Occurrence of Ocypode Cursor (Linnaeus, 1758) (Crustacea, Decapoda) in Salento (Southern Italy)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1. -
Ghost Crab (Ocypode Quadrata) Abundance and Depredation on Loggerhead
Ghost crab (Ocypode quadrata) abundance and depredation on Loggerhead sea turtle (Caretta caretta) hatchlings on Onslow Beach, North Carolina Sara R. Marschhauser 2010 Advisor: Dr. Christopher DePerno College of Natural Resources, North Carolina State University Advisory Committee: Dr. Stephen Fegley (Institute of Marine Sciences, University of North Carolina) and Dr. Ted Simons (College of Agriculture and Life Sciences, North Carolina State University) Introduction Sea turtles must overcome nest mortality and avoidance of predators following emergence from the nest (Fowler 1979, Miller 2003). Nest mortality can occur due to nest placement, erosion, development of beaches, temperature, and predators (Lutz & Musick 1997, McFarlane 1963). In some locations predators, (e.g., raccoons, foxes and crabs) are the main cause of nest mortality (Barton & Roth 2008, Engeman et al. 2003, Fowler 1979, Garmenstani 2005, Ratnaswany & Warren 1998) and may be the main cause of sea turtle hatchling mortality. Management of sea turtle nests has decreased the mortality of sea turtle nests and hatchlings by some predators in North Carolina (Cordes & Rikard 2005); however, the effect of the current predator management policy of removing raccoons is unknown, but this practice may be causing an increase in other predator populations, such as ghost crabs (Ocypode quadrata). Little is known regarding the depredation rates of sea turtle hatchlings by ghost crabs; however, the abundance and distribution of ghost crabs along Onslow Beach varies dramatically between different areas of the beach (S. Fegley, pers. comm.), which may make sea turtle hatchlings at certain areas of the beach more susceptible to predation. Also, beach characteristics may be responsible for increased depredation. -
On the Crabs of the Family Ocypodidae in the Collection of the Raffles Museum M. W. F. TWEEDIE
Reprint from Bulletin of the Raffles Museum, Singapore, Straits Settlements, No. IS, August 1937 On the Crabs of the family Ocypodidae in the collection of the Raffles Museum hy M. W. F. TWEEDIE M. W. F. TWEEDIE On the Crabs of the Family Ocypodidae in the Collection of the Raffles Museum By M. W. F. TwEEDiE, M.A. The material described in this paper has been collected for the most part during the last four years, mainly in mangrove swamps around Singapore Island and at a few localities on the east and west coasts of the Malay Peninsula. The greater part of the paper and most of the figures were prepared at the British Museum (Natural History) during August and September, 1936, and my grateful acknowledgments are due to the Director for permission to work there and for facilities provided, and particularly to Dr. Isabella Gordon for her unfailing help and encouragement. I wish also to express my thanks to the Directorates of the Zoological Museums at Leiden and Amsterdam for permission to examine types, and for the helpfulness and courtesy with which I was received by the members of the staffs of these museums. Finally acknowledgments are due to Prof. Dr. H. Balss, Dr. B. N. Chopra and Dr. C. J. Shen for their kindness in comparing specimens with types and authentic specimens in their respective institutions. The mode adopted for collecting the material may be of interest to collectors of Crustacea, and possibly other invertebrate groups, in the tropics. It was found that if crabs, especially Grapsidse and Ocypodidse, are put straight into alcohol, they tend to die slowly and in their struggles to shed their limbs and damage each other, so that often less than 10% of the collection survive as perfect specimens. -
17 the Crabs Belonging to the Grapsoidea Include a Lot Of
