Electromagnetic Waves

Lecture 35: Electromagnetic Theory

Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Propagation of Electromagnetic Waves in a Conducting Medium We will consider a plane electromagnetic wave travelling in a linear dielectric medium such as air along the z direction and being incident at a conducting interface. The medium will be taken to be a linear medium. So that one can describe the electrodynamics using only the E and H vectors. We wish to investigate the propagation of the wave in the conducting medium.

As the medium is linear and the propagation takes place in the infinite medium, the vectors , and are still mutually perpendicular. We take the along the x direction, the magnetic field along 𝐸𝐸�⃗ 𝐻𝐻��⃗ π‘˜π‘˜οΏ½βƒ— the y- dirrection and the propagation to take place in the z direction. Further, we will take the conductivity to be finite and the conductor to obey Ohm’s law, = . Consider the pair of curl equations of Maxwell. 𝐽𝐽⃗ πœŽπœŽπΈπΈοΏ½βƒ—

Γ— = = πœ•πœ•π΅π΅οΏ½βƒ— πœ•πœ•π»π»οΏ½οΏ½βƒ— 𝛻𝛻 𝐸𝐸�⃗ βˆ’ βˆ’ΞΌ Γ— = +πœ•πœ•πœ•πœ• = πœ•πœ•πœ•πœ• + πœ•πœ•πΈπΈοΏ½βƒ— πœ•πœ•πΈπΈοΏ½βƒ— 𝛻𝛻 𝐻𝐻��⃗ 𝐽𝐽⃗ πœ–πœ– πœŽπœŽπΈπΈοΏ½βƒ— πœ–πœ– Let us take , and to be respectively in x, y and zπœ•πœ•πœ•πœ• direction. Weπœ•πœ•πœ•πœ• the nhave,

𝐸𝐸�⃗ 𝐻𝐻��⃗ π‘˜π‘˜οΏ½βƒ— Γ— = = πœ•πœ•πΈπΈπ‘₯π‘₯ πœ•πœ•π»π»π‘¦π‘¦ �𝛻𝛻 𝐸𝐸�⃗�𝑦𝑦 βˆ’ΞΌ i.e., πœ•πœ•πœ•πœ• πœ•πœ•πœ•πœ•

+ = 0 (1) πœ•πœ•πΈπΈπ‘₯π‘₯ πœ•πœ•π»π»π‘¦π‘¦ ΞΌ and πœ•πœ•πœ•πœ• πœ•πœ•πœ•πœ•

Γ— = = + πœ•πœ•π»π»π‘¦π‘¦ πœ•πœ•πΈπΈπ‘₯π‘₯ �𝛻𝛻 𝐻𝐻��⃗�π‘₯π‘₯ βˆ’ 𝜎𝜎𝐸𝐸π‘₯π‘₯ πœ–πœ– i.e. πœ•πœ•πœ•πœ• πœ•πœ•πœ•πœ•

+ + = 0 (2) πœ•πœ•π»π»π‘¦π‘¦ πœ•πœ•πΈπΈπ‘₯π‘₯ 𝜎𝜎𝐸𝐸π‘₯π‘₯ πœ–πœ– πœ•πœ•πœ•πœ• πœ•πœ•πœ•πœ•

1

We take the time variation to be harmonic ( ~ ) so that the time derivative is equivalent to a multiplication by . The pair of equations (1) and𝑖𝑖𝑖𝑖𝑖𝑖 (2) can then be written as 𝑒𝑒

