United Nations Environmental Programme
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1. -
Îles Grecques – Les Cyclades Et Athènes
Îles grecques Les Cyclades et Athènes Y VOIR L’ESSENTIEL M VIVRE LE MEILLEUR Marathonas Elefsina (Éleusis) ATHÈNES Megara p.46 Rafina Karistos Pireas (Le Pirée) SALAMINA + ANDROS ATHÈNES AU QUOTIDIEN / Gavrio L’ACROPOLE / Andros MUSÉE ARCHÉOLOGIQUE NATIONAL MAKRONISSI Egina G OLFE SA RONIQ Lavrio ANGISTRI UE KEA Korissia GIAROS Methana CAP Ioulida SOUNION P Poros É LO PO N POROS NÈ Ermo SE Merichas SYROS+ Hydra DOKOS KYTHNOS M SERFOPOULA E R D SERIFOS E Livadi M Y R T ANTIPAR O Kamares Apollonia CYCLADES OCCIDENTALES +SIFNOS DESPOTIK VELOPOULA p.164 KIMOLOS FALKONERA ANTIMILOS Plaka POLIEGOS Adamas MILOS Folegandros FOLEGANDROS+Karavosta TURQUIE E OP LES CYCLADES EUR ET ATHÈNES IRA GRÈCE ASIE AFRIQUE M E R É G É Gavrio ANDROS E Andros CYCLADES SEPTENTRIONALES p.98 GIAROS +TINOS IKARIA Tinos Mykonos Ermoupoli + SYROS+ MYKONOS RINIA + DELOS LA Naxos DONOUSSA Parikia + ANTIPAROS NAXOS s KINAROS Apollonia KOUFONISSIA +SIFNOS PAROS KEROS DESPOTIKO +AMORGOS IRAKLIA Katapola Amorgos SCHINOUSSA LIEGOS SIKINOS IOS Ios Kastro Alopronia Folegandros ANUDROS ANDROS+Karavostassis ASTIPALEA CYCLADES ORIENTALES p.206 Oia FIRASSIA ANAFI Fira + Anafi SANTORIN CHRISTIANI N 25 km Îles grecques Les Cyclades et Athènes BIENVENUE DANS LES… es maisons chaulées de blanc dégringolant d’une colline, vers une mer d’un bleu aussi D intense que l’azur du ciel… Voici l’image éternelle des Cyclades, archipel aux 250 îles de toutes tailles disséminées dans la mer Égée. Chacune pourrait être une perle d’un komboloï, ce chapelet grec dont le nœud de fixation serait Athènes, la capitale, berceau culturel de l’Europe, sur laquelle veille la silhouette mythique de l’Acropole. -
The Chiton Radula: a Unique Model for Biomineralization Studies
4 The Chiton Radula: A Unique Model for Biomineralization Studies Lesley R. Brooker1 and Jeremy A. Shaw2 1University of the Sunshine Coast 2Centre for Microscopy, Characterisation & Analysis University of Western Australia Australia 1. Introduction Over the course of evolution, a range of strategies have been developed by different organisms to produce unique materials and structures perfected for their specific function. This biological mastery of materials production has inspired the birth of the new discipline of biomaterials through biomimicry (Birchall, 1989). Chitons (Mollusca: Polyplacophora) are slow moving, bilaterally symmetrical and dorso- ventrally flattened molluscs that are commonly found on hard substrata in intertidal regions of coastlines around the world (Kaas & Jones, 1998). All species are characterized by a series of eight dorsal, articulating shell plates or valves, which may be embedded, to varying degrees, in a fleshy, muscular girdle (Kaas & Jones, 1998) (Figure 1). Approximately 750 living species are known, and while intertidal regions are home to the majority of chitons, a number of species can be found at depths of up to 8000m where they feed on detrital material (Kaas & Jones, 1998). Fig. 1. Photograph of the dorsal surface of the chiton Acanthopleura gaimardi, showing the eight overlapping aragonite plates surrounded by the fleshy girdle, which, in this species, is covered in small aragonite spines. Chitons feed by rasping macro- and micro-algae from the rocks on which they live through the use of a radula. The radula has been coined as a conveyor belt of continuously developing www.intechopen.com 66 Advanced Topics in Biomineralization teeth, replaced by new teeth as they are worn and lost. -
References Please Help Making This Preliminary List As Complete As Possible!
