Seafood Watch

Total Page:16

File Type:pdf, Size:1020Kb

Seafood Watch Mahi mahi Coryphaena hippurus ©Monterey Bay Aquarium Costa Rica, Ecuador, Guatemala and Peru Surface longline August 15, 2013 Jennifer Hunter, Consulting Researcher Disclaimer Seafood Watch® strives to ensure all our Seafood Reports and the recommendations contained therein are accurate and reflect the most up-to-date evidence available at time of publication. All our reports are peer- reviewed for accuracy and completeness by external scientists with expertise in ecology, fisheries science or aquaculture. Scientific review, however, does not constitute an endorsement of the Seafood Watch program or its recommendations on the part of the reviewing scientists. Seafood Watch is solely responsible for the conclusions reached in this report. We always welcome additional or updated data that can be used for the next revision. Seafood Watch and Seafood Reports are made possible through a grant from the David and Lucile Packard Foundation. 2 Final Seafood Recommendation This report covers longline-caught mahi mahi from Guatemala, Costa Rica, Peru and Ecuador. Imports account for more than 95% of the mahi mahi on the US marketplace, and these countries combined account for some 60% of those imports. Guatemala, Costa Rica and Peru all received Avoid designations due to concerns over bycatch of sensitive species and deficiencies in mahi mahi and bycatch management. Ecuador received a Good Alternative rating. Bycatch of sensitive species does occur infrequently, although there is presently a management framework in place to address the fishery impacts on mahi mahi stocks and species of concern. All fisheries in this report are engaged in a Fishery Improvement Project (FIP). Impacts Impacts on Manage- Habitat and Stock Fishery on the Overall other Species ment Ecosystem Stock Rank Lowest scoring species Rank Rank Recommendation (Score) Rank*, Subscore, Score Score Score Score Mahi mahi Guatemala Scalloped Yellow Red Yellow AVOID hammerhead 2.64 1.41 3.16 1.85 Red, 1,1 Mahi mahi Costa Rica Green sea turtle, Leatherback sea turtle, Yellow Red Green AVOID Hawksbill sea turtle, 2.64 1.41 3.87 2.17 Loggerhead sea turtle Red, 1.53,1.53 Mahi mahi Peru Green sea turtle, Hawksbill sea turtle, Yellow Waved Albatross, Red Green AVOID 2.64 Loggerhead sea turtle, 1.41 3.87 2.17 Leatherback sea turtle Red, 1.53,1.53 Mahi mahi Ecuador Green sea turtle, Yellow Hawksbill sea turtle, Yellow Green GOOD ALTERNATIVE 2.64 Loggerhead sea turtle 3 3.87 2.77 Red, 1.92,1.92 Scoring note – scores range from zero to five where zero indicates very poor performance and five indicates the fishing operations have no significant impact. 3 Table of Contents Final Seafood Recommendation ................................................................................................................... 2 Executive Summary ....................................................................................................................................... 4 Analysis ....................................................................................................................................................... 13 Criterion 1: Stock for which you want a recommendation ...................................................................................... 13 Criterion 2: Impacts on other retained and bycatch stocks .................................................................................... 15 Criterion 3: Management effectiveness .................................................................................................................. 27 Criterion 4: Impacts on the habitat and ecosystem ................................................................................................ 34 Overall Recommendation ........................................................................................................................... 36 Acknowledgements ..................................................................................................................................... 37 Appendix A: All Species Included in Assessment ........................................................................................ 45 Appendix B: Review Schedule .................................................................................................................... 47 About Seafood Watch® ............................................................................................................................... 49 Guiding Principles ....................................................................................................................................... 50 4 Executive Summary Mahi mahi (Coryphaena hippurus) is found worldwide in tropical and subtropical waters. This assessment focuses on the mahi mahi fisheries in Ecuador (26% of total imports into the US), Peru (24%), Guatemala (7%) and Costa Rica (3.5%). Imports comprise more than 95% of the mahi mahi on the US market. Mahi mahi destined for export from these countries are landed using surface set longlines and are fished by artisanal vessels (Ecuador, Peru) as well as small- scale semi-industrial (Costa Rica) and medium to large scale industrial (Guatemala) vessels. Mahi mahi is short lived, highly fecund and, hence, is moderately resistant to fishing pressure. Recent analyses of CPUE data suggests that biomass is stable, although quantitative analyses of stock status and fishing mortality rates for this species are lacking. Mahi mahi is a highly seasonal fishery and this species is the primary component