0.- General .- Ramos V. A., (2009). Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. The Geological Society of America Memoir, pp 31 – 35. .- Martí, J., Geyer, A., Folch, A., 2009. A genetic classification of collapse based on field studies, and analogue and theoretical modeling. In: Thordarson, T., Self, S. (Eds.), Volcanology, the Legacy of George Walker: Geological Society of London Special Publication, 2, pp. 249–266.

1.- Südamerika: Geologische Gliederung und plattentektonische Entwicklungseit dem Spätpräkambrium

UND

2.- Proterozoisch-paläozoische Beckenentwicklung und Geotektonik in Nordchile und NW-Argentinien

.- Aceñolaza, F.G., Miller, H., Toselli, A.J. 2002. Proterozoic-Early evolution in western South America. A discussion. Tectonophysics 354. 121-137. .- Adams, C., Miller, H., Toselli, A.J., Griffin, W.L., 2008. The of northwest : U-Pb geochronology of detrital and Rb-Sr metamorphic ages and their bearing on its stratigraphic age, sediment provenance and tectonic setting. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 247, 341-352. .- Augustsson, C., Munker, C., Bahlburg, H., Fanning, C.M., 2006. Provenance of late Palaeozoic metasediments of the SW South American Gondwana margin: a combined U–Pb and Hf-isotope study of single detrital zircons. Journal of the Geological Society, London 163 (6), 983–995 .- Bahlburg, H., Vervoort, J.D., 2007. LA-ICP-MSgeochronology of detrital zircons in Late Paleozoic turbidte units of northern Chile: implications for terrane processes. Geochimica et Cosmochimica Acta 71 (15S), A51. .- Becchio, R., Lucassen, F., Kasemann, S., Franz, G., Viramonte, J., 1999. Geoquímica y sistemática isotópica de rocas metamórficas Paleozoico inferior: Noroeste de Argentina y Norte de Chile. Acta Geológica Hispánica 34, 273–299. .- Becchio, R., Lucassen, F., y Franz, G. High T metamorphism, crustal melts, and a large igneous province: the Palaeozoic to active margin of the Central Andes, N-Chile and NW- Argentina.. Special volume “Cenozoic Geology of the Central Andes of Argentina” INCE.-SCS Publisher. Benedetto, J. L. 2004. The Allochthony of the Argentine Precordillera Ten Years Later (1993-2003): A New Paleobiogeographic Test of the Microcontinental Model. Gondwana Research 7 (4). 1027- 1039. .- Büttner, S.H., Glodny, J., Lucassen, F., Wemmer, K., Erdmann, S., Handler, R., Franz, G., 2005. metamorphism and plutonism in the Sierra de Quilmes metamorphic complex: implications for the tectonic setting of the northern Sierras Pampeanas (NW Argentina). Lithos 83, 143–181. ,- Büttner.S. 2009. The Ordovician Sierras Pampeanas–Puna basin connection: thinning and basin formation in the Proto-Andean back-arc. Tectonophysics 477 (2009) 278–291 doi:10.1016/j.tecto.2009.02.003. .- Cardona, A., Cordani, U.G., Sanchez, A., 2007. Metamorphic, geochronological and geochemical constraints fromthe Pre-Permian basement of the eastern Peruvian Andes (10◦ S): a Paleozoic extensional-accretionary orogen? In: 20th Colloquium on Latin American Earth Sciences, Kiel, Germany, pp. 29–30. .- Cardona, A., Cordani, U.G., MacDonald, W.D., 2006. Tectonic correlations of pre-Mesozoic from the northern termination of the Colombian Andes,Caribbean region. Journal of South American Earth Sciences 21, 337–354. .- Cardona, A., Cordani, U.G., Ruiz, J., Valencia, V.A., Armstrong, R., Chew, D., Nutman, A., Sanchez, A.W., 2009b. U–Pb geochronology and Nd isotopic signatures of the pre-Mesozoic metamorphic basement of the eastern Peruvian Andes: Growth and provenance of a Late Neoproterozoic to Carboniferous accretionary orogen on the northwest margin of Gondwana. The Journal of Geology 117, 285–305. .- Casquet, C., Pankhurst, R.J., Fanning, C.M., Baldo, E., Galindo, C., Rapela, C.W., González- Casado, J.M., Dahlquist, J.A., 2006. U–Pb SHRIMP zircon dating of Grenvillian metamorphism in Western Sierras Pampeanas (Argentina): correlation with the Arequipa–Antofalla craton and constraints on the extent of the Precordillera Terrane. Gondwana Research 9, 524–529. .- Casquet, C., Pankhurst, R.J., Rapela, C.W., Galindo, C., Fanning, C.M., Chiaradia, M., Baldo, E., González-Casado, J.M., Dahlquist, J.A., 2008. The Mesoproterozoic Maz terrane in the Western Sierras Pampeanas, Argentina, equivalent to the Arequipa–Antofalla block of southern Peru? Implications for West Gondwana margin evolution. Gondwana Research 13, 163–175. .- Casquet, C., Fanning, C.M., Galindo, C., Pankhurst, R.J., Rapela, C.W. & Torres, P. 2010. The Arequipa Massif of Peru: New SHRIMP and isotope constraints on a Paleoproterozoic inlier in the Grenvillian orogen. Journal of South American Earth Sciences, 29, 128–142. .- Cawood, P.A., 2005. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Science Reviews 69 (3/4), 249–279. .- Cawood, P.A., Buchan, C., 2007. Linking accretionary orogenesis with supercontinent assembly. Earth Science Reviews 82, 217–256. .- Chew, D.M., Kirkland, C.L., Schaltegger, U., Goodhue, R., 2007b. Neoproterozoic glaciation in the Proto-Andes: tectonic implications and global correlation. Geology 35 (12), 1095–1099. .- Chew, D.M., Schaltegger, U., Koˇsler, J., Whitehouse, M.J., Gutjahr, M., Spikings, R.A., Miskovic, A., 2007a. U–Pb geochronologic evidence for the evolution of the Gondwanan margin of the north-central Andes. Geological Society of America Bulletin 119 (5/6), 697–711. .- Chew, D.M., Magna, T., Kirkland, C.L., Miskovic, A., Cardona, A., Spikings, R., Schaltegger, U., 2008. Detrital zircon fingerprint of the Proto-Andes: Evidence for a Neoproterozoic active margin? Research 167, 186-200. doi:10.1016/j.precamres.2008.08.002 .- Collo, G., Astini, R.A., Cawood, P.A., Buchan, C., Pimentel, M., 2009. U–Pb detrital zircon ages and Sm-Nd isotopic features in low-grade metasedimentary rocks of the Famatina belt: implications for late Neoproterozoic-early Palaeozoic evolution of the proto-Andean margin of Gondwana. Journal of the Geological Society of London 166, 303-319. .- Coira B, Koukharsky M, Ribeiro Guevara S, Cisterna CE (2009) Puna (Argentina) and northern Chile Ordovician Basic magmatism: a contribution to the tectonic setting. J S Am Earth Sci 27:24– 35 . .- Coira, B.L., Kay, S.M., Peréz, B., Woll, B., Hanning, M., Flores, P., 1999. Magmatic sources and tectonic setting of Gondwana margin Ordovician , northern Puna of Argentina and Chile. In: Ramos, V.A., Keppie, D. (Eds.), Laurentian– Gondwana Connections before Pangea: Geological Society of America Special Paper, 336, pp. 145–170. .- Cordani, U.G., Cardona, A., Jimenez, D.M., Liu, D., Nutman, A.P., 2005. Geochronology of Proterozoic basement inliers in the Colombian Andes: tectonic history of remnants of a fragmented Grenville belt. In: Vaughan, A.P.M., Leat, P.T., Pankhurst, R.J. (Eds.), Terrane Processes at the Margins of Gondwana. Geological Society London Special Publications, pp. 329–346. .- Cordani, U.G., Teixeira, W., 2007. Proterozoic accretionary belts in the . In: Hatcher, R.D., Jr., Carlson, M.P., McBride, J.H., Martínez-Catalán, J.R. (Eds.), 4-D Framework of Continental Crust. Geological Society of America, Memoir 200, 297–320. .- Cordani, U.G., Teixeira, W., D’Agrella-Filho, M.S., Trindade, R.I., 2009. The position of the Amazonian Craton in supercontinents. Gondwana Research 15, 396–407. .- Drobe, M., López de Luchi, M.G., Steenken, A., Frei, R., Naumann, R., Siegesmund, S., Wemmer, K., 2009. Provenance of the late Proterozoic to early metaclastic sediments of the Sierra de San Luis (Eastern Sierras Pampeanas) and Cordillera Oriental, Argentina. Journal of South American Earth Sciences 28, 239-262. .- Damm KW, Pichowiak S, Harmon RS, Todt W, Kelley S, Omarini R, Niemeyer H (1990) Pre- mesozoic evolution of the central Andes; the basement revisited. In: Kay SM, Rapela CW (eds) Plutonism from Antarctica to Alaska. Geol Soc Am Spec Pap 241:101–126 .- Damm KW, Pichowiak S, Breitkreuz C, Harmon RS, Todt W, Buchelt M (1991) The Cordo´n de Lila Complex, central Andes, northern Chile; an Ordovician continental volcanic province. In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting. Geol Soc Am Spec Pap 265:179–187 .- Dalla Salda, L.H., Dalziel, I.W.D., Cingolani, C.A., Varela, R., 1992. Did the Taconic Appalachians continue into southern South America? Geology 20, 1059–1062 .- Fernández, C., Becchio, R., Castro, A., Viramonte, J.M., Moreno-Ventas, I., Corretgé, L.G., 2008. Massive generation of atypical ferrosilicic magmas along the Gondwana active margin. Implications for cold plumes and arc- generation. Gondwana Research 14, 451–473. doi:10.1016/j.gr.2008.04.001. .- Hoffman, P.F., 1991. Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252 (5011), 1409–1412. .- Jiménez, N., López-Velásquez, S., 2008. Magmatism in the Huarina belt, Bolivia, and its geotectonic implications. Tectonophysics 459, 85–106. .- Kleine, T., Mezger, K., Zimmermann, U., Münker, C., Bahlburg, H., 2004. Crustal evolution along the early ordovician proto-Andean margin of Gondwana: trace element and isotope evidence from the Complejo Igneo Pocitos (Northwestern Argentina). The Journal of Geology 112, 503–520. .- Keppie, J.D., Bahlburg, H., 1999. Puncoviscana formation of northwestern and central Argentina: passive margin or foreland basin deposit. In: Ramos, V.A., Keppie, J.D. (Eds.), Laurentia– Gondwana Connections Before Pangea, vol. 336. Geological Society of America, Special Paper, pp. 139–143. .