Cypraeidae - important references Please help making this preliminary list as complete as possible! ABBOTT, R.T. (1965) Cypraea arenosa Gray, 1825. Hawaiian Shell News 14(2):8 ABREA, N.S. (1980) Strange goings on among the Cypraea ziczac. Hawaiian Shell News 28 (5):4 ADEGOKE, O.S. (1973) Paleocene mollusks from Ewekoro, southern Nigeria. Malacologia 14:19-27, figs. 1-2, pls. 1-2. ADEGOKE, O.S. (1977) Stratigraphy and paleontology of the Ewekoro Formation (Paleocene) of southeastern Nigeria. Bulletins of American Paleontology 71(295):1-379, figs. 1-6, pls. 1-50. AIKEN, R. P. (2016) Description of two undescribed subspecies and one fossil species of the Genus Cypraeovula Gray, 1824 from South Africa. Beautifulcowries Magazine 8: 14-22 AIKEN, R., JOOSTE, P. & ELS, M. (2010) Cypraeovula capensis - A specie of Diversity and Beauty. Strandloper 287 p. 16 ff AIKEN, R., JOOSTE, P. & ELS, M. (2014) Cypraeovula capensis. A species of diversity and beauty. Beautifulcowries Magazine 5: 38–44 ALLAN, J. (1956) Cowry Shells of World Seas. Georgian House, Melbourne, Australia, 170 p., pls. 1-15. AMANO, K. (1992) Cypraea ohiroi and its associated molluscan species from the Miocene Kadonosawa Formation, northeast Japan. Bulletin of the Mizunami Fossil Museum 19:405-411, figs. 1-2, pl. 57. ANCEY, C.F. (1901) Cypraea citrina Gray. The Nautilus 15(7):83. ANONOMOUS. (1971) Malacological news. La Conchiglia 13(146-147):19-20, 5 unnumbered figs. ANONYMOUS. (1925) Index and errata. The Zoological Journal. 1: [593]-[603] January. ANONYMOUS. (1889) Cypraea venusta Sowb. The Nautilus 3(5):60. ANONYMOUS. (1893) Remarks on a new species of Cypraea. -
DESERTMED a Project About the Deserted Islands of the Mediterranean
DESERTMED A project about the deserted islands of the Mediterranean The islands, and all the more so the deserted island, is an extremely poor or weak notion from the point of view of geography. This is to it’s credit. The range of islands has no objective unity, and deserted islands have even less. The deserted island may indeed have extremely poor soil. Deserted, the is- land may be a desert, but not necessarily. The real desert is uninhabited only insofar as it presents no conditions that by rights would make life possible, weather vegetable, animal, or human. On the contrary, the lack of inhabitants on the deserted island is a pure fact due to the circumstance, in other words, the island’s surroundings. The island is what the sea surrounds. What is de- serted is the ocean around it. It is by virtue of circumstance, for other reasons that the principle on which the island depends, that the ships pass in the distance and never come ashore.“ (from: Gilles Deleuze, Desert Island and Other Texts, Semiotext(e),Los Angeles, 2004) DESERTMED A project about the deserted islands of the Mediterranean Desertmed is an ongoing interdisciplina- land use, according to which the islands ry research project. The “blind spots” on can be divided into various groups or the European map serve as its subject typologies —although the distinctions are matter: approximately 300 uninhabited is- fluid. lands in the Mediterranean Sea. A group of artists, architects, writers and theoreti- cians traveled to forty of these often hard to reach islands in search of clues, impar- tially cataloguing information that can be interpreted in multiple ways. -
Occurrence of Ocypode Cursor (Linnaeus, 1758) (Crustacea, Decapoda) in Salento (Southern Italy)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Thalassia Salentina provided by ESE - Salento University Publishing Thalassia Sal. 41 (2019), 47-52 ISSN 0563-3745, e-ISSN 1591-0725 DOI 10.1285/i15910725v41p47 http: siba-ese.unisalento.it - © 2019 Università del Salento GIORGIO MANCINELLI1,2,3*, FRANCESCO BELMONTE4, GENUARIO BELMONTE1,3 1 Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy 2 National Research Council (CNR), Institute of Biological Resources and Marine Biotechnologies (IRBIM), Lesina - (FG), Italy 3 CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, 00196 Roma, Italy 4 via G. Casciaro, 