17 SUPERFAMILY GRAPSOIDEA The crabs belonging to the Grapsoidea include a lot of ubiquitous species collected in the mangrove and/or along the coastline. As a result, most of the species listed here under the ‘Coastal Rock-rubble’ biotope of table 2b could be reasonably listed also with marine species. This is particularly true for the Grapsidae: Grapsus, Pachygrapsus, Pseudograpsus, and Thalassograpsus. FAMILY GECARCINIDAE Cardisoma carnifex (Herbst, 1796). Figure 12. – Cardisoma carnifex - Guinot, 1967: 289 (Checklist of WIO species, with mention of Grande Comore and Mayotte). - Bouchard, 2009: 6, 8, Mayotte, Malamani mangrove, 16 April 2008, St. 1, 12°55.337 S, 44°09.263 E, upper mangrove in shaded area, burrow, about 1.5 m depth, 1 male 61×74 mm (MNHN B32409). - KUW fieldwork November 2009, St. 6, Petite Terre, Badamiers spillway, upper littoral, 1 female 53×64 mm (MNHN B32410), 1 male 65×75.5 mm (MNHN B32411); St. 29, Ngouja hotel, Mboianatsa beach, in situ photographs only. Distribution. – Widespread in the IWP. Red Sea, Somalia, Kenya, Tanzania, Mozambique, South Africa, Europa, Madagascar, Comoros, Seychelles, Réunion, Mauritius, India, Taiwan, Japan, Australia, New Caledonia, Fiji, Wallis & Futuna, French Polynesia. Comment. – Gecarcinid land crabs are of large size and eaten in some places (West Indies, Wallis & Futuna, and French Polynesia). In Mayotte, however, they are not much prized for food and are not eaten. Figure 12. Cardisoma carnifex. Mayotte, KUW 2009 fieldwork: A) aspect of station 29, upper littoral Ngouja hotel, Mboianatsa beach; B) same, detail of a crab at the entrance of its burrow; C) St. 6, 1 female 53×64 mm (MNHN B32410); D) probably the same specimen, in situ at St. -
Burrow Morphology of the Land Crab Gecarcinus Lateralis and the Ghost
Smith ScholarWorks Geosciences: Faculty Publications Geosciences 1-2014 Burrow Morphology of the Land Crab Gecarcinus lateralis and the Ghost Crab Ocypode quadrata on San Salvador Island, The Bahamas: Comparisons and Palaeoenvironmental Implications Koji Seike University of Tokyo H. Allen Curran Smith College, [email protected] Follow this and additional works at: https://scholarworks.smith.edu/geo_facpubs Part of the Geology Commons Recommended Citation Seike, Koji and Curran, H. Allen, "Burrow Morphology of the Land Crab Gecarcinus lateralis and the Ghost Crab Ocypode quadrata on San Salvador Island, The Bahamas: Comparisons and Palaeoenvironmental Implications" (2014). Geosciences: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/geo_facpubs/47 This Article has been accepted for inclusion in Geosciences: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] SPANISH JOURNAL OF PALAEONTOLOGY Burrow morphology of the land crab Gecarcinus lateralis and the ghost crab Ocypode quadrata on San Salvador Island, The Bahamas: comparisons and palaeoenvironmental implications Koji SEIKE1* & H. Allen CURRAN2 1 Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, 277-8564, Japan; [email protected] 2 Department of Geosciences, Smith College, Northampton, Massachusetts, 01063, USA; [email protected] * Corresponding author Seike, K. & Curran, H.A. 2014. Burrow morphology of the land crab Gecarcinus lateralis and the ghost crab Ocypode quadrata on San Salvador Island, The Bahamas: comparisons and palaeoenvironmental implications [Morfologías de las madrigueras del cangrejo terrestre Gecarcinus lateralis y del cangrejo fantasma Ocypode quadrata en la isla de San Salvador (Bahamas): comparación e implicaciones paleoambientales]. -
National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
