Globalstar Offering Presentation April 2008 Safe Harbor Statement
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
APSCC Monthly E-Newsletter
APSCC Monthly e‐Newsletter June 2021 The Asia‐Pacific Satellite Communications Council (APSCC) e‐Newsletter is produced on a monthly basis as part of APSCC’s information services for members and professionals in the satellite industry. Subscribe to the APSCC monthly newsletter and be updated with the latest satellite industry news as well as APSCC activities! To renew your subscription, please visit www.apscc.or.kr. To unsubscribe, send an email to [email protected] with a title “Unsubscribe.” News in this issue has been collected from May 1 to May 31. INSIDE APSCC APSCC 2021 Webinar Series: LIVE Every Tuesday 9AM HK l Singapore Time The most frequent and largest ongoing virtual conference in the Asia Pacific satellite community – the APSCC 2021 Webinar Series incorporates industry veterans, local players, as well as new market entrants in a single event to reach a wide-ranging audience. The APSCC 2021 Webinar Series continues to play a vital role in supporting the industry in the Asia Pacific region and beyond with a brand-new format, a lengthened timeline, and a potentially unlimited reach. Register now and get access to the complete APSCC 2021 Webinar Series with a single password. To register go to https://apsccsat.com. APSCC Welcomes Kymeta as New Platinum Member May 24, 2021 - The Asia-Pacific Satellite Communications Council (APSCC) announced that antenna innovator Kymeta has joined the association, further broadening the industry group’s participation from manufacturing sector of the space and satellite industry. “APSCC is delighted to welcome Kymeta as our newest member,” said APSCC President Gregg Daffner. -
DDP VS24 Édition 1 (EN)
LAUNCH KIT November 2020 VS24 FalconEye VS24 FalconEye FLIGHT VS24: ARIANESPACE AT THE SERVICE OF AN EARTH OBSERVATION PROGRAM FOR THE BENEFIT OF THE UNITED ARAB EMIRATES For its eighth launch of the year and the third Soyuz flight of 2020, Arianespace will orbit the FalconEye satellite. FalconEye is a high performance optical Earth observation satellite system for the Armed Forces of the United Arab Emirates (UAEAF) manufactured by the consortium of Airbus Defence and Space and Thales Alenia Space. FalconEye The satellite is equipped with an Earth observation payload, with very-high-resolution CONTENTS optical capabilities and completed by a ground system for monitoring, receiving and processing images. It will be controlled and managed by Emirati operators. > THE LAUNCH The FalconEye satellite, to be orbited by Flight VS24, will be the space component of the system, and will have a dual mission: support the needs of UAE Armed Forces and VS24 mission provide commercial imagery for the market. Weighing approximately 1,190 kg at launch, Pages 2-3 it will be placed in a Sun-synchronous orbit at 611km from the Earth. > FURTHER INFORMATION FalconEye will be the 98th Earth observation satellite launched by Arianespace. Earth observation missions represent more than 13% of the total number of satellites Soyuz launch vehicle launched by Arianespace. Pages 4-5 Countdown and flight FalconEye is built by a the consortium led by Airbus Defence and Space and Thales sequence Alenia Space Page 6 As industrial prime contractor prime contractor, Airbus Defence and Space was in charge of the platform and satellite design, integration and tests. -
Thales Alenia Space Germany 2 // ADS-B at a Glance
Seminar on Space-Based ADS-B Singapore, November 11, 2014 www.thalesgroup.com Space Based ADS-B Satellite Payloads for World-wide Air Traffic Surveillance H S Griebel Thales Alenia Space Germany 2 // ADS-B at a Glance Existing Technology Ground infrastructure exists to handle ADS-B data Majority of all international airliners already fitted* Automatic data broadcast every second Identity Position Velocity Altitude Unexpected disruption indicative of critical event Becomes mandatory over the next 6 years US, Europe, Australia, China ADS-B is an established air traffic surveillance standard *Airservices Australia 3 // Satellite ADS-B at a Glance Takes ADS-B-technology to space For global radar-like coverage With an update interval of 10-15 seconds Providing data in near real time Invented by Thales Alenia Space Deutschland patented in most countries US, Europe, Russia, Australia Existing ADS-B transponders are fully compatible with space-based ADS-B 4 // Satellite ADS-B Key Benefits Almost 100% global coverage Turns non-radar airspace into radar like airspace Brings surveillance to oceans and scarcely populated areas More efficient use of airspace to save fuel and reduce emissions More efficient ATC operations and improved situational awareness Improves safety and security through global flight tracking World air traffic routes Additional safety layer and infrastructure expansion with integration into existing ATM systems Aircraft traffic density 5 // System Architecture Space Segment Air g in ist s Segment Ex m ste Sy -