𝑖𝑖𝑖𝑖 + Hy = 0 πœ•πœ•πΈπΈπ‘₯π‘₯ 𝑖𝑖μω πœ•πœ•πœ•πœ• + + = 0 πœ•πœ•π»π»π‘¦π‘¦ We can solve this pair of coupled equations𝜎𝜎 by𝐸𝐸π‘₯π‘₯ taking𝑖𝑖𝑖𝑖𝑖𝑖 a𝐸𝐸 π‘₯π‘₯derivative of either of the equations with respect to z and substituting the otherπœ•πœ•πœ•πœ• into it, 2 2 Hy 2 + = 2 ( + ) = 0 πœ•πœ• 𝐸𝐸π‘₯π‘₯ βˆ‚ πœ•πœ• 𝐸𝐸π‘₯π‘₯ 𝑖𝑖μω βˆ’ 𝑖𝑖𝑖𝑖𝑖𝑖 𝜎𝜎 𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸π‘₯π‘₯ Define, a complex constantπœ•πœ•π‘§π‘§ Ξ³ throughπœ•πœ•πœ•πœ• πœ•πœ•π‘§π‘§ 2 = ( + ) in terms of which we have, 2𝛾𝛾 𝑖𝑖𝑖𝑖𝑖𝑖 𝜎𝜎 𝑖𝑖𝑖𝑖𝑖𝑖 2 2 = 0 (3) πœ•πœ• 𝐸𝐸π‘₯π‘₯ In an identical fashion, we get βˆ’ 𝛾𝛾 𝐸𝐸π‘₯π‘₯ πœ•πœ•π‘§π‘§ 2 2 2 = 0 (4) πœ•πœ• 𝐻𝐻𝑦𝑦 βˆ’ 𝛾𝛾 𝐻𝐻𝑦𝑦 Solutions of (3) and (4) are well knownπœ•πœ•π‘§π‘§ and are expressed in terms of hyperbolic functions, = cosh( ) + sinh( ) = cosh( ) + sinh( ) 𝐸𝐸π‘₯π‘₯ 𝐴𝐴 𝛾𝛾𝛾𝛾 𝐡𝐡 𝛾𝛾𝛾𝛾 where A, B, C and D are constants to be determined. If the values of the electric field at z=0 is 𝐻𝐻𝑦𝑦 𝐢𝐢 𝛾𝛾𝛾𝛾 𝐷𝐷 𝛾𝛾𝛾𝛾 0 and that of the magnetic field at z=0 is 0, we have = 0 and = 0. In order to determine the constants B and D, let us return back to the original first order 𝐸𝐸 𝐻𝐻 𝐴𝐴 𝐸𝐸 𝐢𝐢 𝐻𝐻 equations (1) and (2)

+ Hy = 0 πœ•πœ•πΈπΈπ‘₯π‘₯ 𝑖𝑖μω πœ•πœ•πœ•πœ• + + = 0 πœ•πœ•π»π»π‘¦π‘¦ Substituting the solutions for E and H 𝜎𝜎𝐸𝐸π‘₯π‘₯ 𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸π‘₯π‘₯ πœ•πœ•πœ•πœ• 0 sinh( ) + cosh( ) + (H0cosh( ) + sinh( )) = 0 This equation must remain valid for all values of z, which is possible if the coefficients of 𝛾𝛾𝐸𝐸 𝛾𝛾𝛾𝛾 𝐡𝐡𝐡𝐡 𝛾𝛾𝛾𝛾 𝑖𝑖𝑖𝑖𝑖𝑖 𝛾𝛾𝛾𝛾 𝐷𝐷 𝛾𝛾𝛾𝛾 and cosh terms are separately equated to zero, π‘ π‘ π‘ π‘ π‘ π‘ β„Ž 0 + = 0 + 0 = 0 𝐸𝐸 𝛾𝛾 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 The former gives, 𝐡𝐡𝐡𝐡 𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻

2

= 0 𝛾𝛾 𝐷𝐷 βˆ’ (𝐸𝐸 + ) = 𝑖𝑖𝑖𝑖𝑖𝑖 �𝑖𝑖𝑖𝑖𝑖𝑖 𝜎𝜎 𝑖𝑖𝑖𝑖𝑖𝑖 βˆ’ + 𝑖𝑖𝑖𝑖𝑖𝑖 = 0 𝜎𝜎 𝑖𝑖𝑖𝑖𝑖𝑖 βˆ’οΏ½0 𝐸𝐸 = 𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸 where βˆ’ πœ‚πœ‚ = + 𝑖𝑖𝑖𝑖𝑖𝑖 πœ‚πœ‚ οΏ½ 𝜎𝜎 𝑖𝑖𝑖𝑖𝑖𝑖

Likewise, we get,

= 0 Substituting these, our solutions for the E and H become, 𝐡𝐡 βˆ’πœ‚πœ‚π»π»

= 0 cosh( ) 0 sinh( ) 0 𝐸𝐸π‘₯π‘₯ = 𝐸𝐸 0 cosh(𝛾𝛾𝛾𝛾 )βˆ’ πœ‚πœ‚π»π» sinh( 𝛾𝛾𝛾𝛾) 𝐸𝐸 The wave is propagating in the 𝐻𝐻z 𝑦𝑦direction.𝐻𝐻 Let 𝛾𝛾us𝛾𝛾 evaluateβˆ’ the𝛾𝛾 fields𝛾𝛾 when the wave has πœ‚πœ‚ reached = ,