- Loewy, S.L., Connelly, J.N., Dalziel, I.W.D., 2004. An orphaned basement block: the Arequipa– Antofalla basement of the central Andean margin of South America. Geological Society of America Bulletin 116 (1/2), 171–187. .- Lucassen, F., Becchio, R., 2003. Timing of high-grade metamorphism: Early Paleozoic U–Pb formation ages of titanite indicate long-standing high-T conditions at the western margin of Gondwana (Argentina, 26–29_S). Journal of Metamorphic Geology 21, 649–662. .- Lucassen, F., Becchio, R., Wilke, H.G., Thirlwall, M.F., Viramonte, J., Franz, G., Wemmer, K., 2000. Proterozoic-Paleozoic development of the basement of the Central Andes (18_–26_) – a mobile belt of the South American craton. Journal of South American Earth Sciences 13, 697–715. .- Lucassen, F., Franz, G., Thirlwall, M., Mezger, K., 1999. Crustal recycling of metamorphic basement: late Paleozoic granitoids of Northern Chile (_22_S). Implications for the composition of the Andean crust. Journal of Petrology 40 (10), 1527–1551. .- Lucassen, F., Becchio, R., Harmon, R., Kasemann, S., Franz, G., Trumbull, R., Wilke, H.G., Romer, R.L., Dulski, P., 2001. Composition and density model of the continental crust at an active continental margin –– the central Andes between 21_ and 27_S. Tectonophysics 341 (2001), 195– 223. .- Lucassen, F., Franz, G., 2005. The early Palaeozoic Orogen in the Central Andes: a noncollisional orogen comparable to the Cenozoic high ? In: Vaughan, A.P.M., Leat, P.T., Pankhurst, R.J. (Eds.), Terrane Processes at the Margins of Gondwana. Geological Society of London, Special Publications, vol. 246, pp. 257–273. .- Lucassen, F., Becchio, R. y Franz, G. (2010) The Early Palaeozoic high grade metamorphism at the active continental margin of West Gondwana in the Andes (NW Argentina/N Chile).. International Journal of Earth Sciences. DOI 10.1007/s00531-010-0585-3 .- Miller, H., Sollner, F., 2005. The Famatina complex (NWArgentina): backdocking of an island arc or terrane accretion? Early Palaeozoic geodynamics at theWestern Gondwana margin. In: Vaughan, P., Leat, P.T., Pankhurst, R.J. (Eds.), Terrane Processes at the Margins of Gondwana. Geological Society of London 246, 241– 256 (Special Publication). .- Murphy, J.B., Pisarevsky, S.A., Nance, R.D., Keppie, J.D., 2004a. Neoproterozoic–Early Paleozoic evolution of peri-Gondwanan terranes: implications for Laurentia–Gondwana connections. International Journal of Earth Sciences 93 (5), 659–682. .- Naipauer, M., Vujovich, G.I., Cingolani, C.A., McClelland, W.C., 2010. Detrital zircon analysis from the Neoproterozoic-Cambrian sedimentary cover (Cuyania terrane), Sierra de Pie de Palo, Argentina: Evidence of a rift and passive margin system? Journal of South American Earth Sciences 29, 306-326 .- Omarini, R.H., Sureda, R.J., Gotze, H.J., Seilacher, A., Pfluger, F., 1999. Puncoviscana folded belt in northwestern Argentina: testimony of Late Proterozoic Rodinia fragmentation and pre- Gondwana collisional episodes. International Journal of Earth Sciences 88 (1), 76–97. .- Miskovic, A., Schaltegger, U., Spikings, R.A., Chew, D.M., Koˇsler, J., in press. Tectonomagmatic evolution of Western Amazonia: geochemical characterization and zircon U–Pb geochronologic constraints from the Peruvian Eastern Cordillera granitoids. Geological Society of America Bulletin. .- Pankhurst, R.J., Rapela, C.W., Fanning, C.M., Marquez, M., 2006. Gondwanide continental collision and the origin of Patagonia. Earth-Science Reviews 76 (3/4), 235–257. .- Pankhurst, R.J., Rapela, C.W., Saavedra, J., Baldo, E., Dahlquist, J., Pascua, I., Fanning, C.M., 1998. The Famatinian magmatic arc in the central Sierras Pampeanas: an Early to Mid- Ordovician continental arc on theGondwana margin. In: Pankhurst, R.J., Rapela, C.W. (Eds.), The Proto-Andean Margin of Gondwana, vol. 142. Geological Society London Special Publications, pp. 343–367. .-Pin˜an-, A. & Simpson, C. 2006. Deformation of Gondwana margin turbidites during the Pampean , north–central Argentina. Geological Society of America Bulletin, 118, 1270– 1279. Aranzazu Piñán-Llamas, Carol Simpson. 2009. Primary structure influence on compositional banding in psammites: Examples from the Puncoviscana Formation, north-central Argentina. Journal of Structural Geology 31 (2009) 55–71. doi:10.1016/j.jsg.2008.10.001 .- Polliand, M., Schaltegger, U., Frank, M., Fontbote, L., 2005. Formation of intra-arc volcanosedimentary basins in the western flank of the central Peruvian Andes during Late oblique : field evidence and constraints from U–Pb ages and Hf isotopes. International Journal of Earth Sciences 94 (2),231–242. .- Pratt, W.T., Duque, P., Ponce, M., 2005. An autochthonous geological model for the eastern Andes of Ecuador. Tectonophysics 399 (1–4), 251–278. .- Ramos, V.A., 1988. Late Proterozoic–Early Paleozoic of South-America—a collisional history. Episodes 11 (3), 168–174. .- Ramos, V.A., 2004. Cuyania, an Exotic Block to Gondwana: Review of a Historical Success and the Present Problems. Gondwana Research 7 (4), 1009–1026. .- Ramos, V.A. 2008. THE BASEMENT OF THE CENTRAL ANDES: The Arequipa and Related Terranes. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES Volume 36 (2008). .- Ramos, V.A., 2008b. Patagonia: a Paleozoic continent adrift? Journal of South American Earth Sciences 26, 235–251. .- Ramos, V.A., 2009. Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. In: Kay, S.M., Ramos, V.A., Dickinson, W. (Eds.), Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision. Geological Society of America, Memoir 204, 31–65. .- Ramos, V.A., 2008. The basement of the Central Andes: the Arequipa and related terranes. Annual Review of Earth and Planetary Sciences, 36. .- Ramos, V. 2012. The Grenville-age basement of the Andes. Journal of South American Earth Sciences 29 (2010) 77–91 .- Rapela, C.W., Pankhurst, R.J., Casquet, C., Baldo, E., Saavedra, J., Galindo, C., 1998. Early evolution of the Proto-Andean margin of South America. Geology 26 (8), 707–710. .- Steenken, A., Siegesmund, S., Lopez de Luchi, M.G., Frei, R.,Wemmer, K., 2006. Neoproterozoic to Early Palaeozoic events in the Sierra de San Luis: implications for the Famatinian geodynamics in the Eastern Sierras Pampeanas (Argentina). 163 (6), 965–982. .- Rapela, C.W., Pankhurst, R.J., Casquet, C., Baldo, E.G., Galindo, C., Fanning, C.M., Dahlquist, J., 2010. The Western Sierras Pampeanas: protracted Grenville-age history (1330 - 1030 Ma) of intra-oceanic arcs, subduction-accretion at continental edge and AMCG intraplate magmatism. Journal of South American Earth Sciences 29, 105-127. .- Restrepo-Pace, P. A., Cediel F., 2010. Northern South America basement tectonics and implications for paleocontinental reconstructions of the Americas. Journal of South American Earth Sciences 29, 764–771. .- Sempere, T., 1995. Phanerozoic evolution of Bolivia and adjacent regions. In: Tankard, A.J., Suárez, R., Welsink, H.J. (Eds.), Petroleum Basins of South America. American Association of Petroleum Geologists, Memoir 62, 207–230. .- Sial, A.N., Ferreira, A.J., Aceñolaza, F.G., Pimentel, M.M., Parada M.A., Alonso, R.N., 2001. C and Sr isotopic evolution of carbonate sequences in NW Argentina: implications for probable Precambrian-Cambrian transition. Carbonates and Evaporites 16, 141-152 .- Thomas, W.A., Astini, R.A., Mueller, P.A., Gehrels, G.E., Wooden, J.L., 2004. Transfer of the Argentine Precordillera terrane from Laurentia: constraints from detritalzircon geochronology. Geology 32 (11), 965–968. .- Verdecchia et al. 2011. Mid- to Late Cambrian docking of the Rı´o de la Plata craton to southwestern Gondwana: age constraints from U–Pb SHRIMP detrital zircon ages from Sierras de Ambato and Velasco (Sierras Pampeanas, Argentina). Journal of the Geological Society, London, Vol. 168, 2011, pp. 1061–1071. doi: 10.1144/0016-76492010-143. .- Viramonte, J.M., Becchio, R., Viramonte, J.G., Pimentel, M.M., Martino, R., 2007. Ordovician igneous and metamorphic units in southeastern Puna: new U–Pb and Sm–Nd data and implications for the evolution of northwestern Argentina. Journal of South American Earth Sciences 24, 167– 183. .- Wasteneys, H.A., Clark, A.H., Ferrar, E., Langridge, R.J., 1995. Grenvillian granulite facies metamorphism in the Arequipa Massif, Peru: a Laurentia Gondwana link. Earth and Planetary Science Letters 132, 63–73. .- Willner,A.P., Gerdes,A.,Massonne, H.-J., 2007.Growthof the South American convergent margin (lat. 31◦S–36◦S) during Late Paleozoic times: a U–Pb and Hf-isotope study of detrital zircons from a fossil accretionary system. Geochimica et Cosmochimica Acta 71 (15S), A1119. .- Willner, A.P., Gerdes, A., Massonne, H.-J., 2009. History of crustal growth and recycling at the Pacific convergent margin of South America at latitudes 29_– 36_S revealed by a U–Pb and Lu–Hf isotope study of detrital zircon from late Paleozoic accretionary systems. Chemical Geology 253, 114–129 .- Zimmermann, U., 2005. Provenance studies of very low- to low-grade metasedimentary rocks of the Puncoviscana complex, northwest Argentina. In: Vaughan, A.P.M., Leat, P.T., Pankhurst, R.J. (Eds.), Terrane Processes at the Margins of Gondwana, vol. 246. Geological Society of London Special Publications, pp. 381-416. .- Zimmermann, Niemeyer, Sebastien Meffre. 2010. Revealing the continental margin of Gondwana: the Ordovician arc of the Cordón de Lila (northern Chile). Int J Earth Sci (Geol Rundsch) (2010) 99 (Suppl 1):S39–S56. .-