of the catch in these fisheries. However, Guatemalan, Costa Rican, Peruvian and Ecuadorian mahi mahi fishers all catch sea turtles with varying frequency. Guatemalan sea turtle fishing mortality attributable to the mahi mahi fishery is entirely unknown, while in Costa Rica there remains much ambiguity around estimates of sea turtle bycatch. Several studies have demonstrated that there is significant interaction between turtles and Peruvian artisanal longline fishers, however mortality rates are generally low. The available data from the Ecuadorian mahi mahi fishery suggests that sea turtles are captured infrequently. In Guatemala mahi mahi are often landed with a variety of shark species. Catch composition data are not available so sharks are presented as a pooled category in this assessment. Silky sharks and scalloped hammerhead sharks are the two most frequently landed species in the commercial Guatemalan shark fishery. Silky sharks in the Eastern Pacific are considered Vulnerable, while scalloped hammerheads are considered Endangered in this region. A recent IATTC assessment concluded that while there are incomplete historical records of silky landings and some uncertainty in the total EPO catch, current fishing mortality levels will likely allow stock size to increase. There is no stock assessment for EPO scalloped hammerheads, although this species has recently been approved for inclusion in CITES Appendix II, which certifies that while this species is not in danger of extinction, it could become imperiled without trade regulation. Peruvian longline fisheries account for much of the observed mortality of adult waved albatrosses, and hooking and entanglement in fishing gear poses a serious risk to the survival of this species. Waved albatrosses are considered critically endangered by the IUCN. Discard rates are unknown for the mahi mahi fisheries in Guatemala, Costa Rica, Peru and Ecuador. Small-scale operators, like those in Costa Rica, Ecuador and Peru, typically have low discards, as artisanal fishers are able to utilize most of the incidental catch. The discard rate in the Guatemalan mahi mahi fishery is also low. While industrial vessels typically have relatively 5 high discard rates, the majority of incidentally captured fish in Guatemala is retained for sale in the domestic market. Recently, a management plan for the Ecuadorian mahi mahi fishery has been adopted, and includes comprehensive policies regarding catch parameters, bycatch mitigation, scientific oversight and enforcement. This plan is very encouraging, but its efficacy remains to be seen. In Peru, the mahi mahi fishery has been the subject of an assessment carried out by an NGO, but the conclusions of this report and any governmental review are unavailable, although there are some existing minimum size limitations. In Costa Rica, there is no management plan in place, although some measures have been undertaken, with mixed results, to reduce sea turtle bycatch. In Guatemala, there is no management plan in place. There do not appear to be any plans to pursue research into the state of the stock, nor to monitor the impacts of this fishery on mahi mahi populations. All of the mahi mahi imported to the United States from Guatemala, Costa Rica, Peru and Ecuador is caught using surface-set longlines, which do not touch the bottom substrate, therefore, no gear mitigation is necessary. Apex predators (sharks) are captured and generally retained in the mahi mahi fisheries of Costa Rica, Peru and Ecuador, but do not comprise a significant proportion of the catch during the austral summer months when the majority of mahi mahi are landed. In Guatemala, mahi mahi are both targeted directly and incidentally caught in the Pacific shark fishery. A number of sensitive species are captured in this fishery, and the fishery likely constitutes a significant source of mortality for these species in Guatemalan waters. Sharks are utilized domestically for meat, oil, leather and fins are exported to Asia. All fisheries in this report are
Recommended publications
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • IATTC-94-01 the Tuna Fishery, Stocks, and Ecosystem in the Eastern
    INTER-AMERICAN TROPICAL TUNA COMMISSION 94TH MEETING Bilbao, Spain 22-26 July 2019 DOCUMENT IATTC-94-01 REPORT ON THE TUNA FISHERY, STOCKS, AND ECOSYSTEM IN THE EASTERN PACIFIC OCEAN IN 2018 A. The fishery for tunas and billfishes in the eastern Pacific Ocean ....................................................... 3 B. Yellowfin tuna ................................................................................................................................... 50 C. Skipjack tuna ..................................................................................................................................... 58 D. Bigeye tuna ........................................................................................................................................ 64 E. Pacific bluefin tuna ............................................................................................................................ 72 F. Albacore tuna .................................................................................................................................... 76 G. Swordfish ........................................................................................................................................... 82 H. Blue marlin ........................................................................................................................................ 85 I. Striped marlin .................................................................................................................................... 86 J. Sailfish