= 0 cosh( ) 0 sinh( ) 𝑧𝑧 𝑙𝑙 0 𝐸𝐸π‘₯π‘₯ = 𝐸𝐸 0 cosh(𝛾𝛾𝛾𝛾 )βˆ’ πœ‚πœ‚π»π» sinh( 𝛾𝛾)𝛾𝛾 𝐸𝐸 If is large, we can approximate𝐻𝐻 𝑦𝑦 𝐻𝐻 𝛾𝛾𝛾𝛾 βˆ’ 𝛾𝛾𝛾𝛾 πœ‚πœ‚ 𝑙𝑙 sinh( ) cosh( ) = 2𝛾𝛾𝛾𝛾 𝑒𝑒 we then have, 𝛾𝛾𝛾𝛾 β‰ˆ 𝛾𝛾𝛾𝛾 = ( ) 0 0 2𝛾𝛾𝛾𝛾 𝑒𝑒 π‘₯π‘₯ 0 𝐸𝐸 = (𝐸𝐸 βˆ’ πœ‚πœ‚π»π») 0 2𝛾𝛾𝛾𝛾 𝐸𝐸 𝑒𝑒 The ratio of the magnitudes of the electric𝐻𝐻𝑦𝑦 field𝐻𝐻 toβˆ’ magnetic field is defined as the β€œcharacteristic πœ‚πœ‚ impedance” of the wave

= = + 𝐸𝐸π‘₯π‘₯ 𝑖𝑖𝑖𝑖𝑖𝑖 οΏ½ οΏ½ πœ‚πœ‚ οΏ½ 𝐻𝐻𝑦𝑦 𝜎𝜎 𝑖𝑖𝑖𝑖𝑖𝑖 Suppose we have lossless medium, Οƒ=0, i.e. for a perfect conductor, the characteristic impedance is

3

= 7 πœ‡πœ‡ 2 12 2 2 If the medium is vacuum, = 0 = 4 Γ— 10πœ‚πœ‚ NοΏ½A and = 0 = 8.85 Γ— 10 C N m πœ–πœ– gives 377 . The characteristic impedance,βˆ’ as the name suggests, has the βˆ’dimension of πœ‡πœ‡ πœ‡πœ‡ πœ‹πœ‹ ⁄ πœ–πœ– πœ–πœ– ⁄ βˆ’ resistance. πœ‚πœ‚ β‰ˆ 𝛺𝛺 In this case, = .

Let us look at the full𝛾𝛾 threeπ‘–π‘–βˆš πœ‡πœ‡πœ‡πœ‡dimensional version of the propagation in a conductor. Once again, we start with the two curl equations,

Γ— = πœ•πœ•π»π»οΏ½οΏ½βƒ— 𝛻𝛻 𝐸𝐸�⃗ βˆ’ΞΌ Γ— = +πœ•πœ•πœ•πœ• πœ•πœ•πΈπΈοΏ½βƒ— 𝛻𝛻 𝐻𝐻��⃗ πœŽπœŽπΈπΈοΏ½βƒ— πœ–πœ– Take a curl of both sides of the first equation, πœ•πœ•πœ•πœ•

( Γ— ) Γ— Γ— = 2 = πœ•πœ• 𝛻𝛻 𝐻𝐻��⃗ 𝛻𝛻 �𝛻𝛻 𝐸𝐸�⃗� 𝛻𝛻�𝛻𝛻 β‹… 𝐸𝐸�⃗� βˆ’ 𝛻𝛻 𝐸𝐸�⃗ βˆ’ΞΌ As there are no charges or currents, we ignore the divergence term andπœ•πœ•πœ•πœ• substitute for the curl of H from the second equation,

2 = + πœ•πœ• πœ•πœ•πΈπΈοΏ½βƒ— 𝛻𝛻 𝐸𝐸�⃗ ΞΌ οΏ½πœŽπœŽπΈπΈοΏ½βƒ— πœ–πœ– οΏ½ πœ•πœ•πœ•πœ• 2 πœ•πœ•πœ•πœ• = + 2 πœ•πœ•πΈπΈοΏ½βƒ— πœ•πœ• 𝐸𝐸�⃗ 𝜎𝜎𝜎𝜎 𝜎𝜎𝜎𝜎 We take the propagating solutions to be πœ•πœ•πœ•πœ• πœ•πœ•π‘‘π‘‘

= 0 π‘–π‘–οΏ½π‘˜π‘˜οΏ½βƒ—β‹…π‘Ÿπ‘Ÿβƒ—βˆ’πœ”πœ”πœ”πœ” οΏ½ so that the above equation becomes, 𝐸𝐸�⃗ 𝐸𝐸�⃗ 𝑒𝑒

2 = ( + 2 ) so that we have, the complex propagationπ‘˜π‘˜ 𝐸𝐸constantοΏ½βƒ— 𝑖𝑖𝑖𝑖𝑖𝑖 to𝑖𝑖 beπœ”πœ” givenπœ‡πœ‡πœ‡πœ‡ 𝐸𝐸�byβƒ—