Globalstar Annual Report 2007
Globalstar Annual Report 2007 Globalstar, Inc. 461 S Milpitas Blvd. Milpitas, CA 95035 USA +1.408.933.4000 www.globalstar.com Executive Office Board of Directors Steven Bell Senior Vice President, Globalstar, Inc. James Monroe III International Sales, Chairman of the Board and Marketing and Customer Care 461 S. Milpitas Blvd. Chief Executive Officer Milpitas, CA 95035 USA Robert D. Miller (408) 933-4000 Peter J. Dalton Senior Vice President, Chief Executive Officer Engineering and Ground World Wide Web Dalton Partners Inc. Operations (Management Firm) Home Page William F. Adler Kenneth E. Jones Vice President, Legal and www.globalstar.com Chairman, Globe Wireless, Regulatory Affairs Inc. Stockholder (Maritime Communications) Paul A. Monte Information Vice President, Engineering James F. Lynch and Product Development Managing Director For further information about Thermo Capital Partners, Martin E. Neilsen the company, additional hard L.L.C. Vice President, New Business copies of this report, SEC (Private Equity Investment) filings, and other published Ventures corporate information please J. Patrick McIntyre visit the Company website President and Chief Common Stock noted above or call Operating Officer (408) 933-4006. Lauridsen Group The Company’s stock is Incorporated traded on The NASDAQ Transfer Agent (Nutritional Functional Global Select Market under Proteins) the symbol GSAT. On March Computershare Shareholder 26, 2008, the company had Services, Inc. Richard S. Roberts approximately 85,199,777 250 Royall Street VP & General Counsel shares outstanding and 305 Canton, MA 02021 Thermo Development Inc. holders of record. (781) 575-4238 (Management Firm) www.computershare.com Notice of Annual Executive Officers Meeting Independent Auditors James Monroe III Chairman of the Board and May 13, 2008, 10:00 a.m. -
Space Business Review International Mobile Telecommunications Services, Including Wimax
December 2007 - SPECIAL EDITION: THE TOP-10 SPACE BUSINESS STORIES OF 2007 - #1 - M&A Transactions Keep Pace #5 - 50th Anniversary of Sputnik Despite challenging credit markets, merger, As we celebrate the 50th anniversary of the acquisition and investment activity kept pace in satellite that introduced the “space age”, 2007. Abertis & Caisse des Dépôts et approximately 1,000 satellites now orbit the consignations purchase 32% (€1.07B) and Earth and the space business has grown to 25.5% (€862.7M) stakes, respectively, in more than $100 billion in annual revenues. Eutelsat (Jan.). GE Capital sells back its 19.5% #6 - Satellite Manufacturers Remain Busy interest in SES Global for €588 million in cash 18 commercial satellite orders announced in and assets including stakes in AsiaSat, Star 2007. Ball Aerospace & Technologies: One and Orbcomm (Feb.). JSAT & SKY WorldView-2. EADS Astrium: YahSat 1A Perfect Communications merge (March). BC and 1B, Arabsat 5A, BADR-5 (the foregoing Partners to acquire Intelsat Ltd. for $16.4 billion, in cooperation with Thales Alenia Space) including debt (June). Carlyle Group to acquire and Alphasat 1-XL. Israel Aerospace ARINC (July). Apax Partners France Industries: Amos-4. Lockheed Martin purchases Telenor Satellite Services for $400 Commercial Space Systems: JCSAT-12. million (Sept.). Loral Space & Orbital Sciences Corporation: Optus-D3, Communications and PSP Canada conclude AMC-5R. Space Systems/Loral: Nimiq 5, C$3.25 billion acquisition of Telesat Canada ProtoStar I, Intelsat 14, SIRIUS FM-6, Abertis to acquire 28.4% stake in Hispasat EchoStar XIV, NSS-12. Thales Alenia (Nov.). CIP Canada Investment, indirectly Space: THOR 6, Palapa-D. -
Thales Alenia Space Experience on Plasma Propulsion
Thales Alenia Space Experience on Plasma Propulsion IEPC-2007-301 Presented at the 30th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Michel LYSZYK* and Laurent LECARDONNEL.