73100 Lecce, Italy * corresponding author: [email protected] OCCURRENCE OF OCYPODE CURSOR (LINNAEUS, 1758) (CRUSTACEA, DECAPODA) IN SALENTO (SOUTHERN ITALY) SUMMARY Ocypode cursor (Linnaeus, 1758) is the only Ocypode species present in the Mediterranean Sea. It is widely distributed in the southern part of the basin (mainly African coast) and only recently it has been reported also from Sicil- ian Ionian sea. The present record is the first for Italian peninsula and the northernmost record of O. cursor in the Mediterranen Sea. INTRODUCTION The tufted ghost crab Ocypode cursor (Linnaeus, 1758) is a semi-terrestrial burrowing brachyuran of nocturnal habits generally found in supratidal and intertidal sandy beaches (STRACHAN et al., 1999). The species is the only member of the family Ocypodidae occurring in the Mediterranean Sea; specifically, it is characterized by a disjoint distribu- tion, comprising the eastern Mediterranean Sea and tropical coasts of the eastern Atlantic Ocean as far south as northern Namibia, with the exclusion of the western Mediterranean. -
Saviours of the Seas Cruise the World
June 2020 boatinternational.com / £7.00 THE OCEANS ISSUE MISSION TO A CORAL SAVIOURS KINGDOM OF THE SEAS MEET THE WINNERS OF OUR 2020 OCEAN AWARDS CRUISE THE WORLD Oyster’s elegant new flagship is built for blue water At the helm of 43-metre Ultimate Greek island guide. How to build the world’s biggest Canova: the new foiling Don’t set course until you’ve sailing catamaran – and then wonder from Baltic Yachts read our essential feature turn it into a floating gallery VOYAGE Right: an Ancient Roman theatre built around the third century BCE; Right, middle: the white cliffs on Sarakiniko Beach. Below: octopuses hung out to dry in the village of WHICH Mandrakia Milos THE VIBE: This volcanic island may lack the razzmatazz of some of its better-known Cycladic neighbours, but with fewer crowds and more beaches than any other island in the group, GREEK it shouldn’t be ignored. It’s not the place if you want to party next to Paris Hilton but its spectacular rock formations, hot springs and stunning cliffs make it a geography buff’s nirvana. WHO GOES? Celebrity visitors are few and far between (thankfully this also means no hordes of Instagram influencer ISLAND wannabes) but superyacht royalty, including the late Steve Jobs’ Venus, are regularly spotted off its shores. LOCAL LOWDOWN: Milos’s mineral extraction industry dates from the Neolithic period and today it is still the biggest supplier of bentonite and perlite in the European Union. Its SUITS traditional mining industry is why the island has been slower to develop its tourism trade, but its mineral-rich grounds are also what make it so spectacular. -
CYCLADES 1 WEEK Dazzling White Villages, Golden Beaches and Clear Azure Water Are Just the Start of What These Islands Have to Offer
Hermes Yachting P.C. 92-94 Kolokotroni str., 18535 Piraeus, Greece Tax No. EL801434127 Tel. +30 210 4110094 E-mail: [email protected] Web: www.hermesyachting.com CYCLADES 1 WEEK Dazzling white villages, golden beaches and clear azure water are just the start of what these islands have to offer. Within easy reach of Athens, these are the Aegean’s most precious gems. Ancient Greek geographers gave this unique cluster of islands the name Cyclades because they saw that they formed a circle (kyklos) of sorts around the sacred island of Delos. According to myth, the islands were the debris that remained after a battle between giants. In reality, they resulted from colossal geological events like earthquakes and volcanic eruptions. Their colours are blue and white like the Greek flag. The islands come in all sizes and, though the ingredients are the same – incomparable light, translucent water, heavenly beaches, lustrous white buildings and bare rock, each one has its own distinct character. The group’s stars, Mykonos and Santorini, need no introduction but the lesser-known islands, big and small, are just as rewarding. For starters, try aristocratic Syros, cosmopolitan Paros, the sculptors’ paradise of Tinos, bountiful Naxos, exotic Milos and historic Delos, not to mention the ‘hidden gems’ that adorn the Aegean, such as Tzia/Kea, Kythnos, Sifnos, Serifos, Amorgos, Sikinos, Anafi and Folegandros. Whether you’re travelling with your family, friends or sweetheart, you’re bound to find your summer paradise in the sun in the Cyclades. Beaches of indescribable beauty in the Cyclades What’s your idea of the perfect beach? Green-blue water and white sand? Beach bars and water sports? Framed by rocks for snorkelling and scuba diving? Is a secret Aegean cove accessible only on foot or by boat? No matter what your ideal is, you’ll find it in the Cyclades. -
Polyplacophora: Chitonidae): First Records in European Waters
Zootaxa 3626 (4): 593–596 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3626.4.14 http://zoobank.org/urn:lsid:zoobank.org:pub:00EE2336-D60C-49A1-BC40-0FAE551F5DB6 Tonicia atrata and Chiton cumingsii (Polyplacophora: Chitonidae): First records in European waters ANDRÉS ARIAS1,2 & NURIA ANADÓN1 1Departamento de Biología de Organismos y Sistemas (Zoología), Universidad de Oviedo, Oviedo 33071, Spain 2Corresponding author. E-mail: [email protected] At present, over 300 species of marine alien Mollusca are reported from the European waters (Streftaris et al. 2005; Zenetos et al. 2010). However, only three alien polyplacophoran have been recorded: Chaetopleura angulata (Spengler, 1797), Acanthopleura gemmata (Blainville, 1825) and Chiton hululensis (E. A. Smith, 1903); the latter is considered as “questionable” (Zenetos et al. 2010). These polyplacophoran constituting about 1% of the alien marine mollusc reported from Europe. Here we present the first record of Tonicia atrata (Sowerby, 1840) and Chiton cumingsii Frembly, 1827 in European waters, constituting the first evidence of their presence outside their native range. Furthermore, we give brief notes on the taxonomy and distribution of T. atrata and C. cumingsii, and discuss the potential pathways for introduction to Europe. In Europe, T. atrata occurs together with the well-known alien Ch. angulata; and probably both species have historically been misidentified in collections because both reach large size (> 60 mm) and in many cases the larger size was commonly used to differentiate the presumed alien (Ch. angulata) from the native polyplacophoran of smaller size. -
(Sdf) for National Inventories of Natural Sites of Conservation Interest
UNITED NATIONS ENVIRONMENT PROGRAMME MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS (RAC/SPA) STANDARD DATA-ENTRY FORM (SDF) FOR NATIONAL INVENTORIES OF NATURAL SITES OF CONSERVATION INTEREST UNEP RAC/SPA-TUNIS, 2002 page 1 INTRODUCTION The Protocol concerning Specially Protected Areas and Biological Diversity in the Mediterranean and the Action plan for the Protection of the Marine Environment and the Sustainable Development of the Coastal Areas of the Mediterranean (MAP Phase II), adopted by the Contracting Parties to the Barcelona Convention in 1995, contain provisions for the preparation of inventories at national as well as regional level. Central to the success of Barcelona Convention and its protocols is the level of information on habitats and species of Mediterranean interest which will be assembled during the coming years. In this regard, the quantitative and qualitative improvement of the level of information attained within the implementation of these instruments will have to be regarded as an indicator of their performance. In this context, and following a specific provision of MAP Phase II to prepare inventories according to common criteria, the Contracting Parties adopted at their 10th Ordinary Meeting (Tunis, 18-21 November 1997) criteria for the establishment of national inventories of natural sites of conservation interest. The criteria provide that "Information concerning each inventoried site will be compiled according to a standard format, which will have to be agreed by the Parties upon a proposal from the Centre. Such information will include, but will not necessarily be limited to, the fields detailed in Appendix I to these criteria." (Art. -