2 = + 2 so that π‘˜π‘˜ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 πœ”πœ” πœ‡πœ‡πœ‡πœ‡

= ( + ) k is complex and its real and imaginary partsπ‘˜π‘˜ canοΏ½ πœ”πœ”πœ”πœ”be separπœ”πœ”πœ”πœ” ated𝑖𝑖𝑖𝑖 by standard algebra,

4 we have

1/2 1/2 2 2 = 1 + 1 + + 1 + 1 2 2 2 2 2 πœ‡πœ‡πœ‡πœ‡ 𝜎𝜎 𝜎𝜎 π‘˜π‘˜ πœ”πœ”οΏ½ οΏ½οΏ½ οΏ½ οΏ½ 𝑖𝑖 οΏ½οΏ½ βˆ’ οΏ½ οΏ½ πœ”πœ” πœ–πœ– πœ”πœ” πœ–πœ– Thus the propagation vector Ξ² and the attenuation factor Ξ± are given by

2 = 1 + + 1 2 2 2 πœ‡πœ‡πœ‡πœ‡ 𝜎𝜎 𝛽𝛽 πœ”πœ”οΏ½ οΏ½οΏ½οΏ½ οΏ½ πœ”πœ” πœ–πœ– 2 = 1 + 1 2 2 2 πœ‡πœ‡πœ‡πœ‡ 𝜎𝜎 𝛼𝛼 πœ”πœ”οΏ½ οΏ½οΏ½οΏ½ βˆ’ οΏ½ πœ”πœ” πœ–πœ– The ration determines whether a material is a good conductor or otherwise. Consider a good 𝜎𝜎 conductor forπœ”πœ”πœ”πœ” which . For this case, we have, 𝜎𝜎 ≫ πœ”πœ”πœ”πœ” = = 2 πœ”πœ”πœ”πœ”πœ”πœ” 𝛽𝛽 𝛼𝛼 οΏ½ The speed of electromagnetic wave is given by

2 = = πœ”πœ” πœ”πœ” 𝑣𝑣 οΏ½ 𝛽𝛽 𝜎𝜎𝜎𝜎 The electric field diminishes with distance as . The distance to which the field penetrates before its amplitude diminishes be a factor 1 is known βˆ’as𝛼𝛼 𝛼𝛼the β€œskin depth” , which is given by 𝑒𝑒 βˆ’ 𝑒𝑒 1 2 = =

𝛿𝛿 οΏ½ 𝛼𝛼 πœ”πœ”πœ”πœ”πœ”πœ” The wave does not penetrate much inside a conductor. Consider electromagnetic wave of frequency 1 MHz for copper which has a conductivity of approximately 6 Γ— 107 1m 1. Substituting these values, one gets the skin depth in Cu to be about 0.067 mm. For comparison,βˆ’ theβˆ’ skin depth in sea water which 𝛺𝛺 is conducting because of salinity, is about 25 cm while that for fresh water is nearly 7m. Because of small skin depth in conductors, any current that arises in the metal because of the electromagnetic wave is confined within a thin layer of the surface.

5

Reflection and Transmission from interface of a conductor

Consider an electromagnetic wave to be incident normally at the interface between a dielectric and a conductor. As before, we take the media to be linear and assume no charge or current densities to exist anywhere. We then have a continuity of the electric and the magnetic fields at the interface so that

+ = + = 𝐸𝐸𝐼𝐼 𝐸𝐸𝑅𝑅 𝐸𝐸𝑇𝑇 The relationships between the magnetic field𝐻𝐻 and𝐼𝐼 the𝐻𝐻𝑅𝑅 electric𝐻𝐻𝑇𝑇 field are given by

= 1 𝐸𝐸𝐼𝐼 𝐻𝐻𝐼𝐼 =πœ‚πœ‚ 1 𝐸𝐸𝑅𝑅 𝐻𝐻𝑅𝑅 βˆ’ = πœ‚πœ‚ 2 𝐸𝐸𝑇𝑇 𝐻𝐻𝑇𝑇 the minus sign in the second relation comes because πœ‚πœ‚of the propagation direction having been reversed on reflection.

Solving these, we get,

= 2 1 2 + 1 𝐸𝐸𝑅𝑅 πœ‚πœ‚ βˆ’ πœ‚πœ‚ 2 2 𝐸𝐸𝐼𝐼 = πœ‚πœ‚ =πœ‚πœ‚ 2 + 1 𝐸𝐸𝑇𝑇 𝐸𝐸𝑅𝑅 πœ‚πœ‚ 𝐼𝐼 𝐼𝐼 The magnetic field expressions are given by𝐸𝐸 interchanging𝐸𝐸 πœ‚πœ‚ 1πœ‚πœ‚ and 2 in the above expressions.