    [Show full text]
  • Seafood Watch
    Mahi mahi and Wahoo Coryphaena hippurus and Acanthocybium solandri ©Monterey Bay Aquarium US Pacific (Hawaii); Troll US Atlantic; Troll, Handline, Rod and Reel August 15, 2013 Jennifer Hunter, Consulting Researcher Disclaimer Seafood Watch® strives to ensure all our Seafood Reports and the recommendations contained therein are accurate and reflect the most up-to-date evidence available at time of publication. All our reports are peer- reviewed for accuracy and completeness by external scientists with expertise in ecology, fisheries science or aquaculture. Scientific review, however, does not constitute an endorsement of the Seafood Watch program or its recommendations on the part of the reviewing scientists. Seafood Watch is solely responsible for the conclusions reached in this report. We always welcome additional or updated data that can be used for the next revision. Seafood Watch and Seafood Reports are made possible through a grant from the David and Lucile Packard Foundation. 2 Final Seafood Recommendation This report covers mahi mahi and wahoo from the troll fishery in the US Pacific (Hawaii) and the troll, handline and rod and reel fisheries in the US Atlantic. Due to similarities in gear deployment, bycatch and discard rates, these gears are assessed as a single handline/troll category for the US Atlantic region. Domestic catches account for less than 5% of the mahi mahi on the US market. Imports of wahoo are unknown. Little is known about the stocks of mahi mahi or wahoo in the Atlantic or Pacific, and management measures specific to the fisheries’ impacts on these stocks is limited. Furthermore, a significant part of the retained catch in the Pacific is bigeye tuna, which is currently undergoing overfishing.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Marine Fishes from Galicia (NW Spain): an Updated Checklist
    1 2 Marine fishes from Galicia (NW Spain): an updated checklist 3 4 5 RAFAEL BAÑON1, DAVID VILLEGAS-RÍOS2, ALBERTO SERRANO3, 6 GONZALO MUCIENTES2,4 & JUAN CARLOS ARRONTE3 7 8 9 10 1 Servizo de Planificación, Dirección Xeral de Recursos Mariños, Consellería de Pesca 11 e Asuntos Marítimos, Rúa do Valiño 63-65, 15703 Santiago de Compostela, Spain. E- 12 mail: [email protected] 13 2 CSIC. Instituto de Investigaciones Marinas. Eduardo Cabello 6, 36208 Vigo 14 (Pontevedra), Spain. E-mail: [email protected] (D. V-R); [email protected] 15 (G.M.). 16 3 Instituto Español de Oceanografía, C.O. de Santander, Santander, Spain. E-mail: 17 [email protected] (A.S); [email protected] (J.-C. A). 18 4Centro Tecnológico del Mar, CETMAR. Eduardo Cabello s.n., 36208. Vigo 19 (Pontevedra), Spain. 20 21 Abstract 22 23 An annotated checklist of the marine fishes from Galician waters is presented. The list 24 is based on historical literature records and new revisions. The ichthyofauna list is 25 composed by 397 species very diversified in 2 superclass, 3 class, 35 orders, 139 1 1 families and 288 genus. The order Perciformes is the most diverse one with 37 families, 2 91 genus and 135 species. Gobiidae (19 species) and Sparidae (19 species) are the 3 richest families. Biogeographically, the Lusitanian group includes 203 species (51.1%), 4 followed by 149 species of the Atlantic (37.5%), then 28 of the Boreal (7.1%), and 17 5 of the African (4.3%) groups. We have recognized 41 new records, and 3 other records 6 have been identified as doubtful.
    [Show full text]
  • Using Molecular Identification of Ichthyoplankton to Monitor
    Molecular Identification of Ichthyoplankton in Cabo Pulmo National Park 1 Using molecular identification of ichthyoplankton to monitor 2 spawning activity in a subtropical no-take Marine Reserve 3 4 5 6 Ana Luisa M. Ahern1, *, Ronald S. Burton1, Ricardo J. Saldierna-Martínez2, Andrew F. Johnson1, 7 Alice E. Harada1, Brad Erisman1,4, Octavio Aburto-Oropeza1, David I. Castro Arvizú3, Arturo R. 8 Sánchez-Uvera2, Jaime Gómez-Gutiérrez2 9 10 11 12 1Marine Biology Research Division, Scripps Institution of Oceanography, University of California 13 San Diego, La Jolla, California, USA 14 2Departamento de Plancton y Ecología Marina, Centro Interdisciplinario de Ciencias Marinas, 15 Instituto Politécnico Nacional, CP 23096, La Paz, Baja California Sur, Mexico 16 3Cabo Pulmo National Park, Baja California Sur, Mexico 17 4The University of Texas at Austin, Marine Science Institute, College of Natural Sciences, 18 Port Aransas, Texas, USA 19 20 21 22 23 24 25 *Corresponding author: [email protected] 1 Molecular Identification of Ichthyoplankton in Cabo Pulmo National Park 26 ABSTRACT: Ichthyoplankton studies can provide valuable information on the species richness 27 and spawning activity of fishes, complementing estimations done using trawls and diver surveys. 28 Zooplankton samples were collected weekly between January and December 2014 in Cabo 29 Pulmo National Park, Gulf of California, Mexico (n=48). Fish larvae and particularly eggs are 30 difficult to identify morphologically, therefore the DNA barcoding method was employed to 31 identify 4,388 specimens, resulting in 157 Operational Taxonomic Units (OTUs) corresponding 32 to species. Scarus sp., Halichoeres dispilus, Xyrichtys mundiceps, Euthynnus lineatus, 33 Ammodytoides gilli, Synodus lacertinus, Etrumeus acuminatus, Chanos chanos, Haemulon 34 flaviguttatum, and Vinciguerria lucetia were the most abundant and frequent species recorded.