National monitoring program for biodiversity and non-indigenous species in Egypt January 2016 1 TABLE OF CONTENTS page Acknowledgements 3 Preamble 4 Chapter 1: Introduction 8 Overview of Egypt Biodiversity 37 Chapter 2: Institutional and regulatory aspects 39 National Legislations 39 Regional and International conventions and agreements 46 Chapter 3: Scientific Aspects 48 Summary of Egyptian Marine Biodiversity Knowledge 48 The Current Situation in Egypt 56 Present state of Biodiversity knowledge 57 Chapter 4: Development of monitoring program 58 Introduction 58 Conclusions 103 Suggested Monitoring Program Suggested monitoring program for habitat mapping 104 Suggested marine MAMMALS monitoring program 109 Suggested Marine Turtles Monitoring Program 115 Suggested Monitoring Program for Seabirds 117 Suggested Non-Indigenous Species Monitoring Program 121 Chapter 5: Implementation / Operational Plan 128 Selected References 130 Annexes 141 2 AKNOWLEGEMENTS 3 Preamble The Ecosystem Approach (EcAp) is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way, as stated by the Convention of Biological Diversity. This process aims to achieve the Good Environmental Status (GES) through the elaborated 11 Ecological Objectives and their respective common indicators. Since 2008, Contracting Parties to the Barcelona Convention have adopted the EcAp and agreed on a roadmap for its implementation. First phases of the EcAp process led to the accomplishment of 5 steps of the scheduled 7-steps process such as: 1) Definition of an Ecological Vision for the Mediterranean; 2) Setting common Mediterranean strategic goals; 3) Identification of an important ecosystem properties and assessment of ecological status and pressures; 4) Development of a set of ecological objectives corresponding to the Vision and strategic goals; and 5) Derivation of operational objectives with indicators and target levels. -
Burrow Architectural Types of the Atlantic Ghost Crab, Ocypode Quadrata (Fabricius
bioRxiv preprint doi: https://doi.org/10.1101/006098; this version posted July 25, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Burrow architectural types of the Atlantic ghost crab, Ocypode quadrata (Fabricius, 2 1787) (Brachyura: Ocypodidae), in Brazil 3 4 WILLIAN T. A. F. SILVA1,2, TEREZA C. S. CALADO1 5 6 1Integrated Laboratories of Marine and Natural Sciences (LabMar), Federal University of 7 Alagoas (UFAL), Avenida Aristeu de Andrade, 452, Farol, CEP 57051-090, Maceió, 8 Alagoas, Brazil. 9 2Current affiliation: Department of Evolutionary Biology (Ecology and Genetics), 10 Evolutionary Biology Center (EBC), Uppsala University, Uppsala, Sweden. 11 Corresponding author: WTAFS, [email protected] 12 13 Running title: Shapes of ghost crab burrows 14 15 Abstract: A broad range of aspects from paleontology to physiology of the ghost crabs 16 Ocypode quadrata have been studied worldwide. These crabs have been used as ecological 17 indicators of the levels of anthropogenic impacts on sandy beaches. Our aim is to report the 18 variety of burrow architecture types constructed by ghost crabs Ocypode quadrata on 19 beaches of Maceió, Brazil. We found 20 types of burrows that differ in shape (number of 20 axes, number of openings, orientation of blind end, number of branches). The slash-shaped 21 burrows (type C) were the most frequent shape, followed by types K (spiral) and E (Y- 22 shaped). -
Description of the First Juvenile Stage of the Fiddler Crab Minuca Mordax (Smith, 1870) (Crustacea, Decapoda, Ocypodidae)
Volume 56(14):163‑169, 2016 DESCRIPTION OF THE FIRST JUVENILE STAGE OF THE FIDDLER CRAB MINUCA MORDAX (SMITH, 1870) (CRUSTACEA, DECAPODA, OCYPODIDAE) SALISE BRANDT MARTINS¹² MURILO ZANETTI MAROCHI¹³ SETUKO MASUNARI¹⁴ ABSTRACT The first stage of the fiddler crab Minuca mordax is described here. Zoea larvae obtained from four ovigerous female were reared in the laboratory until the development of the first crab stage. The development from zoea I to the first juvenile instar lasted 35 days after hatching. The first crab stage of Minuca mordax can be morphologically distinguished from those of Minuca burgersi and Leptuca cumulanta by a 2‑segmented antennule endopod (3‑segmented in M. burgersi, unsegmented in L. cumulanta), an unsegmented maxillule endopod (2‑seg‑ mented in M. burgersi and