020 Structural and biochemical insights into biosynthesis and degradation of N-glycans TOM REICHENBACH Academic Dissertation which, with due permission of the KTH Royal Institute of Technology, is submitted for public defence for the Degree of Doctor of Philosophy on Friday the 16th October 2020, at 10:00 a.m. in Kollegiesalen, KTH, Brinellvägen 8, Stockholm. Doctoral Thesis in Biotechnology KTH Royal Institute of Technology Stockholm, Sweden 2020 © Tom Reichenbach ISBN 978-91-7873-660-7 TRITA-CBH-FOU-2020:41 Printed by: Universitetsservice US-AB, Sweden 2020 Abstract Carbohydrates are a primary energy source for all living organisms, but importantly, they also participate in a number of life-sustaining biological processes, e.g. cell signaling and cell-wall synthesis. The first part of the thesis examines glycosyltransferases that play a crucial role in the biosynthesis of N-glycans. Precursors to eukaryotic N-glycans are synthesized in the endoplasmic reticulum (ER) in the form of a lipid-bound oligosaccharide, which is then transferred to a nascent protein. The first seven sugar units are assembled on the cytoplasmic side of the ER, which is performed by glycosyltransferases that use nucleotide sugars as donors. The mannosyl transferase PcManGT is produced by the archaeon Pyrobaculum calidifontis, and the biochemical and structural results presented in the thesis suggest that the enzyme may be a counterpart to the glycosyltransferase Alg1 that participates in the biosynthesis of N-glycans in eukaryotes.
    [Show full text]
  • Glucocerebrosidase: Functions in and Beyond the Lysosome
    Journal of Clinical Medicine Review Glucocerebrosidase: Functions in and Beyond the Lysosome Daphne E.C. Boer 1, Jeroen van Smeden 2,3, Joke A. Bouwstra 2 and Johannes M.F.G Aerts 1,* 1 Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Faculty of Science, 2333 CC Leiden, The Netherlands; [email protected] 2 Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Faculty of Science, 2333 CC Leiden, The Netherlands; [email protected] (J.v.S.); [email protected] (J.A.B.) 3 Centre for Human Drug Research, 2333 CL Leiden, The Netherlands * Correspondence: [email protected] Received: 29 January 2020; Accepted: 4 March 2020; Published: 9 March 2020 Abstract: Glucocerebrosidase (GCase) is a retaining β-glucosidase with acid pH optimum metabolizing the glycosphingolipid glucosylceramide (GlcCer) to ceramide and glucose. Inherited deficiency of GCase causes the lysosomal storage disorder named Gaucher disease (GD). In GCase-deficient GD patients the accumulation of GlcCer in lysosomes of tissue macrophages is prominent. Based on the above, the key function of GCase as lysosomal hydrolase is well recognized, however it has become apparent that GCase fulfills in the human body at least one other key function beyond lysosomes. Crucially, GCase generates ceramides from GlcCer molecules in the outer part of the skin, a process essential for optimal skin barrier property and survival. This review covers the functions of GCase in and beyond lysosomes and also pays attention to the increasing insight in hitherto unexpected catalytic versatility of the enzyme. Keywords: glucocerebrosidase; lysosome; glucosylceramide; skin; Gaucher disease 1.
    [Show full text]
  • Characterization of the Regulation of the Er Stress Response by the Dna Repair Enzyme Aag
    DECIPHERING THE CROSSTALK: CHARACTERIZATION OF THE REGULATION OF THE ER STRESS RESPONSE BY THE DNA REPAIR ENZYME AAG Clara Forrer Charlier Faculty of Health and Medical Sciences Department of Biochemistry and Physiology This thesis is submitted for the degree of Doctor of Philosophy June 2018 DECIPHERING THE CROSSTALK: CHARACTERIZATION OF THE REGULATION OF THE ER STRESS RESPONSE BY THE DNA REPAIR ENZYME AAG- Clara Forrer Charlier – June 2018 SUMMARY The genome is a very dynamic store of genetic information and constantly threatened by endogenous and exogenous damaging agents. To maintain fidelity of the information stored, several robust and overlapping repair pathways, such as the Base Excision Repair (BER) pathway, have evolved. The main BER glycosylase responsible for repairing alkylation DNA damage is the alkyladenine DNA glycosylase (AAG). Repair initiated by AAG can lead to accumulation of cytotoxic intermediates. Here, we report the involvement of AAG in the elicitation of the unfolded protein response (UPR), a mechanism triggered to restore proteostasis in the cell whose dysfunction is implicated in diseases like diabetes, Alzheimer’s disease and cancer. Firstly, we determined that not only human ARPE-19 cells were capable of eliciting the UPR, but that an alkylating agent, methyl methanesulfonate (MMS), also triggers the response, and that in the absence of AAG the response is greatly diminished. Our luciferase reporter assay indicates that the response is activated on multiple branches (IRE1 and ATF6) on both AAG-proficient and deficient cells. Although no transcriptional induction of UPR markers was detected by RT-qPCR at 6 hours post MMS treatment, preliminary western-blot data at 6 and 24h, show activation of key UPR markers (p-eIF2α, BiP and XBP-1) upon MMS treatment in wild-type cells and little or no activation on AAG -/-.
    [Show full text]