3.- PlattentektonikaneinemaktivenKontinentalrand und die mesozoisch- känozoischeDynamik der ozeanischenPlattenwestlichSüdamerikas: Modelle und Modellierung

12.- Die Struktur der südlichen Zentralanden aus geophysikalischer Sicht: Gravimetrie, Magnetotellurik, Seismik und Seismologie

.- ANCORP Working Group, Seismic reflection image of the Andean Subduction Zone Revealing Offset of Andean subduction-zone earthquake locations into oceanic mantle, Nature 397 (1999) 341-344. .- ANCORP Working Group, Seismic imaging of a convergent continental margin and plateau in the Central Andes (Andean Continental Research Project 1996 (ANCORP ´96)), J. Geophys. Res. 108 (2003), 2328, doi:10.1029/2002JB001771. .- Angermann, D., J. Klotz, C. Reigber, Space-geodetic estimation of the Nazca-South America Euler vector, Earth Planet. Sci. Lett., 171 (1999) 329-334 .- Asch, G., Schurr, B., Bohm, M., Yuan, X., Haberland, C., Heit, B., Kind, R., Wölbern, I., Bataille, K., Comte, D., Pardo, M., Viramonte, J., Rietbrock, A., Geisse, P., 2006. Seismological studies of the Central and Southern Andes. In: Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H.-J., Ramos, V.A., Strecker, M.R., Wigger, P. (Eds.), The Andes — Active Subduction Orogeny. Frontiers in Earth Science Series 1. Springer- Verlag, Berlin, pp. 439–451. .- Babeyko, A.Y., 2005.What drives orogeny in theAndes?Geology 33, 617–620. .- Babeyko, A.Yu., Sobolev, S.V., Trumbull, R.B., Oncken, O., Lavier, L.L., 2002. Numerical models of crustal scale convection and partial melting beneath the –Puna Plateau. Earth and Planetary Science Letters 199, 373–388. .- Babeyko, A. and S. Sobolev, Quantifying different modes of the late Cenozoic shortening in the central Andes, Geology, v33 (2005); no. 8; p. 621–624; doi: 10.1130/G21126. .- Beck, S.L., Zandt, G., 2002. The nature of orogenic crust in the central Andes, 1208. Journal of Geophysical Research 107. doi:10.1029/2000JB000124. .- Beck, M E. Jr., On the mechanism of crustal block rotations in the central Andes. Tectonophysics, 299 (1998) 75–92. .- Beck, S.L., P.G. Silver, L. Drake, G. Zandt, S.C. Myers, T.C. Wallace, Crustal-thickness variations in the central Andes, Geology 24 (1996) 407-410. .- Bock, G., B. Schurr, G. Asch, High-resolution receiver function image of the oceanic Moho in the subducting from P-S converted waves, Geophys. Res. Lett. 27 (2000) 3929- 3932. .- Brasse, H., P. Lezaeta, V. Rath, K. Schwalenberg, W. Soyer, V. Haak,. The Bolivian Altiplano conductivity anomaly, J. Geophys. Res., 107 (2002) doi: 10.1029/2001JB000391. .- Cahill, T., B. Isacks, Seismicity and Shape of the subducted Nazca plate, J. Geophys. Res., 97(1992) 17,503-17,529. .- Chmielowski, J., G. Zandt, C. Haberland, The Central Andean Altiplano-Puna Magma Body, Geophys. Res. Lett., 26 (1999): 783-78. .- Dorbath, C., F. Masson, Composition of the crust and upper-mantle in the Central Andes (19.5°S) inferred from P wave velocity and Poisson's ratio: Tectonophysics, 327 (2000) 213-223. .- Gephard, J., Topography and subduction geometry in the central Andes: Clues to the mechanics of a non-collisional orogen, J. Geophys. Res. 99 (1994) 12279-12288. .- Giese, P., Scheuber, E., Schilling, F., Schmitz, M. and P. Wigger, Crustal thickening processes in the Central Andes and the different natures of the Moho-discontinuity. Jour. of South American Earth Sci., (1999) 12: 201-220. .- Götze, H.-J. and S. Krause, The Central Andean gravity high, a relic of an old subduction complex? Journal of South American Earth Sciences (2002), 14 pp.799-811 .- Götze, H.-J., B. Lahmeyer, S. Schmidt, S. Strunk, The lithospheric structure of the Central Andes (20-26S) as inferred from quantitative interpretation of regional gravity. In: Tectonics of the Southern Central Andes, in: K.-J. Reutter, E. Scheuber, P.J. Wigger (Eds), Tectonics of the southern Central Andes. Springer-Verlag, New York, (1994), pp. 7-21. .- Götze, H.-J., and Kirchner, A., 1997, Interpretation of gravity and geoid in the Central Andes between 20° and 29°S: Journal of South American Earth Sciences, v. 10, p. 179–188, doi: 10.1016/S0895-9811(97)00014-X. Downloaded from memoirs.gsapubs.org on 17 November 2009 .- Haberland, C., A. Rietbrock, B. Schurr, H. Brasse, Coincident anomalies of seimic attenuation and electrical resistivity beneath the southern Bolivian Altiplano plateau, Geophys. Res. Lett., 30 (2003) doi:10.1029/2003GL017492 .- Heit, B., Sodoudi, F., Yuan, X., Bianchi, M., and Kind, R., 2007, An S receiver function analysis of the lithospheric structure in South America: Geophysical Research Letters, v. 34, p. L14307, doi: 10.1029/2007GL030317 .- Heit, B., Koulakov, I., Asch, G., Yuan, X., Kind, R., Alcocer-Rodriguez, I., Tawackoli, S., and Wilke, H., 2008, More constraints to determine the seismic structure beneath the Central Andes at 21°S using teleseismic tomography analysis: Journal of South American Earth Sciences, v. 25, p. 22–36. .- Heit, B., Yuan, X., Bianchi, M., Sodoudi, F., and Kind, R., 2008b, Crustal thickness estimation beneath the southern central Andes at 30°S and 36°S from S wave receiver function analysis: Geophysical Journal International, v. 174, p. 249–254, doi: 10.1111/j.1365-246X.2008.03780. .- Hindle, D., Kley, J., Oncken, O., and Sobolev, S.V., 2005, Crustal fl ux and crustal balance from shortening in the Central Andes: Earth and Planetary Science Letters, v. 230, p. 113–124, doi: 10.1016/j.epsl.2004.11.004. .- Koulakov, I., Sobolev, S., and Asch, G., 2006, P- and S-velocity images of the lithosphere– asthenosphere system in the Central Andes from local source tomographic inversion: Geophysical Journal International, v. 167, p. 106–126, doi: 10.1111/j.1365-246X.2006.02949.x. .