† Thales Alenia Space, Cannes, 06150, France Abstract: Thales Alenia Space experience on plasma propulsion has been developed in the frame of Stentor, Astra 1K and GEI programs with plasma propulsion systems using SPT100 thrusters manufactured by Fakel and commercialized by Snecma . The PPS (plasma propulsion system) use in house equipments such as Power Processing Unit (PPU) manufactured by TAS-ETCA in Charleroi and the Thruster Orientation Mechanism (TOM) manufactured by TAS-France in Cannes . The PPS subsystem is used on board our SpaceBus satellite family to perform North-South station keeping. The on going activity on the XPS (Xenon Propulsion System) is devoted to the next European platform Alphabus currently under joint development by Thales Alenia Space and Astrium with CNES and ESA support. The XPS uses also the PPU manufactured by TAS-ETCA , the TOM manufactured by TAS-France and the Xe tank developed by TAS-Italy ; it use also the PPS1350 thruster under qualification by Snecma , a xenon regulator and a latch valve under development at Marotta Ireland. I. Introduction HIS document describes the Thales Alenia Space experience gained through Stentor , Astra 1K , GEI, T Spacebus and Alphabus programs on plasma Hall effect thrusters propulsion subsystems . For Spacebus application a description of the subsystem is given together with the general achieved performances . For Alphabus application a general status of the on going activities is given . * Head of electric propulsion section, Propulsion Department, [email protected]. -
Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications .............................................................................. -
PUBLIC NOTICE FEDERAL COMMUNICATIONS COMMISSION 445 12Th STREET S.W
PUBLIC NOTICE FEDERAL COMMUNICATIONS COMMISSION 445 12th STREET S.W. WASHINGTON D.C. 20554 News media information 202-418-0500 Internet: http://www.fcc.gov (or ftp.fcc.gov) TTY (202) 418-2555 Report No. SES-01927 Wednesday February 8, 2017 Satellite Communications Services Information re: Actions Taken The Commission, by its International Bureau, took the following actions pursuant to delegated authority. The effective dates of the actions are the dates specified. SES-LIC-20161223-00969 E E160180 ACC Licensee, LLC EZ Application for Authority 01/31/2017 - 01/31/2032 Grant of Authority Date Effective: 01/31/2017 Class of Station: Temporary Fixed Earth Station Nature of Service: Fixed Satellite Service SITE ID: 1 LOCATION: Transportable ANTENNA ID: 1 1.4 meters AVL Technologies 1410K 14000.0000 - 14500.0000 MHz 36M0G7W 65.47 dBW Compressed Digital Video and Audio Points of Communication: 1 - PERMITTED LIST - () SES-MOD-20161216-00949 E E040399 WLS Television, Inc. Application for Modification 11/30/2004 - 11/30/2019 Grant of Authority Date Effective: 02/01/2017 Class of Station: Temporary Fixed Earth Station Nature of Service: Fixed Satellite Service SITE ID: 1 LOCATION: GREATER CHICAGO METRO AREA AND MIDWESTERN USA, VARIOUS ANTENNA ID: 1 1.5 meters ADVENT COMMUNICATIONS NEWS SWIFT 150 KMA Page 1 of 5 14000.0000 - 14500.0000 MHz 36M0G7W 66.30 dBW PSK DIGITAL VIDEO, AUDIO, VOICE AND DATA ANTENNA ID: 2CHICAGO 1.4 meters AVL TECHNOLOGIES 1410 14000.0000 - 14500.0000 MHz 36M0G7W 65.00 dBW SINGLE CARRIER DVB S/S2 DIGITAL VIDEO, PROGRAM AUDIO,, VOICE AND DATA. Points of Communication: 1 - PERMITTED LIST - () SES-RWL-20170131-00110 E E020099 Vyve Broadband A Renewal 04/04/2017 - 04/04/2032 Grant of Authority Date Effective: 02/02/2017 Class of Station: Fixed Earth Stations Nature of Service: Domestic Fixed Satellite Service SITE ID: 1 LOCATION: 19670 302ND ROAD, ATCHISON, ATCHISON, KS 39 ° 35 ' 44.90 " N LAT. -
The Future of European Commercial Spacecraft Manufacturing
The Future of European Commercial Spacecraft Manufacturing Report 58 May 2016 Cenan Al-Ekabi Short title: ESPI Report 58 ISSN: 2218-0931 (print), 2076-6688 (online) Published in May 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 58; May 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 58 2 May 2016 The Future of European Commercial Spacecraft Manufacturing Table of Contents Executive Summary 5 Introduction – Research Question 7 1. The Global Satellite Manufacturing Landscape 9 1.1 Introduction 9 1.2 Satellites in Operation 9 1.3 Describing the Satellite Industry Market 10 1.4 The Satellite Industry Value Chain 12 1.4.1 Upstream Revenue by Segment 13 1.4.2 Downstream Revenue by Segment 14 1.5 The Different Actors 15 1.5.1 Government as the Prominent Space Actor 15 1.5.2 Commercial Actors in Space 16 1.6 The Satellite Manufacturing Supply Chain 17 1.6.1 European Consolidation of the Spacecraft Manufacturing Industry 18 1.7 The Satellite Manufacturing Industry 19 1.7.1 The Six Prime Contractors 21 1.7.2 The Smaller Commercial Prime Contractors 23 1.7.3 Asian National Prime Contractors in the Commercial Market 23 1.7.4 European Prime Contractors’ Relative Position in the Global Industry 23 2. -
Federal Communications Commission FCC 16-181 Before