L. cumulanta), and a 4‑segmented first and second maxilliped endopod (respectively unsegmented and 5‑segmented in M. burgersi and L. cumulanta). The three species have the following characters in common: segmented peduncle of antennule 2; endopod of antennule unsegmented; presence of aesthetascs on the antennule; peduncle of an‑ tenna 3‑segmented; flagellum of antenna 6‑segmented; mandible 3‑segmented; maxilla with coxal and basal endite bilobed; first, second and third maxillae with exopod 2‑segmented and abdomen with six somites that are wider than long. Key-Words: Juvenile morphology; Development; Mangrove; Guaratuba Bay. INTRODUCTION Minuca mordax (Smith, 1870). This species is distrib- uted in the Western Atlantic Ocean, from the Gulf The former fiddler crab genus Uca Leach, 1814 of Mexico to the Rio Grande do Sul state, southern was composed of approximately 104 species, with 12 Brazil (Bezerra, 2012). -
Uca Rapax (Mudflat Fiddler Crab)
UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Uca rapax (Mudflat Fiddler Crab) Order: Decapoda (Crabs, Lobsters and Shrimps) Class: Malacostraca (Crustaceans: Crabs, Sand-hoppers and Woodlice) Phylum: Arthropoda (Arthropods) Fig. 1. Mudflat fiddler crab, Uca rapax. [http://ocean.si.edu/mangroves, downloaded 10 March 2016] TRAITS. The mudflat fiddler crab Uca rapax is considered dimorphic since the males have a large claw on one side of the body (Fig. 1) and the females have two small claws. Males are also larger in body size: in Brazil, the carapace width at maturity was 13-15mm in males and 11- 12mm in females (Castiglioni and Negreiros-Fransozo, 2004). Both females and males are generally greyish-white in colour, but green to blue can be seen in the large claw and the eyestalks. Colour is dependent upon environmental factors, and hints of orange and yellow are also found in the claws. Fiddler crabs are darker during the day time and light during the night (Tpwd.Texas.Gov., 2016). DISTRIBUTION. Uca rapax is found along tropical coasts of the USA (southern Florida, Texas), West Indies and the Caribbean, and Brazil (Fig. 2). HABITAT AND ACTIVITY. As the name suggests (mud fiddler crab), they reside in intertidal zones of muddy areas of the salt marsh and mangroves (Figueiredo et al., 2008) (Fig. 3). The soft mud is not only home to these creatures but also their feeding ground and protection. Uca rapax are diurnal, skilled at burrowing into the mud, creating holes that provide a nest for their young, privacy for mating, for sleeping and in the colder regions “hibernation” during the winter UWI The Online Guide to the Animals of Trinidad and Tobago Ecology (Gcrl.Usm.Edu., 2016). -
Bioecology of the Ghost Crab Ocypode Quadrata (Fabricius, 1787) (Crustacea: Brachyura) Compared with Other Intertidal Crabs in the Southwestern Atlantic
Journal of Shellfish Research, Vol. 29, No. 2, 503–512, 2010. BIOECOLOGY OF THE GHOST CRAB OCYPODE QUADRATA (FABRICIUS, 1787) (CRUSTACEA: BRACHYURA) COMPARED WITH OTHER INTERTIDAL CRABS IN THE SOUTHWESTERN ATLANTIC JOAQUIM O. BRANCO,1 JULIANO C. HILLESHEIM,1 HE´LIO A. A. FRACASSO,2 MARTIN L. CHRISTOFFERSEN3* AND CRISTIANO L. EVANGELISTA1 1Centro de Cieˆncias Tecnolo´gicas da Terra e do Mar (CTTMar), Universidade Vale do Itajaı´ (UNIVALI), CP 360, 88302-202 Itajaı´, SC, Brazil; 2Departamento de Hidrobiologia, Universidade Federal de Sa˜o Carlos (UFSCar), 13565-905, Sa˜o Carlos, SP, Brazil; 3Departamento de Sistema´tica e Ecologia, Universidade Federal da Paraı´ba, 58059-900, Joa˜o Pessoa, PB, Brazil ABSTRACT Data sets on the natural dynamics of beach ecosystems are scarce and fragmentary. Such data are necessary for implementing more efficient monitoring programs that quantify the dynamics of key ecological attributes on sandy beaches. This article contributes to the bioecology of ghost crabs from subtropical Praia Brava, Itajaı´, Santa Catarina. Ocypode quadrata occurs in sandy beaches along the