- Lamb, 2001a, “Vertical axis rotation in the bolivian orocline, south America: 1.paleomagnetic analysis of cretaceous and Cenozoic rocks”, Journal of Geophysical Research, 106/B11, 26’605- 26’632; .- Lamb, 2001b, “Vertical axis rotation in the bolivian orocline, south America: 2.kinematic and dynamical implications”, Journal of Geophysical Research, 106/B11, 26’633-26’653; .- Leidig, M., and Zandt, G., 2003, Highly anisotropic crust in the Altiplano-Puna volcanic complex of the central Andes: Journal of Geophysical Research, v. 108, doi: 10.1029/2001JB000649. .- McGlashan, N., Brown, L.D., Kay, S.M., 2008. Crustal thicknesses in the Central Andes from teleseismically recorded depth phase precursors. Geophysical Journal International 175, 1013–1022. .- Molnar, P., and Garzione, C., 2007, Bounds on the viscosity coeffi cient of continental lithosphere from removal of mantle lithosphere beneath the Altiplano and Eastern Cordillera: Tectonics, v. 26, p. TC2013, doi: 10.1029/2006TC001964. .- Myers, S.C., Beck, S., Zandt, G., Wallace, T., 1998. Lithospheric-scale structure across the Bolivian Andes from tomographic images of velocity and attenuation for P and S waves. Journal of Geophysical Research 103, 21,233–21,252. .- Oncken, O., Chong, G., Franz, G., Giese, P., Götze Hans-Jürgen, Ramos, V., Strecker, M. y Wigger, P. (Eds.), 2006. The Andes: Active subduction orogeny. Frontiers in Earth Sciences, Springer Verlag, 568 p. .- Prezzi, C.B., and Alonso, R.N., 2002, New paleomagnetic data from the northern Argentine Puna: Central Andes rotation pattern reanalyzed: Journal of Geophysical Research, v. 107, p. 2041, doi: 10.1029/2001JB000225. .- Pritchard, M.E., and Simons, M., 2004, An InSAR-based survey of volcanic deformation in the Central Andes: Geochemistry, Geophysics, Geosystems, v. 5, doi: 10.1029/2003GC000610 .- Schmitz, M., K. Lessel, P. Giese, P. Wigger, M. Araneda, J. Bribach, F. Graeber, S. Grunewald, C. Haberland, S. Lüth, P. Röwer, T. Ryberg, A. Schulze, The crustal structure beneath the Central Andean forearc and magmatic arc as derived from seismic studies – the PISCO 94 experiment in northern Chile (21°-23°S), J. S. Am. Earth Sci. 12 (1999) 237-260. .- Schurr, B., G. Asch, A. Rietbrock, R. Kind, M. Pardo, B. Heit, T. Monfret, Seismicity and average velocities beneath the argentine Puna Plateau, Geophys. Res. Lett., 26 (1999) 3025- 3028. .- Schurr, B., G. Asch, A. Rietbrock, R. Trumbull, C. Haberland,. Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography. Earth Planet. Sci. Lett. 215 (2003) 105-119. .- Schurr, B., A. Rietbrock, Deep seismic structure of the Atacama Basin, northern Chile, Geophys. Res. Lett., 31 (2004) doi:10.1029/2004GL019796 .- Sobolev, S and A. Babeyko, What drives orogeny in the Andes? Geology; v. 33 (2005)8; p. 617– 620; doi: 10.1130/G21557.1. .- Sobolev, S.V., Babeyko, A.Y., Koulakov, I., Oncken, O., Vietor, T., 2006. Mechanism of the : insight from the numerical modeling. In: Oncken, O., et al. (Ed.), The Andes — Active Subduction Orogeny. : Frontiers in Earth Science Series, 1. Springer-Verlag, Berlin, pp. 509– 531. .- Springer, M. and A. Förster, Heat-flow density across the Central Andean subduction zone. Tectonophysics 291, 1998, 123-139. .- Springer, M., Interpretation of heat-flow density in the Central Andes Tectonophysics 306, 1999, 377–395. .- Tassara, A., Götze, H.-J., Schmidt, S., Hackney, R., 2006. Three-dimensional density model of the Nazca plate and the Andean continental margin. Journal of Geophysical Research 111, B09404. doi:10.1029/2005JB003976. .- van Hunen, J., van den Berg, A.P., Vlaar, N.J. The impact of the South-American plate motion and the Nazca Ridge subduction on the flat subduction below south Peru Geophys. Res. Lett., (2002a) p. 29. .- van Hunen, J., van den Berg, A.P., Vlaar, N.J On the role of subducting oceanic in the development of shallow flat subduction (2002b) Tectonophysics, 352 pp. 317-333 .- Victor, P., O. Oncken, J. Glodny, Uplift of the western Altiplano plateau: Evidence from the Precordillera between 20° and 21°S (northern Chile). Tectonics, 23 (2004) doi:10.1029/2003TC001519. .- Wigger, P., M. Schmitz, M. Araneda, G. Asch, S. Baldzuhn, P. Giese,W.-D. Heinsohn, E. Martinez, E. Ricaldi, P. Röwer, J. Viramonte, Variation of the crustal structure of the southern Central Andes deduced from seismic refraction investigations, in: K.-J. Reutter, E. Scheuber, P.J. Wigger (Eds), Tectonics of the southern Central Andes. Springer-Verlag, New York, 1994, pp. 23-48. .- Wölbern, I., Heit, B., Yuan, X., Asch, G., Kind, R., Viramonte, J., Tawackoli, S., Wilke, H., 2009. Receiver function images from the Moho and the slab below the Altiplano and Puna plateaus in the Central Andes. Geophysical Journal International 177, 296–308. .- Yuan, X., S.V. Sobolev, R. Kind, O. Oncken, G. Bock, G. Asch, B. Schurr, F. Graeber, A. Rudloff, W. Hanka, K. Wylegalla, R. Tibi, C. Haberland, A. Rietbrok, P. Giese, P. Wigger, P.Röwer, G. Zandt, S. Beck, T. Wallace, M. Pardo, D. Comte, New constraints on subduction and collision processes in the Central Andes from P-to-S converted seismic phases, Nature, 408 (2000) 958-961. .- Yuan, X., S.V Sobolev, R. Kind, Moho topography in the Central Andes and its geodynamic implications, Earth Planet. Sci. Lett., 199 (2002) 389-402. .- Zandt, G., S.L. Beck, S.R. Ruppert, C.J. Ammons, D. Rock, E. Minaya, T.C. Wallace, P.G. Silver, Anomalous crust of the Bolivian Altiplano, Central Andes: Constraints from broadband regional seismic waveforms, Geophys. Res. Lett., 23 (1996) 1159-1162. .- Zandt, G., M. Leidig, J. Chmielowski, D. Beaumont; X. Yuan, Seismic detection and Characterization of the Altiplano-Puna Volcanic Complex, Central Andes, PAGEOPH 160 (2003) 789-807.