πœ‚πœ‚ πœ‚πœ‚

E

6

Let us look at consequence of this. Consider a good conductor such as copper. We can see that 2 is a small . For instance, taking the wave frequency to be 1 MHz and substituting 6 1 1 πœ‚πœ‚ conductivity of Cu to be 6 Γ— 10 , we can calculate 2 to be approximately (1 + ) Γ— 2.57 Γ— 4 10 whereas the vacuum impedanceβˆ’ βˆ’ 1 = 377 . This implies 𝛺𝛺 π‘šπ‘š πœ‚πœ‚ 𝑖𝑖 βˆ’ 𝛺𝛺 πœ‚πœ‚ 2𝛺𝛺 1 = 1 2 + 1 𝐸𝐸𝑅𝑅 πœ‚πœ‚ βˆ’ πœ‚πœ‚ β‰ˆ βˆ’ which shows that a good metal is also a good𝐸𝐸𝐼𝐼 reflector.πœ‚πœ‚ πœ‚πœ‚ On the other hand, if we calculate the we find it to be substantially reduced, being only about (1 + ) Γ— 1 6. βˆ’ For the transmitted magnetic field, the ratio is approximately +2. Though E is reflected𝑖𝑖 with a change 𝐻𝐻𝑇𝑇 of , the magnetic field is reversed in direction𝐻𝐻𝐼𝐼 but does not undergo a phase change. The continuity of the magnetic field then requires that the transmitted field be twice as large.

Surface Impedance

As we have seen, the electric field is confined to a small depth at the conductor interface known as the skin depth. We define surface impedance as the ratio of the parallel component of electric field that gives rise to a current at the conductor surface,

= 𝐸𝐸βˆ₯ 𝑍𝑍𝑠𝑠 where is the surface current density. 𝐾𝐾𝑠𝑠

Assuming𝐾𝐾𝑠𝑠 that the current flows over the skin depth, one can write, for the current density, (assuming no reflection from the back of this depth)

= 0 βˆ’π›Ύπ›Ύπ›Ύπ›Ύ Since the current density has been taken to decay𝐽𝐽 exponentially,𝐽𝐽 𝑒𝑒 we can extend the integration to infinity and get

0 = 0 = βˆ’π›Ύπ›Ύπ›Ύπ›Ύ 𝐽𝐽 𝐾𝐾𝑠𝑠 ∫ 𝐽𝐽 𝑒𝑒 𝑑𝑑𝑑𝑑 The current density at the surface can be written as . For a𝛾𝛾 good conductor, we have,

βˆ₯ = + 2 𝜎𝜎𝐸𝐸 (1 + ) 2

Thus 𝛾𝛾 �𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 πœ”πœ” πœ‡πœ‡πœ‡πœ‡ β‰ˆ 𝑖𝑖 οΏ½πœ”πœ”πœ”πœ”πœ”πœ”β„

1 = = = (1 + ) = (1 + ) + 2 𝐸𝐸βˆ₯ 𝛾𝛾 πœ”πœ”πœ”πœ” 𝑍𝑍𝑠𝑠 οΏ½ 𝑖𝑖 𝑖𝑖 ≑ 𝑅𝑅𝑠𝑠 𝑖𝑖𝑋𝑋𝑠𝑠 𝐾𝐾𝑠𝑠 𝜎𝜎 𝜎𝜎 𝜎𝜎𝜎𝜎

7 where the surface resistance and surface reactance are given by

𝑅𝑅𝑠𝑠 1 𝑋𝑋𝑠𝑠 = =

𝑅𝑅𝑠𝑠 𝑋𝑋𝑠𝑠 The current profile at the interface is as shown. 𝜎𝜎𝜎𝜎

Electromagnetic Waves

Lecture35: Electromagnetic Theory

Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Tutorial Assignment

1. A 2 GHz electromagnetic propagates in a non-magnetic medium having a relative of 20 and a conductivity of 3.85 S/m. Determine if the material is a good conductor or otherwise. Calculate the of the wave, the propagation and attenuation constants, the skin depth and the intrinsic impedance.

8

2. An electromagnetic wave with its electric field parallel to the plane of incidence is incident from vacuum onto the surface of a perfect conductor at an angle of incidence ΞΈ. Obtain an expression for the total electric and the magnetic field.

