Authors Benjamin J
Authors Benjamin J. Chapman, Eric I. Rosenthal, Joseph Kerckhoff, Bradley A. Moores, Leila R. Vale, J. A. B. Mates, Kevin Lalumière, Alexandre Blais, and K.W. Lehnert This article is available at CU Scholar: https://scholar.colorado.edu/jila_facpapers/2 PHYSICAL REVIEW X 7, 041043 (2017) Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits † Benjamin J. Chapman,1,* Eric I. Rosenthal,1 Joseph Kerckhoff,1, Bradley A. Moores,1 Leila R. Vale,2 ‡ J. A. B. Mates,2 Gene C. Hilton,2 Kevin Lalumi`ere,3, Alexandre Blais,3,4 and K. W. Lehnert1 1JILA, National Institute of Standards and Technology and the University of Colorado, Boulder, Colorado 80309, USA and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA 2National Institute of Standards and Technology, Boulder, Colorado 80305, USA 3D´epartement de Physique, Universit´e de Sherbrooke, Sherbrooke, Qu´ebec J1K 2R1, Canada 4Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada (Received 13 July 2017; published 22 November 2017) We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Nonreciprocity is created with a combination of frequency conversion and delay, and requires neither permanent magnets nor microwave bias tones, allowing on-chip integration with other superconducting circuits without the need for high-bandwidth control lines. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW (≈103 circulating photons), and the direction of circulation can be dynamically reconfigured.
[Show full text]