4 Magmengenese am aktiven Kontinentalrand

.- Baker, M.C.W. y P.W. Francis, 1978. Upper Cenozoic volcanism in the Central Andes - Ages and volumes. Earth Planetary Sciences Letters 41: 175-187. .- Baker, M.C.W., 1977, Geochronology of Upper Tertiary volcanic activity in the Andes of north Chile: International Journal of Earth Sciences, v. 66, no. 1, p. 455–465. .- Baker, M.C.W., 1981, The nature and distribution of Upper Cenozoic centers in the Central Andes: Journal of Volcanology and Geothermal Research, v. 11, p. 293–315, doi: 10.1016/0377-0273(81)90028-7. .- Carlier, G., Lorand, J.P., Liegeois, J.P., Fornari, M., Soler, P., Carlotto, V., Cardenas, J., 2005. Potassic–ultrapotassic rocks delineate two lithospheric mantle blocks beneath the southern Peruvian Altiplano. Geology 33, 601–604. .- Davidson, J.P., Harmon, R.S., Wörner, G., 1991. The source of central Andean magmas: some considerations. In: Harmon, R.S., Rapela, C.W. (Eds.), Andean Magmatism and Its Tectonic Setting: Geological Society of America Special Paper, 265, pp. 233–243 .- Grunder, A.L., Klemetti, E.W., Feeley, T.C., and McKee, C.M., 2008, Eleven million years of arc volcanism at the Aucanquilcha volcanic cluster, northern Chilean Andes: Implications for the life span and emplacement of plutons: Transactions of the Royal Society of Edinburgh– Earth Sciences, v. 97, p. 415–436. .- .- Hoke, L., and Lamb, S., 2007, Cenozoic behind-arc volcanism in the Bolivian Andes, South America: Implications for mantle melt generation and lithospheric structure: Journal of the Geological Society of London, v. 164, p. 795–814, doi: 10.1144/0016-76492006-092. .- Kay, Mksaev, Moscoso, Mpodozis, Nasi, 1987, “Probing the evolving Andean lithosphere: mid- late Tertiary magmatism in chile over the modern zone of subhorizontal subduction”, J. Geophys. Res., 92, 6173-6190; .- Kay, S.M., Mpodozis, C., Ramos, V.A., Munizaga, F., 1991. Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28 to 33°S). In: Harmon, R.S., Rapela, C.W. (Eds.), Andean Magmatism and its Tectonic Setting: Geological Society of America Special Paper, 265, pp. 113–137 .- Kay, R.W., Kay, S.M., 1993. Delamination and delamination magmatism. Tectonophysics 219, 177–189. .- Kay, S.M. and J.M. Abbruzzi, Magmatic evidence for Neogene lithospheric evolution of the Central Andean “flat-slab” between 30°S and 32°S, Tectonophysics (1996) 259, 15-28. .- Kay, S.M., Mpodozis, C., 2002. Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab. Journal of South American Earth Science 15, 39–59. - Kay, S.M., C. Mpodozis y B. Coira, 1999. Neogene Magmatism, tectonism, and Mineral Deposits of the Central Andes 22° to 33°S latitude. En Skinner, B.J. (Ed.), Geology and Ore Deposits of the Central Andes. Society Economic Geology, Special Publication 7: 27-59 .- Kay, S.M., 2006. Chemical and isotopic evidence for modification of the Central Andean arc mantle by crust removed by forearc subduction erosion. Geochimica Cosmochimica Acta. 170 (18), A385. .- Kay, S.M., Coira, B., 2009. Shallowing and steepening subduction zones, continental lithosphere loss, magmatism and crustal flow under the central Andean Altiplano–Puna plateau. In: Kay, S.M., Ramos, V.A., Dickinson, W.M. (Eds.), Backbone of the Americas: Shallow Subduction, Plateau and Ridge and Terrane Collisions: Geological Society America Memoir, 204, pp. 229–260. .- Mamani, M., Tassara, A., Wörner, G., 2008. Composition and structural control of crustal domains in the central Andes. Geochemistry, Geophysics, Geosystems 9. doi:10.1029/2007 GC001925. .- .- Mamaní, M., Wörner., Sempere, T., 2010. Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): Tracing crustal thickening and magma generation through time and space. GSA Bull. 122: 162– 182. .- Jordan, T.E., Isacks, B.L., Allmendinger, R.W., Brewer, J.A., Ramos, V.A., Ando, C.J., (1983). Andean tectonics related to geometry of subducted Nazca Plate. Geol. Soc. Am. Bull., 94:341-361. .- Schilling, F.R., Partzsch, G.M., Brasse, H., Schwarz, G.,Partial Melting below the Magmatic Arc in the Central Andes deduced from Geoelectromagnetic Field Experiments and Laboratory Data. Physics of the Earth and Planetary Interiors (1997) 103, 17±31. .- Schmidt, M.W. and Poli, S., Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters 163 (1998) 361– 379. .- Schmitz, M, A balanced model of the southern Central Andes, Tectonics, (1994) 13(2), 484–492. .- Schmitt, A.K., Kasemann, S., Meixner, A. and Rhede, D. Boron in central Andean : Implications for crustal boron cycles in an active continental margin. Chemical Geology 183, (2002) pp. 333–347 .- Schnurr, W., Trumbull, R., Clavero, J., Hahne, K., Siebel, W., Gardeweg, M., 2007. Twenty-five million years of silicic volcanism in the southern central volcanic zone of the Andes: Geochemistry and magma genesis of ignimbrites from 25 to 27° S, 67 to 72° W. J. Volcanol. Geotherm. Res. 166, 17-46. ..- Thorpe, R.S., P.W. Francis y L.O. O’Callaghan, 1984. Relative roles of source composition, fractional crystallization and crustal contamination in the petrogenesis of Andean volcanic rocks. Philosophical Transaction of the Royal Society of London 310: 675- 692. .- Trumbull, R.B., Riller, U., Oncken, O., Scheuber, E., Munier, K., Hongn, F., 2006. The time– space distribution of Cenozoic arc volcanism in the Central Andes: a new data compilation and some tectonic considerations. In: Oncken, O., et al. (Ed.), The Andes — Active Subduction Orogeny. : Frontiers in Earth Science Series, 1. Springer- Verlag, Berlin, pp. 29–43.