Federal Communications Commission FCC 16-181 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Terrestrial Use of the 2473-2495 MHz Band for ) IB Docket No. 13-213 Low-Power Mobile Broadband Networks; ) RM-11685 Amendments to Rules for the Ancillary Terrestrial ) Component of Mobile Satellite Service Systems ) REPORT AND ORDER Adopted: December 22, 2016 Released: December 23, 2016 By the Commission: Commissioners Pai and O’Rielly issuing separate statements. TABLE OF CONTENTS Heading Paragraph # I. INTRODUCTION.................................................................................................................................. 1 II. BACKGROUND.................................................................................................................................... 4 A. The Big LEO Bands and Ancillary Terrestrial Component Rules................................................... 4 B. Globalstar’s Petition for Rulemaking .............................................................................................. 5 C. Notice of Proposed Rulemaking ...................................................................................................... 6 III. DISCUSSION ........................................................................................................................................ 7 A. Part 25 Revisions ............................................................................................................................. 7 1. Allowing greater terrestrial -
Global Satellite Communications Technology and Systems
International Technology Research Institute World Technology (WTEC) Division WTEC Panel Report on Global Satellite Communications Technology and Systems Joseph N. Pelton, Panel Chair Alfred U. Mac Rae, Panel Chair Kul B. Bhasin Charles W. Bostian William T. Brandon John V. Evans Neil R. Helm Christoph E. Mahle Stephen A. Townes December 1998 International Technology Research Institute R.D. Shelton, Director Geoffrey M. Holdridge, WTEC Division Director and ITRI Series Editor 4501 North Charles Street Baltimore, Maryland 21210-2699 WTEC Panel on Satellite Communications Technology and Systems Sponsored by the National Science Foundation and the National Aeronautics and Space Administration of the United States Government. Dr. Joseph N. Pelton (Panel Chair) Dr. Charles W. Bostian Mr. Neil R. Helm Institute for Applied Space Research Director, Center for Wireless Deputy Director, Institute for George Washington University Telecommunications Applied Space Research 2033 K Street, N.W., Rm. 304 Virginia Tech George Washington University Washington, DC 20052 Blacksburg, VA 24061-0111 2033 K Street, N.W., Rm. 340 Washington, DC 20052 Dr. Alfred U. Mac Rae (Panel Chair) Mr. William T. Brandon President, Mac Rae Technologies Principal Engineer Dr. Christoph E. Mahle 72 Sherbrook Drive The Mitre Corporation (D270) Communications Satellite Consultant Berkeley Heights, NJ 07922 202 Burlington Road 5137 Klingle Street, N.W. Bedford, MA 01730 Washington, DC 20016 Dr. Kul B. Bhasin Chief, Satellite Networks Dr. John V. Evans Dr. Stephen A. Townes and Architectures Branch Vice President Deputy Manager, Communications NASA Lewis Research Center and Chief Technology Officer Systems and Research Section MS 54-2 Comsat Corporation Jet Propulsion Laboratory 21000 Brookpark Rd. -
Disaster Emergency Logistic Telemedicine Advanced Satellites System (DELTASS) Telecommunication System Overview
Disaster Emergency Logistic Telemedicine Advanced Satellites System (DELTASS) Telecommunication system overview M E D I C A L Presentation at ITU - May 23 to 25, 2003 J.-C. Durand DEE/NSA DELTASS Disaster Emergency Logistic Telemedecine Advanced Satellite System Inmarsat Mobile Field Hospital Eutelsat GPS Globalstar Mobile teams Reference Hospital Gateway Permanent Center Presentation at ITU - May 23 to 25, 2003 J.-C. Durand DEE/NSA DELTASS Components § In a “safe location”: - the Permanent Centre (PC). It is permanently operational and can be activated in case of relevant disaster. Its role is to trigger the whole system, to be the coordination centre during the deployment phase and to manage a first medical data base and a log of all communications. (Located in Toulouse during the DELTASS demonstrations) - a Reference Hospital (RH). To be chosen depending on the country and on the disaster type and location. Its role is to be a medical support to the MFH and to host a medical data base, identical to the MFH one. (Located in Berlin during the main DELTASS demonstration) § On the disaster field (near Toulouse, then near Ulm): - several Search And Rescue teams (SAR). They recover the victims, install them on a safe place, fill in a NATO medical form and send the content together with a GPS information to the coordination centre. - a First Medical Aid team (FMA). They are equipped with a medical suitcase and can bring a first medical assistance to victims, on request of the coordination centre. The collected medical data and a GPS information are sent to the coordination centre.