Solutions to Tutorial Assignments

1. One can see that = 2 Γ— (2 Γ— 109) Γ— (20 Γ— 8.85 Γ— 10 12) = 2.22 S/m. The ratio of conductivity to is 1.73 which says it is neither a good βˆ’metal nor a good dielectric. The πœ”πœ”πœ”πœ” πœ‹πœ‹ and the attenuation constant are given by, 𝜎𝜎 πœ”πœ”πœ”πœ”

𝛽𝛽 𝛼𝛼

2 = 1 + + 1 = 229.5 rad/m 2 2 2 πœ‡πœ‡πœ‡πœ‡ 𝜎𝜎 𝛽𝛽 πœ”πœ”οΏ½ οΏ½οΏ½οΏ½ οΏ½ πœ”πœ” πœ–πœ– 2 Np = 1 + 1 = 132.52 2 2 2 m πœ‡πœ‡πœ‡πœ‡ 𝜎𝜎 𝛼𝛼 πœ”πœ”οΏ½ οΏ½οΏ½οΏ½ βˆ’ οΏ½ πœ”πœ” πœ–πœ– The intrinsic impedance is

= = 50.8 + 29.9 + 𝑖𝑖𝑖𝑖𝑖𝑖 πœ‚πœ‚ 7οΏ½ 𝑖𝑖 Ξ© The phase velocity is = 5.4 Γ— 10 m𝜎𝜎/s. 𝑖𝑖𝑖𝑖𝑖𝑖 πœ”πœ” 1 The skin depth is =𝛽𝛽 = 7.5 mm

𝛿𝛿 𝛼𝛼 2. The case of p is shown.

9

Let the incident plane be y-z plane. Let us look at the magnetic field. We have, since both the incident and the reflected fields are in the same medium,

= = 𝐸𝐸𝑖𝑖 πΈπΈπ‘Ÿπ‘Ÿ Let us write the incident magnetic field as πœ‚πœ‚ 𝐻𝐻𝑖𝑖 π»π»π‘Ÿπ‘Ÿ = ( sin cos ) The reflected magnetic field is given by βˆ’π‘–π‘–π‘–π‘– 𝑦𝑦 πœƒπœƒβˆ’π‘§π‘§ πœƒπœƒ 𝐻𝐻��⃗𝑖𝑖 𝐻𝐻𝑖𝑖 𝑒𝑒 π‘₯π‘₯οΏ½

= ( sin + cos ) Since the tangential components of the electricβˆ’π‘–π‘–π‘–π‘– 𝑦𝑦fieldπœƒπœƒ is𝑧𝑧 continuous,πœƒπœƒ we have, π»π»οΏ½οΏ½βƒ—π‘Ÿπ‘Ÿ π»π»π‘Ÿπ‘Ÿ 𝑒𝑒 π‘₯π‘₯οΏ½ cos = cos As = , we have = , and consequently, = . Thus the total magnetic field can be 𝐸𝐸𝑖𝑖 πœƒπœƒ πΈπΈπ‘Ÿπ‘Ÿ πœƒπœƒπ‘Ÿπ‘Ÿ written as πœƒπœƒπ‘–π‘– πœƒπœƒπ‘Ÿπ‘Ÿ 𝐸𝐸𝑖𝑖 πΈπΈπ‘Ÿπ‘Ÿ 𝐻𝐻𝑖𝑖 π»π»π‘Ÿπ‘Ÿ = + = sin 2 cos( cos )

sin βˆ’π‘–π‘–π‘–π‘–π‘–π‘– πœƒπœƒ 𝐻𝐻=��⃗𝑑𝑑2 𝐻𝐻��⃗𝑖𝑖 π»π»οΏ½οΏ½βƒ—π‘Ÿπ‘Ÿ 𝐻𝐻cos𝑖𝑖 𝑒𝑒( cos ) 𝛽𝛽𝛽𝛽 πœƒπœƒ π‘₯π‘₯οΏ½ 𝐸𝐸𝑖𝑖 βˆ’π‘–π‘–π‘–π‘–π‘–π‘– πœƒπœƒ The electric field has both y and𝑒𝑒 z components,𝛽𝛽 𝛽𝛽 πœƒπœƒ π‘₯π‘₯οΏ½ πœ‚πœ‚ = cos ( sin cos ) = sin βˆ’π‘–π‘–π‘–π‘–( 𝑦𝑦sin πœƒπœƒβˆ’π‘§π‘§cos πœƒπœƒ) 𝐸𝐸𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖 πœƒπœƒπ‘’π‘’ The reflected electric field also has both components,βˆ’π‘–π‘–π‘–π‘– 𝑦𝑦 πœƒπœƒβˆ’π‘§π‘§ πœƒπœƒ 𝐸𝐸𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖 πœƒπœƒπ‘’π‘’ = cos ( sin + cos ) = sin βˆ’(𝑖𝑖𝑖𝑖sin𝑦𝑦 +πœƒπœƒcos𝑧𝑧 ) πœƒπœƒ πΈπΈπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ βˆ’πΈπΈπ‘–π‘– πœƒπœƒπ‘’π‘’ Adding these two the total electric field, has theβˆ’π‘–π‘– 𝑖𝑖following𝑦𝑦 πœƒπœƒ 𝑧𝑧 components,πœƒπœƒ 𝐸𝐸𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖 πœƒπœƒπ‘’π‘’