5.- Das jurassische transtensionaleArc-System in N-Chile

.- Scheuber, E., Bogdanic, T., Jensen, A. and Reutter, K.-J., 1994, Tectonic development of the North Chilean Andes in relation to plate convergence and magmatism since the : in Reutter, K.-J., Scheuber, E. and Wigger, P.J. (eds), Tectonics of the Southern Central Andes, Springer-Verlag, 121–139.

7.- Kretazisch-paläogene Entwicklung Nordchiles: Arc-Migration, Beckenentwicklung und Geotektonik

.- Pardo-Casas, F., P. Molnar, Relative motion of the Nazca (Farallon) and South American Plates since Late Cretaceous time. Tectonics, 6 (1987) 233-248. .- Scheuber, E. and Giese, P., Architecture of the Central Andes - a compilation of geoscientific data along a transect at 21°S. J. S. Am. Earth Sci. 12 (1999), pp. 103–107 .- Scheuber, E., Mertmann, D., EGE, H., Silva, P., Heubeck C., Reutter K-J.; Jacobshagen, V., Exhumation and basin development related to formation of the central Andean plateau, 21°S, Frontiers in Earth Sciences. Editors: O. Oncken, G. Chong, G. Franz, P. Giese, H.J. Götze, V. Ramos, M. Strecker, and P. Wigger.

8.- Mesozoisches Rifting und känozoische Kompressionstektonik in NW- Argentinien

.- Sempere, T., R. F. Butler, D.R. Richards, L.G. Marshall, W. Sharp, C. Swisher, Stratigraphy and chronology of Upper Cretaceous-lower Paleogene strata in Bolivia and northwest Argentina. Geol. Soc. Am. Bull. 109 (1997) 709-727. .- Kley, J., Rosello, E.A., Monaldi, C.R., and Habighorst, B., 2005, Seismic and fi eld evidence for selective inversion of Cretaceous normal faults, Salta rift, northwest Argentina: Tectonophysics, v. 399, p. 155–172, doi: 10.1016/j.tecto.2004.12.020. .- Monaldi, C.R., Salfi ty, J.A., and Kley, J., 2008, Preserved extensional structures in an inverted Cretaceous rift basin, northwestern Argentina: Outcrop examples and implications for reactivation: Tectonics, v. 27, p. TC1011, doi: 10.1029/2006TC001993.