    [Show full text]
  • Inventory and Monitoring Plan
    Inventory and Monitoring Plan Howland Island, Baker Island, and Jarvis Island National Wildlife Refuges and Howland Island, Baker Island, and Jarvis Island Units of the Pacific Remote Islands Marine National Monument September 2015 1 | Page Howland Island, Baker Island, and Jarvis Island National Wildlife Refuges, and Howland Island Unit, Baker Island Unit, and Jarvis Island Unit of the Pacific Remote Islands Marine National Monument Inventory and Monitoring Plan Signature Page Action Signature /Printed Name Date ein Kenyon (I&M Specialist) Prepared By: Beth Flint (Supervisory Wildlife Biologist) ared Underwood (I&M Zone Biologist) "IS/I Reviewed By: 15 Superintendent - Operations Reviewed By: Monuments Superintendent - Policy/Partners/Support Reviewed By: IS" Region 1 I&M Coordinator Reviewed By: T/2///S Refuge/and Monuiognt Supervisor Reviewed By: RegionarRefuge Biologist/Division Chief Approved By: 2 I P a g e Table of Contents Signature Page .............................................................................................................................................2 Introduction ..................................................................................................................................................4 Methods........................................................................................................................................................6 Results ..........................................................................................................................................................8
    [Show full text]
  • Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
    Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S.
    [Show full text]
  • Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U
    Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Jorge R. García Sais SEDAR26-RD-02 FINAL REPORT Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Submitted to the: Caribbean Fishery Management Council San Juan, Puerto Rico By: Dr. Jorge R. García Sais dba Reef Surveys P. O. Box 3015;Lajas, P. R. 00667 [email protected] December, 2005 i Table of Contents Page I. Executive Summary 1 II. Introduction 4 III. Study Objectives 7 IV. Methods 8 A. Recuperation of Historical Data 8 B. Atlas map of deep reefs of PR and the USVI 11 C. Field Study at Isla Desecheo, PR 12 1. Sessile-Benthic Communities 12 2. Fishes and Motile Megabenthic Invertebrates 13 3. Statistical Analyses 15 V. Results and Discussion 15 A. Literature Review 15 1. Historical Overview 15 2. Recent Investigations 22 B. Geographical Distribution and Physical Characteristics 36 of Deep Reef Systems of Puerto Rico and the U. S. Virgin Islands C. Taxonomic Characterization of Sessile-Benthic 49 Communities Associated With Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Benthic Algae 49 2. Sponges (Phylum Porifera) 53 3. Corals (Phylum Cnidaria: Scleractinia 57 and Antipatharia) 4. Gorgonians (Sub-Class Octocorallia 65 D. Taxonomic Characterization of Sessile-Benthic Communities 68 Associated with Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Echinoderms 68 2. Decapod Crustaceans 72 3. Mollusks 78 E.
    [Show full text]
  • Marine and Terrestrial Food Chain Links
    福井市自然史博物館研究報告 第66号:57-62(2019) Bulletin of the Fukui City Museum of Natural History, No.66, 57-62(2019) Marine and terrestrial food chain links: the case of large-billed crows Corvus macrorhynchos eating stranded sharptail sunfishMasturus lanceolatus in Fukui Prefecture, Japan Etsuro SAWAI* and Mariko YOSHIDA** (Abstract) On 1–14 January 2019, the stranding of some individuals of Masturus lanceolatus was observed on the coast around Matsushima, Tsuruga, Fukui Prefecture, Japan, and it was also observed that dead fishes were eaten by some individuals of Corvus macrorhynchos. This is the first report of a pelagic fish, M. lanceolatus used directly as food by a land bird, C. macrorhynchos. This observation is an example of a rare food chain connecting directly a marine fish to a land bird, contributing to the study of marine and terrestrial food chain interactions. Key words : Corvus macrorhynchos, Fukui Prefecture, food habits, Masturus lanceolatus, stranding Pelagic animals and terrestrial animals live in carcasses by C. macrorhynchos are recorded for very different environments. Therefore, it seems the first time. Since the relationship between M. that there is almost no connection between the lanceolatus and C. macrorhynchos observed in two. However, aquatic animals and land animals Yoshida & Sawai (2019) was considered to be a are interconnected within the complex food web, rare example of a food chain linking a pelagic fish as stated in the phrase “the forest is longing for to a land bird, the present report is an elaboration the sea, the sea is longing for the forest” (LFOO, of this phenomenon that is more common than 2017).