tropical–temperate western Atlantic, from Rhode Island (US) to Rio Grande do Sul (Brazil). During 14 consecutive months, a total of 649 specimens were captured: 255 females (39%), 241 males (37%), and 153 juveniles of undetermined sex (24%). Highest densities were recorded in June and November, with a total of 1,900 burrows distributed along the beach (56.95%) and dunes (43.05%). Sixteen natural diet items were identified for this crab, with a larger participation of Apis spp. (38.97% of relative volume). In the local food web, the ground-burrowing owl Speotyto cunicularia was the main crab predator. -
Species Diversity of Fiddler Crabs, Genus Uca Leach, 1814 (Crustacea: Ocypodidae), from Taiwan and Adjacent Islands, with Notes on the Japanese Species
Zootaxa 4083 (1): 057–082 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4083.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:FC132216-6CFB-4E3F-B166-6F9BE3C50588 Species diversity of fiddler crabs, genus Uca Leach, 1814 (Crustacea: Ocypodidae), from Taiwan and adjacent islands, with notes on the Japanese species HSI-TE SHIH1, JUNG-HSIANG LEE2, PING-HO HO3,8, HUNG-CHANG LIU4, CHIA-HSIANG WANG5,6, HIROSHI SUZUKI7 & SHAO-JYUN TENG1 1Department of Life Science, National Chung Hsing University, 250, Kuo Kuang Road, Taichung 402, Taiwan. E-mail: [email protected] 2Center for General Education, National University of Tainan, 33, Sec. 2, Shulin Street, Tainan City 700, Taiwan. 3Department of Environment Biology and Fishery Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 202, Taiwan. 453, Chenggong 11th St., Zhubei City, Hsinchu County 302, Taiwan 5National Taiwan Museum, 6F, 71 Guanqian Road, Taipei 10047, Taiwan. 61-1 Alley 24, Lane 417 Tzechiang Road, New Taipei City 25162, Taiwan 7Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima City, 890-0056, Japan 8Corresponding author. E-mail: [email protected] Abstract The fiddler crabs, genus Uca Leach, 1814 (Decapoda, Ocypodidae) of Taiwan, including the offshore islands of Penghu (Pescadores), Kinmen (Quemoy), Matsu (Matzu), and Dongsha (Pratas), are revised, with the recognition of five subgen- era and 15 species, viz. Uca (Austruca) Bott, 1973: U. lactea (De Haan, 1835), U. perplexa (H. Milne Edwards, 1837), U. -
Human Threats to Sandy Beaches – a Meta-Analysis of Ghost Crabs
Estuarine, Coastal and Shelf Science 169 (2016) 56e73 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Human threats to sandy beaches: A meta-analysis of ghost crabs illustrates global anthropogenic impacts. * Thomas A. Schlacher a, , Serena Lucrezi b, Rod M. Connolly c, Charles H. Peterson d, Ben L. Gilby a, Brooke Maslo e, Andrew D. Olds a, Simon J. Walker a, Javier X. Leon a, Chantal M. Huijbers a, Michael A. Weston f, Alexander Turra g, Glenn A. Hyndes h, Rebecca A. Holt c, David S. Schoeman a a School of Science and Engineering, The University of the Sunshine Coast, Q-4558, Maroochydore, Australia b TREESdTourism Research in Economic Environs and Society, North-West University, Potchefstroom, South Africa c Australian Rivers Institute e Coast & Estuaries, and School of Environment, Gold Coast Campus, Griffith University, Queensland, 4222, Australia d Institute of Marine Sciences, University of North Carolina, Chapel Hill, Morehead City, NC, 28557, USA e Department of Ecology, Evolution and Natural Resources Rutgers, The State University of New Jersey, USA f Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia g Departamento de Oceanografia Biologica, Instituto Oceanografico, Universidade de Sao~ Paulo, Praça do Oceanografico, 191, CEP 05508-120, Sao~ Paulo, SP, Brazil h Centre for Marine Ecosystems Research, Edith Cowan University, WA, Australia article info abstract Article history: Beach and coastal dune systems are increasingly subjected to a broad range of anthropogenic pressures Received 23 October 2015 that on many shorelines require significant conservation and mitigation interventions.