9 . Die Argentinische Puna: Tektonik, Vulkanismus und Landschaftsentwicklung

.- Acocella, V., L. Vezzoli, R. Omarini, M. Matteini, and R. Mazzuoli, (2007). Kinematic variations across Eastern Cordillera at 24°S (Central Andes): Tectonic and magmatic implications, Tectonophysics, , 81 – 92,863 doi:10.1016/j.tecto.2007.02.001 .- Acocella V., Gioncada A., Omarini R.,Riller U., Mazzuoli R. and Vezzoli L., (2010). Tectonomagmatic characteristics of the back ‐ arc portion of the Calama – Olacapato – El Toro Fault Zone, Central Andes. Tectonics, vol. 30.. .- Allmendinger RW, Ramos VA, Jordan TE, Palma MA, Isacks BL (1983) Palaeogeography and Andean structural geometry, northwest Argentina. Tectonics 2:1–16 .- Allmendinger, Jordan, Kay, Isacks, 1997, “The evolution of the Altiplano-Puna Plateau of the Central Andes”, Ann. Rev. Earth Planet. Sci., 25, 139-174; .- Allmendinger, R., Gubbels, T., 1996. Pure and simple shear plateau uplift, Altiplano-Puna, Argentina and Bolivia. Tectonophys. 259, 1-13. .- Caffe, P.J., Trumbull, R.B., Coira, B.L., Romer, R.L., 2002. Petrogenesis of early volcanic phases in Northern Puna Cenozoic magmatism. Implications for magma genesis and crustal processes in the Central Andean Plateau. J.Petrol. 43, 907-942. .- Caffe, P.J.; Soler, M.M.; Coira, B.L.; Onoe, A.T.; Cordani, U.G., 2008. The Granada ignimbrite: a compound pyroclastic unit and its relationship with Upper volcanism in the northern Puna. Journal of South American Earth Sciences 25 (4): 464-484. Cabrera, A.P., Caffe, P.J., 2009. The : volcanic history and eruptive styles of a mafic volcanic field from northern Puna, Argentina. Journal of South American Earth Science 28, 113–131. .- Cladouhos T.T.; Allmendinger R.; Coira B.; Farrar, E., 1994. Late cenozoic deformation in the Central Andes: fault kinematics from the northern Puna, Northwestern Argentina and southwestern Bolivia. Journal of South American Earth Science, 7 (2): 209-228. .- Coira, B., Kay, S.M., Viramonte, J., 1993. Upper Cenozoic magmatic evolution of the Argentine Puna—a model for changing subduction geometry. International Geological Review 35, 677–720 .- Coira, B.L., Kay, S.M., 1993. Implications of volcanism at Cerro Tuzgle for crustal and mantle evolution of the Puna Plateau, Central Andes. Contributions to Mineralogy and Petrology 113, 40–58. .- DeSilva, S.L., Altiplano-Puna volcanic complex of the central Andes. Geology 17 (1989), pp. 1102–1106. .- Coira, B., and S. Kay, (1993). Implication of Quaternary volcanism at Cerro Tuzgle for crustal and mantle evolution of the Puna Plateau, Central Andes, Argentina, Contrib. Mineral. Petrol., 113, 40 – 58, doi:10.1007/ 921 BF00320830. .- Deruelle, B., (1991). Petrology of Quaternary shoshonitic of northwestern Argentina, in Andean Magmatism and Its Tectonic Setting, edited by R. S. Harmon and C. W. Rapela, Special Paper of Geological Society of America Bulletin, 256, 201 – 217. .- Hindle, Kley, 2002, “Displacements, strains and rotations in the central Andean plate boundary zone”, in Stein, and Freymueller eds., Plate boundary zones: American Geophysical Union Geodynamics Series 30, 135–144; .- Guzmán, S., Petrinovic, I.A., Brod, J.A., 2006. mafic volcanoes and their relation with the boundary between the Puna and the Cordillera Oriental, Salta, Argentina. J. Volcanol. Geotherm. Res. 158 (1–2), 51–69. .- Guzmán, S. , Petrinovic, I.,2010. The Luingo caldera: The south-easternmost collapse caldera in the Altiplano– Puna plateau, NW Argentina. Journal of Volcanology and Geothermal Research. Vol. 194: 174-188 .- Guzmán, S., Petrinovic, I., Brod, A., Hongn, F., Seggiaro, R., Montero, C., Carniel, R., Dantas, E. y Sudo, M., 2011. Petrology of the Luingo caldera (SE margin of the Puna plateau): a middle Miocene window of the arc-back arc configuration. Journal Volcanology Geothermal Research 200: 171-191. .- Hongn, F., del Papa, C., Powell, J., Petrinovic, I., Mon, R. y Deraco, V., 2007. Middle deformation and sedimentation in the Puna-Eastern Cordillera transition (23º-26ºS): Control by preexisting heterogeneities on the pattern of initial Andean shortening. Geology 35(3): 271-274. .- Isacks, 1988,”Uplift of the central Andean plateau and bending of the Bolivian orocline”, Journal of Geophysical Research, 93, 3211-3231; .- Kay, Coira, Viramonte, 1994, “Young mafic back-arc volcanic rocks as indicators of continental lithosferic delamination beneath the Argentine Puna plateau, central Andes”, Journal of geophysical Research, 99-B12, pg. 24,323-24,339; .- Kay, S., B. Coira, P. Caffe y C.H. Chen, 2010. Regional chemicals diversity, crustal and mantle sources and evolution of Central Andean Puna plateau ignimbrites. Journal of Volcanology and Geothermal Research 198 (1-2): 81-110. .- Kay, S., B. Coira, P. Caffe y C.H. Chen, 2010. Regional chemicals diversity, crustal and mantle sources and evolution of Central Andean Puna plateau ignimbrites. Journal of Volcanology and Geothermal Research 198 (1-2): 81- 110. .- Kley, J., C. Monaldi, Tectonic shortening and crustal thickness in the Central Andes: How good is correlation?, Geology, 26, (1998), 723-726. .- Kley, J., C. R. Monaldi, Tectonic inversion of the Santa Barbara System of the central Andean foreland thrust belt, northwestern Argentina, Tectonics, 21(6) (2002), doi: 10.1029/2002TC902003, 2002. .- Kraemer, B., Adelmann, D., Alten, M., Schnurr, W., Erpenstein, K., Kiefer, E., van den Bogaard, P. and Görler, K. Incorporation of the Paleogene foreland into the Argentina Puna plateau: The Salar de Antofalla area, Southern Central Andes - Journal of South American Earth Sciences 12/2 (1999) 157-182. .- Matteini, M., Mazzuoli, R., Omarini, R., Cas, R., Maas, R., 2002a. The geochemical variations of the upper Cenozoic volcanism along the Calama–Olocapato–El Toro transversal fault system in central Andes ( 24°S): petrogenetic and geodynamic implications. Tectonophysics 345, 211–227. .- Matteini M., Mazzuoli R., Omarini R., Cas R., Maas R. (2002). Geodynamic evolution of Central Andes at 24°S as inferreed by magma composition along the Calama-Olacapato-El Toro transversal volcanic belt. J. of Volcanology and Geothermal Research 118, 205-228. .- Mazzuoli, R., et al., (2008). Miocene magmatism and tectonics in the easternmost sector of the Calama – Olacapato – El Toro fault system in Central Andes at ∼ 24°S: Insights into the evolution of the Eastern Cordillera, Geological Society of America Bulletin, 120, 1493 – 1517, doi:10.1130/B26109.1. .- Ort, M.; Coira, B y Mazzoni, M., 1996. Generation of a crust–mantle magma mixture: magma sources and contamination at , central Andes. Contrib. Mineral. Petrol. 123: 308–322 .- Marrett, R., R Allmendinger, R. Alonso y R. Drake, 1994. Late Cenozoic tectonic evolution of the Puna Plateau and adjacent foreland, northwestern Argentine Andes. Journal of South American Earth Sciences 7 (2): 179- 207. .- Montero, M.C., F. Hongn, R. Marrett, R. Seggiaro, M. Strecker y M. Sudo 2010a. Late Miocene- onset of N-S extension along the southern margin of the Central Andean Puna plateau from magmatic, geochronological and structural evidences. Tectonophysics 494 (1-2): 48-63 .- Petrinovic, I. A., and F. Colombo Piñol, (2006). Phreatomagmatic and phreatic eruptions in locally extensive settings of southern Central Andes: The volcanic centre (24°10 ′ S – 66°34 ′ W), Argentina, Journal of Volcanology and Geothermal Research, 158, 37 – 50, doi:10.1016/j.jvolgeores.2006.04.013. .- Petrinovic, Riller, Brod, Alvarado, Arnosio, 2006, “Bimodal volcanism in a tectonic transfer zones: evidence for tectonically controlled magmatism in the southern central Andes, NW Argentina”, J. Volc. e Geotherm. Res., 152, 240-252. .- Richards, J.P., T. Ullrich y R. Kerrich, 2006. The Late Miocene- Quaternar Antofalla volcanic Complex, southern Puna, NW Argentina: protracted history, diverse petrology, and economic potential. Journal of Volcanology and Geothermal Research 152 (3-4): 197-239 .- Riller, U., Petrinovic, L, Ramelow, 1, Greskowiak, L, Strecker, M., and Oncken, 0. (2001): Late Cenozoic tectonism, caldera and plateau formation in the central Andes.. - Earth and Planetary Science Letters, 188: 299-311; .- Riller, U., & Oncken, O. (2002): Growth of the central Andean Plateau by tectonic segmentation is controlled by the gradient in crustal shortening.. - Journ. of Geology, Vol. 111: 367-384. .- Risse, A., Trumbull, R.B., Coira, B., Kay, S.M., van den Bogaard, P., 2008. 40Ar/39Ar geochronology of basaltic volcanism in the back-arc region of the southern Puna plateau, Argentina. Journal of South America Earth Science 26, 1–15. .- Siebel, W., W. Schnurr, K. Hahne, B. Kraemer, R.Trumbull, P. van den Bogaard y R. Emmermann, 2001. Geochemistry and isotope systematics of small to medium volume Neogene Quaternary ignimbrites in the southern central Andes: evidence for derivation from andesitic magma sources. Chemical Geology 171: 213-217. .- Strecker, M.R., Alonso, R.N., Bookhagen, B., Carrapa, B., Hilley, G.E., Sobel, E.R., and Trauth, M.H., 2007, Tectonics and Climate of the Southern Central Andes: Annual Review of Earth and Planetary Sciences, v. 35, p. 747–787.