The Evolution of Pollinator–Plant Interaction Types in the Araceae
BRIEF COMMUNICATION doi:10.1111/evo.12318 THE EVOLUTION OF POLLINATOR–PLANT INTERACTION TYPES IN THE ARACEAE Marion Chartier,1,2 Marc Gibernau,3 and Susanne S. Renner4 1Department of Structural and Functional Botany, University of Vienna, 1030 Vienna, Austria 2E-mail: [email protected] 3Centre National de Recherche Scientifique, Ecologie des Foretsˆ de Guyane, 97379 Kourou, France 4Department of Biology, University of Munich, 80638 Munich, Germany Received August 6, 2013 Accepted November 17, 2013 Most plant–pollinator interactions are mutualistic, involving rewards provided by flowers or inflorescences to pollinators. An- tagonistic plant–pollinator interactions, in which flowers offer no rewards, are rare and concentrated in a few families including Araceae. In the latter, they involve trapping of pollinators, which are released loaded with pollen but unrewarded. To understand the evolution of such systems, we compiled data on the pollinators and types of interactions, and coded 21 characters, including interaction type, pollinator order, and 19 floral traits. A phylogenetic framework comes from a matrix of plastid and new nuclear DNA sequences for 135 species from 119 genera (5342 nucleotides). The ancestral pollination interaction in Araceae was recon- structed as probably rewarding albeit with low confidence because information is available for only 56 of the 120–130 genera. Bayesian stochastic trait mapping showed that spadix zonation, presence of an appendix, and flower sexuality were correlated with pollination interaction type. In the Araceae, having unisexual flowers appears to have provided the morphological precon- dition for the evolution of traps. Compared with the frequency of shifts between deceptive and rewarding pollination systems in orchids, our results indicate less lability in the Araceae, probably because of morphologically and sexually more specialized inflorescences. -
MASS TOURISM and the MEDITERRANEAN MONK SEAL
MASS TOURISM and the MEDITERRANEAN MONK SEAL The role of mass tourism in the decline and possible future extinction of Europe’s most endangered marine mammal, Monachus monachus William M. Johnson & David M. Lavigne International Marine Mammal Association 1474 Gordon Street, Guelph, Ontario, Canada N1L 1C8 ABSTRACT Mass tourism has been implicated in the decline of the Mediterranean monk seal (Monachus monachus) since the 1970s, when scientists first began reviewing the global status of the species. Since then, the scientific literature, recognising the inexorable process of disturbance and loss of habitat that this economic and social activity has produced along extensive stretches of Mediterranean coastline, has consistently identified tourism as among the most significant causes of decline affecting this critically-endangered species. Despite apparent consensus on this point, no serious attempt has been made to assess the tourist industry’s role, or to acknowledge and discuss its moral and financial responsibility, in the continuing decline and possible future extinction of M. monachus. In view of this, The Monachus Guardian 2 (2) November 1999 1 we undertook a review of existing literature to identify specific areas in which tourism has impacted the Mediterranean monk seal. Our results provide compelling evidence that mass tourism has indeed played a major role in the extirpation of the monk seal in several European countries, that it continues to act as a significant force of extinction in the last Mediterranean strongholds of the species, and that the industry exerts a generally negative influence on the design and operation of protected areas in coastal marine habitats. There are compelling reasons to conclude that unless the tourist industry can be persuaded to become an active and constructive partner in monk seal conservation initiatives, it will eventually ensure the extinction of the remaining monk seals in the Mediterranean.