    [Show full text]
  • Johnston Atoll Species List Ryan Rash
    Johnston Atoll Species List Ryan Rash Birds X: indicates species that was observed but not Anatidae photographed Green-winged Teal (Anas crecca) (DOR) Northern Pintail (Anas acuta) X Kingdom Ardeidae Cattle Egret (Bubulcus ibis) Phylum Charadriidae Class Pacific Golden-Plover (Pluvialis fulva) Order Fregatidae Family Great Frigatebird (Fregata minor) Genus species Laridae Black Noddy (Anous minutus) Brown Noddy (Anous stolidus) Grey-Backed Tern (Onychoprion lunatus) Sooty Tern (Onychoprion fuscatus) White (Fairy) Tern (Gygis alba) Phaethontidae Red-Tailed Tropicbird (Phaethon rubricauda) White-Tailed Tropicbird (Phaethon lepturus) Procellariidae Wedge-Tailed Shearwater (Puffinus pacificus) Scolopacidae Bristle-Thighed Curlew (Numenius tahitiensis) Ruddy Turnstone (Arenaria interpres) Sanderling (Calidris alba) Wandering Tattler (Heteroscelus incanus) Strigidae Hawaiian Short-Eared Owl (Asio flammeus sandwichensis) Sulidae Brown Booby (Sula leucogaster) Masked Booby (Sula dactylatra) Red-Footed Booby (Sula sula) Fish Acanthuridae Achilles Tang (Acanthurus achilles) Achilles Tang x Goldrim Surgeonfish Hybrid (Acanthurus achilles x A. nigricans) Black Surgeonfish (Ctenochaetus hawaiiensis) Blueline Surgeonfish (Acanthurus nigroris) Convict Tang (Acanthurus triostegus) Goldrim Surgeonfish (Acanthurus nigricans) Gold-Ring Surgeonfish (Ctenochaetus strigosus) Orangeband Surgeonfish (Acanthurus olivaceus) Orangespine Unicornfish (Naso lituratus) Ringtail Surgeonfish (Acanthurus blochii) Sailfin Tang (Zebrasoma veliferum) Yellow Tang (Zebrasoma flavescens)
    [Show full text]
  • Table S51. Average Net Primary Production Values Reported from Mangrove Forests of South Florida and Eastern Mexico
    Table S51. Average net primary production values reported from mangrove forests of south Florida and eastern Mexico. The values were obtained by several different methods of measurement and reported in different units, but for the table all values have been standardized as discussed in the text. (South Florida data from Odum, McIvor, and Smith 1982. Mexican data from Barriero-Gilemes and Balderas-Cortes 1991; Rico-Gray and Lot- Helgueras 1983.) Forest type g C/m2/yr g dry wt/m2/yr lb/A/yr South Florida Red mangroves 1,934.5 6,248 55,732 Black mangroves 1,533.0 4,952 45,172 Mixed forests 3,029.5 9,785 87,282 Eastern Mexico Red mangroves 153.6 496 4,424 Black mangroves 257.6 832 7,421 Table S52. Estimates of litter fall (as dry organic matter) in several types of mangrove forests of south Florida. Values given for red and black mangrove under “variety of types” include those for riverine, overwash, fringe, and “mature” forests. (Recalculated from data in Odum, McIvor, and Smith 1982.) Annual litter fall 2 Forest type Daily litter fall (g/m2/day) g/m /yr lb/A/yr Red mangrove -variety of types 2.8 1,022 9,116 -scrub forest 0.4 146 1,302 Black mangrove -variety of types 1.3 475 4,237 Mixed forests 2.3 840 7,493 Table S53. Brief sketches of important families of perciform fishes found in neritic or epipelagic waters of the Gulf of Mexico, giving information on recognition characters, habitats, and habits and listing important genera.
    [Show full text]