14 Neogener Vulkanismus I: APVC und die anderen großen Caldera-Systeme in den südlichen Zentralanden

.- Chmielowski, J., Zandt, G., Haberland, C., 1999. The central Andean Altiplano–Puna magma body. Geophysical Research Letters 26, 783–786 .- de Silva, S.L., 1989. Altiplano-Puna volcanic complex of the central Andes. Geology 17, 1102– 1106. .- Cladouhos, T.T., Allmendinger, R.W., Coira, B., and Farrar, E., 1994, Late Cenozoic deformation in the Central Andes: Fault kinematics from the northern Puna, northwestern Argentina and Southwestern Bolivia: Journal of South American Earth Sciences, v. 7, p. 209–228, doi: 10.1016/0895 -9811(94)90008-6. .- Coutand, I., Cobbold, P.R., de Urreizieta, M., Gautier, P., Chauvin, A., Gapais, D., Rosello, E.A., and López-Gamundi, O., 2001, Style and history of Andean deformation, Puna plateau, northwestern Argentina: Tectonics, v. 20, p. 210–234, doi: 10.1029/2000TC900031 .- DeCelles, P.G., Carrapa, B., and Gehrels, G., 2007, Detrital zircon U-Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina: Geology, v. 35, p. 323– 326, doi: 10.1130/G23322A.1. .- de Silva, S., G. Zandt, R. Trumbull, J.G. Viramonte, G. Salas y N. Jiménez, 2006. Large ignimbrite eruptions and vol cano-tectonic depressions in the Central Andes: A thermomechanical perspective. En C. Troise, G. De Natale y C. Kilburn (Eds.), Mechanism of activity and unrest at large calderas. Geological Society, Special Publications 269: 47-63. London. .- de Silva, S., Gosnold, 2007. Episodic construction of batholiths: insights from the spatiotemporal development of an ignimbrite flare-up. Journal of Volcanology and Geothermal Research 167, 320– 325. .- de Silva, S., Zandt, G., Trumbull, R., Viramonte, J., Salas, G., and Jimenez, N., 2006b, Large ignimbrite eruptions and volcano-tectonic depressions in the Central Andes: A thermomechanical perspective, in de Natale, G., Troise, C., and Kilburn, C., eds., Mechanisms of activity and unrests at large caldera: Geological Society of London Special Publication 269, p. 47–63. .- Ege, H., Sobel, E.R., Scheuber, E., and Jacobshagen, V., 2007, Exhumation history of the southern Altiplano Plateau (southern Bolivia) constrained by apatite fi ssion track thermochronology: Tectonics, v. 26, p. TC1004, doi: 10.1029/2005TC001869. .- Elger, K., Oncken, O., and Glodny, J., 2005, Plateau-style accumulation of deformation: Southern Altiplano: Tectonics, v. 24, p. TC4020, doi: 10.1029/2004TC001675. .- Folkes CB, de Silva SL, Wright HM, Cas RAF (2011b) Geochemical homogeneity of a long-lived, large silicic system; evidence from the Cerro Galan caldera, NW Argentina. In: Cas RAF, Cashman K (eds) The Cerro Galan Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi:10.1007/s00445-011-0511-y .- Folkes, C., S. de Silva, A.K. Schmitt y R.A. Cas, 2011c. A reconnaissance of U-Pb zircon ages in the Cerro Galán system. NW Argentina: prolonged magma residence, crystal recycling, and crustal assimilation. Journal of Volcanology and Geothermal Research 206: 136-147. .- Francis, P. W.; R. Sparks; C. J. Hawkesworth; R.S. Thorpe; D.M. Pyle; S.R. Tait; M.S. Mantovani; F. McDermott, Petrology and geochemistry of volcanic rocks of the Cerro Galan Caldera, Northwest Argentina, Geological Magazine 126, 5 (1989), pp. 515-547. .- Gardeweg, M., and Ramírez, C.F., 1987, caldera and the Atana ignimbrite—A major ash-fl ow and resurgent caldera complex in the Andes of northern Chile: Bulletin of Volcanology, v. 49, no. 3, p. 547–566, doi: 10.1007/BF01080449. .- Giaoncada et al. 2012. Pliocene intraplate-type volcanism in the Andean foreland at 26°10′S, 64°40′W (NW Argentina): Implications for magmatic and structural evolution of the Central Andes. LITHOSPHERE | Volume 2 | Number 3 | www.gsapubs.org .- Lesti C, Porreca M, Giordano G, Mattei M, Cas RAF, Wright H, Viramonte J (2011) High temperature emplacement of the Cerro Galán and Toconquis Group ignimbrites (Puna plateau, NW Argentina) determined by TRM analyses. In: Cas RAF, Cashman K (eds) The Cerro Galán Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi:10.1007/s00445-011-0536-2 .- Lindsay J.M., de Silva S., Trumbell R., Emmermann R., Wemmer K. (2000). La Pacana caldera, N. Chile: a re-elevaluation of the stratigraphy and volcanology of one of the world’s largest resurgent calderas. J. of Volcanology and Geothermal Research 106 (2001) 145-173. .- Lindsay, J.M., Schmitt, A.K., Trumbull, R.B., DeSilva, S.L., Siebel, W., Emmermann, R., 2001a. Magmatic evolution of the La Pacana caldera system, central Andes, Chile: Compositional variation of two cogenetic large-volume felsic ignimbrites. J. Petrol. 42, 459-486.- Ort M.H., 1993. Eruptive processes and caldera formation in a nested downsag-collapse caldera: Cerro Panizos, Central Andes Mountaines. Journal of Volcanology and Geothermal Research, 56: 221-252..- Petrinovic, I.A., Martí, J.,Aguirre-Díaz, G.J , Guzmán, S., Geyer A., Salado Paz (2010). The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance Journal of Volcanology and Geothermal Research 194 15–26. .- Salisbury, M.J., B.R. Jicha, S.L. de Silva, B.S. Singer, N.C. Jiménez y M.H. Ort, 2011. 40 Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province: Geological Society of America Bulletin 123 (5-6): 821- 840. .- Schmitt, A.K., Kasemann, S., Meixner, A., Rhede, D., 2002. Boron in central Andean ignimbrites: Implications for crustal boron cycles in an active continental margin. Chemical Geology 183, 333– 347. .- Soler, M.M., Caffe, P.J., Coira, B.L., Onoe, A.T., Kay, S.M., 2007. Geology of the Vilama caldera: A new interpretation of a large-scale explosive event in the Central Andean plateau during the Upper Miocene. J. Volcanol. Geotherm. Res. 164 (1-2), 23-53.

. .- Goss, A., S.M. Kay, C. Mpodozis y B. Singer, 2009. The Incapillo Caldera and Dome Complex (~ 28°S, Central Andes): A stranded over a dying arc. Journal of Volcanology and Geothermal Research 184(3-4): 389-404. .- Kay, S.M., B. Coira, G. Wörner, R. Kay y B.S. Singer, 2011. Geochemical, isotopic and single crystal 40Ar/39Ar age constraints on the evolution of the Cerro Galán Ignimbrites. Bulletin of Volcanology, doi:10.1007/s0045- 010-0410-7. .- Sparks, R., P. Francis, R. Hamer, R. Pankhurst, L. O’Callaghan, R.S. Thorpe y R. Page, 1985. Ignimbrites of the Cerro Galán caldera, NW Argentina. Journal of Volcanology and Geothermal Research 24: 205-224. 17 Lagerstätten in N-Chile und NW-Argentinien I: Erzlagerstätten – Überblick (muy pocas)

.-SERNAGEOMIN homepage .-Segemar hompage Argentina .- Kay, S.M., C. Mpodozis, B. Coira, Neogene magmatism, tectonism, and mineral deposits of the Central Andes (22ES to 33ES). In B. Skinner et al. (Eds.), Geology and Mineral Deposits of the Central Andes, Society of Economic Geology, Special Publication, 1999, vol. 7, pp. 27-59. .- Harris, A., S. Bryan y R. Holcombe, 2006. Volcanic Setting of the Bajo de la Alumbrera Porphyry Cu-Au Deposit,Farallón Negro Volcanics, Northwest Argentina. Economic Geology 101 (1): 71-94. .- Sasso, A.M., 1997. Geological evolution and metallogeneticrelationships of the Volcanic Complex, NW Argentina. Tesis doctoral, Queen’s University (inédito). 842p., Kingston. .- Sillitoe, R.H., E.H. McKee y T. Vila, 1991. Reconnaissance KAr geochronology of the Maricunga gold-sylver belt, northern Chile. Economic Geology 86 (6): 1261-1270. 19.- Lagerstätten in N-Chile und NW-Argentinien II: Salpeter und Salare - Genese und Nutzung (muy pocas)

.- Alonso, R.N., Helvaci, C., Sureda, R., Viramonte, J.G., 1988. A new Tertiary borax deposit in the Andes. Mineralium Deposita 23, 299–305. .- Alonso, R.N., Jordan, T.E., Tabbutt, K.T., Vandervoort, D.S., 1991. Giant evaporite belts of the Neogene Central Andes. Geology 19, 401–404. .- Alonso, R.N., Viramonte, J.G., 1990. Borate deposits in the Andes. In: Fontbote´, L., Amstutz, G.C., Cardozo, E., Frutos, J. (Eds.), Stratabound Ore Deposits in the Andes, Springer, Berlin, pp. 721–731 .- Helvaci and Alonso. Borate Deposits of Turkey and Argentina; A Summary and Geological Comparison. Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), Vol. 9, 2000, pp. 1-27. .- Kaseman et al. Boron isotope composition of geothermal fluids and borate minerals from salar deposits (central Andes/NW Argentina). Journal of South American Earth Sciences 16 (2004) 685– 697 .- Kasemann,S., Erzinger, J., Franz, G.,2000.Boronrecycling in the continental crust of the central Andes from the Palaeozoic to Mesozoic, NW Argentina. Contributions to Mineralogy and Petrology 140, 328–343.