= cos sin cos cos = 2 cos βˆ’π‘–π‘–π‘–π‘–π‘–π‘– sinπœƒπœƒ sin𝑖𝑖𝑖𝑖𝑖𝑖 ( πœƒπœƒcos βˆ’)𝑖𝑖 𝑖𝑖𝑖𝑖 πœƒπœƒ 𝐸𝐸𝑑𝑑𝑑𝑑 𝐸𝐸𝑖𝑖 πœƒπœƒπ‘’π‘’ �𝑒𝑒 βˆ’ 𝑒𝑒 οΏ½ = sin βˆ’π‘–π‘–π‘–π‘–π‘–π‘–sin πœƒπœƒ cos + cos 𝑖𝑖𝑖𝑖𝑖𝑖 πœƒπœƒπ‘’π‘’ 𝛽𝛽𝛽𝛽 πœƒπœƒ = 2 sin βˆ’π‘–π‘–sin𝑖𝑖𝑖𝑖 cosπœƒπœƒ ( 𝑖𝑖𝑖𝑖𝑖𝑖cos πœƒπœƒ) βˆ’π‘–π‘–π‘–π‘–π‘–π‘– πœƒπœƒ 𝐸𝐸𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖 πœƒπœƒπ‘’π‘’ �𝑒𝑒 𝑒𝑒 οΏ½ βˆ’π‘–π‘–π‘–π‘–π‘–π‘– πœƒπœƒ 𝐸𝐸𝑖𝑖 πœƒπœƒπ‘’π‘’ 𝛽𝛽𝛽𝛽 πœƒπœƒ

3.

10

Electromagnetic Waves

Lecture35: Electromagnetic Theory

Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Self Assessment Questions

1. For electromagnetic inside a good conductor, show that the electric and the magnetic fields are out of phase by 450. 2. A 2 kHz electromagnetic propagates in a non-magnetic medium having a relative permittivity of 20 and a conductivity of 3.85 S/m. Determine if the material is a good conductor or otherwise. Calculate the phase velocity of the wave, the propagation and attenuation constants, the skin depth and the intrinsic impedance. 3. An electromagnetic wave with its electric field perpendicular to the plane of incidence is incident from vacuum onto the surface of a perfect conductor at an angle of incidence ΞΈ. Obtain an expression for the total electric and the magnetic field.

11

Solutions to Self Assessment Questions

1. From the text, we see that the ratio of electric field to magnetic field is given by

= + 𝐸𝐸π‘₯π‘₯ 𝑖𝑖𝑖𝑖𝑖𝑖 𝑦𝑦 οΏ½ 𝐻𝐻 𝜎𝜎 𝑖𝑖𝑖𝑖𝑖𝑖= 4 For a good conductor, we can approximate this by 𝑖𝑖𝑖𝑖 . 𝑖𝑖𝑖𝑖𝑖𝑖 πœ”πœ”πœ”πœ” 3 12 6 2. One can see that = 2 Γ— (2 Γ— 10 ) Γ— (20 Γ— 8.οΏ½85πœŽπœŽΓ— 10𝑒𝑒 οΏ½) =𝜎𝜎 2.22 Γ— 10 S/m. The ratio of conductivity to is 1.73 Γ— 106 which says it is r a goodβˆ’ metal. The propagationβˆ’ constant πœ”πœ”πœ”πœ” πœ‹πœ‹ and the attenuation constant are given by, 𝜎𝜎 πœ”πœ”πœ”πœ”

𝛽𝛽 𝛼𝛼

= = 0.176 rad/m 2 πœ”πœ”πœ”πœ”πœ”πœ” οΏ½ 𝛽𝛽 = = 0.176 Np/m 2 πœ”πœ”πœ”πœ”πœ”πœ” 𝛼𝛼 οΏ½ The intrinsic impedance is

= = 0.045(1 + ) + 𝑖𝑖𝑖𝑖𝑖𝑖 πœ‚πœ‚ οΏ½4 𝑖𝑖 Ξ© The phase velocity is = 7.14 Γ— 10 𝜎𝜎m/s.𝑖𝑖𝑖𝑖 𝑖𝑖 πœ”πœ” 1 The skin depth is =𝛽𝛽 = 5.68 m. 3. The direction of electric and magnetic field for s polarization is as shown below. 𝛿𝛿 𝛼𝛼 Let the incident plane be y-z plane. The incident electric field is

taken along the x direction and is given by

= ( sin cos ) = βˆ’π‘–π‘–π‘–π‘– 𝑦𝑦 ( sinπœƒπœƒβˆ’π‘§π‘§+ cosπœƒπœƒ ) 𝐸𝐸�⃗𝑖𝑖 𝐸𝐸𝑖𝑖 𝑒𝑒 π‘₯π‘₯οΏ½ βˆ’π‘–π‘–π‘–π‘– 𝑦𝑦 πœƒπœƒ 𝑧𝑧 πœƒπœƒ The minus sign comesπΈπΈοΏ½βƒ—π‘Ÿπ‘Ÿ becauseβˆ’πΈπΈπ‘–π‘– 𝑒𝑒 at z=0, for any π‘₯π‘₯οΏ½y, the tangential component of the electric field must be zero.

The total electric field is along the x direction and is given by the sum of the above,

= 2 sin sin( cos ) βˆ’π‘–π‘–π‘–π‘–π‘–π‘– πœƒπœƒ 𝐸𝐸�⃗𝑑𝑑 𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒 𝛽𝛽𝛽𝛽 πœƒπœƒ π‘₯π‘₯οΏ½ 12 which is a travelling wave in the y direction but a standing wave in the z direction. Since the wave propagates in vacuum, we have,

= = 𝐸𝐸𝑖𝑖 πΈπΈπ‘Ÿπ‘Ÿ πœ‚πœ‚ The magnetic field has both y and z components. 𝐻𝐻 𝑖𝑖 π»π»π‘Ÿπ‘Ÿ

= + = cos ( sin cos ) cos ( sin + cos ) = 2 cos sin cos ( cosβˆ’π‘–π‘–π‘–π‘– 𝑦𝑦) πœƒπœƒβˆ’π‘§π‘§ πœƒπœƒ βˆ’π‘–π‘–π‘–π‘– 𝑦𝑦 πœƒπœƒ 𝑧𝑧 πœƒπœƒ 𝐻𝐻𝑑𝑑𝑑𝑑 𝐻𝐻𝑖𝑖𝑖𝑖 π»π»π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ βˆ’π»π»π‘–π‘– πœƒπœƒ 𝑒𝑒 βˆ’ 𝐻𝐻𝑖𝑖 πœƒπœƒπ‘’π‘’ βˆ’π‘–π‘–π‘–π‘–π‘–π‘– sin πœƒπœƒ = βˆ’2𝐻𝐻𝑖𝑖 cosπœƒπœƒπ‘’π‘’ cos (𝛽𝛽𝛽𝛽 cosπœƒπœƒ) 𝐸𝐸𝑖𝑖 βˆ’π‘–π‘–π‘–π‘–π‘–π‘– πœƒπœƒ βˆ’= +πœƒπœƒπ‘’π‘’ = sin 𝛽𝛽 𝛽𝛽 ( πœƒπœƒsin cos ) + sin ( sin + cos ) πœ‚πœ‚ = 2 cos sin sin ( cosβˆ’π‘–π‘–π‘–π‘– 𝑦𝑦) πœƒπœƒβˆ’π‘§π‘§ πœƒπœƒ βˆ’π‘–π‘–π‘–π‘– 𝑦𝑦 πœƒπœƒ 𝑧𝑧 πœƒπœƒ 𝐻𝐻𝑑𝑑𝑑𝑑 𝐻𝐻𝑖𝑖𝑖𝑖 π»π»π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ βˆ’π»π»π‘–π‘– πœƒπœƒ 𝑒𝑒 𝐻𝐻𝑖𝑖 πœƒπœƒ 𝑒𝑒 βˆ’π‘–π‘–π‘–π‘–π‘–π‘–sin πœƒπœƒ = 2𝑖𝑖𝐻𝐻𝑖𝑖cos πœƒπœƒπ‘’π‘’ sin ( 𝛽𝛽𝛽𝛽cos πœƒπœƒ) 𝐸𝐸𝑖𝑖 βˆ’π‘–π‘–π‘–π‘–π‘–π‘– πœƒπœƒ πœƒπœƒπ‘’π‘’ 𝛽𝛽𝛽𝛽 πœƒπœƒ πœ‚πœ‚

13