Elektronische Displays

Total Page:16

File Type:pdf, Size:1020Kb

Elektronische Displays Elektronische Displays Vorlesungsbegleitendes Skript in Deutsch Elektronische Displays Karlheinz Blankenbach 1 Einführung Anwendungen, Markt, ... 2 Display Technologien Prinzip, Beispiele, Anwendungen, ... 2.1 CRT Prinzip, Komponenten 2.2 LCD Passiv - & Aktiv - Matrix, Ansteuerung, ... 2.3 Plasma Prinzip 2.4 VFD Prinzip, Ansteuerung 2.5 (O)LED HL, OLED, LEP 2.6 EL Displays & Hinterleuchtung 3 Messungen Kontrast, Farbe, Umgebungslicht, ... 4 Technologievergleich Prof. Dr. Karlheinz Blankenbach Tel. : 07231 / 28 - 6658 FH Pforzheim ET/IT/TI Fax : 07231 / 28 - 6060 Tiefenbronner Straße 65 Email : [email protected] 75175 Pforzheim Bla FHWeb : www.displaylabor.de Pf www.k-blankenbach.de Bilder, Daten etc. aus Firmenschriften, Internet, Büchern (Matschulat, Knoll, ...), SID-Journal, Konferenzbände ELECTRONIC DISPLAYS, ... Blankenbach / Elektronische Displays / 08.11.01 1 / 81 Elektronische Displays 1. Einführung Statement ‘Es gibt heute praktisch kein elektronisches Gerät ohne Display‘ Ziel - Anwendungen elektronischer Displays - Grundlagen der relevanten Displaytechnologien - Grundkenntnisse der wichtigsten Meßtechniken - Aspekte zur Displayauswahl Schlagwort 'Multimedia' - Multimedia = Fähigkeit zur Ausgabe mehr als eines Formates - Bilder - Video - Audio - ... - typischerweise versteht man hierunter einen PC, zunehmend aber auch Anwendungen im industriellen und automobilen Bereich Definition Multimedia Displays - Auflösung ≥ QVGA (320 * 240) - ≥ 256 Farben - Schaltzeit < 100 ms - Öffnungswinkel > 10° - Format 4 : 3 ... 16 : 9 - ... Marktvolumen - ≈ 40 Mrd. $ (2001), davon ca. 40 % Flachdisplays - Steigerung bis Bla20 % pro Jahr prognostiziertFH Pf - CRT / FPD ≈ 1,5 : 1 (2001), ≈ 1 : 1 (2005) Blankenbach / Elektronische Displays / 08.11.01 2 / 81 Elektronische Displays 1.1 Beispiele 'guter' und 'schlechter' Display - Anwendungen ‘gut’ ‘schlecht’ Parkleitsystem Ulm (LCD) Öffentliches Internet-Terminal Ulm (CRT, 'verschrottet') Plasma Display im Innenbereich Shop in Frankfurt bei normaler (Spende ABLE DESIGN, München) Betrachtungsweise Outdoor Sonnenlicht outdoor Schatten indoor Bla FH Pf LCDs : reflektiv monochrom (links), ~ Farbe (Mitte, Spende Compaq) , transmissive (rechts) → Sorgfältige Displayauswahl vor allem bei hellem Umgebungslicht ! Blankenbach / Elektronische Displays / 08.11.01 3 / 81 Elektronische Displays 1.2 Display - Einteilung Displays Direktsicht Projektion LCD Passiv Aktiv CRT DMD DMD und Laser Displays sind keine Direktsicht-Displays Laser Passiv Aktiv 'Licht schaltend' 'Licht emittierend' Monochrome LCD Color LCD Reflektive Color LCD CRT Split Flap (O)LED Flip Dot Plasma DMD (mit Lampe) VFD eInk EL ' Papier ' FED ... .... Technologie - Bildgröße build with modules LCD, LED, CRT, Split Flap, Flip Dot -> video wall LED Laser TV, DMD VFD, ELBla FH Pf CRT LCD 0.1 1 5 10 40 100 display size (diagonal) direct view projection / inch Blankenbach / Elektronische Displays / 08.11.01 4 / 81 Elektronische Displays 1.3 Display - Auswahl Qualitätsaspekt → Technische Spezifikation 'Gute Ablesbarkeit' - Optik - Elektronik - Anwendung Magic Circle Viewing angle Contrast Contrast Switching time Electro-Optic Optic Color Gray scale, ... Brightness Reflections, ... Size Power consumption Price Weight Voltage Electronic Application Temperature EMI, ... Vibration Displayed Data, ... Weiterhin zu beachten: - Lieferanten (Second Source, Liefertreue, ...) - kundenspezifisch oder Serie - Einsatzort (z.B. bei Großraumbüro mit CRTs muß evt. Klimaanlage größer dimensioniert werden, somit können LCD - Monitore insgesamt billiger sein) - Vorstellungen des Kunden (Design, Qualität, ...) - 'Zukunft' der gewählten Technologie (VFD & FED sind möglicherweise am Aussterben) - Produktlebensdauer und WeiterentwicklungBla FH Pf - ... Alle diese Parameter müssen applikationsspezifisch gewichtet werden, der Kompromiß wird oft über den Preises gefunden, nicht über die Qualität des Displays ! Blankenbach / Elektronische Displays / 08.11.01 5 / 81 Elektronische Displays 1.5 Ergonomie Auflösung des Auges: Minimum Recognable Object Size 100 α ≈ 1‘ = 1/60 ° = 1‘ Bogenmaß 10 1 . -4 αrad ≈ 3 10 0,1 height /cm 0,01 h → tanα ≈ α = 0,001 d 0,1 1 10 100 1000 viewing distance /m Sichtwinkel ϕ h/2 ϕ 10° - 20° typisch 20° - 40° /2 d ( 60 - 90 cm) empfohlen : 30° Büro d ≈ 60 cm Winkel 20° (Minimum) 40° (Maximum) Bildschirmgröße 14" 28" große LCDs in Verbindung mit einem kleinen Betrachtungsabstand sollten große Blickwinkel aufweisen wegen Kontrastverminderung und Farbverschiebungen Darstellung von Buchstaben 10 mm Bla FH APf a Segment 8 Starburst Matrix 5*7 VGA 20*30 7-Segment 14-Segment bad good Readability Blankenbach / Elektronische Displays / 08.11.01 6 / 81 Elektronische Displays 1.5 Empfehlungen und Normen für Elektronische Displays ANSI / HFS 100-1988 DIN 66234 Umgebungslicht 500 lx Hintergrund-Leuchtdichte 10 cd/m² Display-Leuchtdichte > 35 cd/m² 45 cd/m² Betrachtungsabstand 50 cm Buchstaben - Höhe 2,3 – 6,5 mm (d = 50 cm) 2,6 mm (3,1 bevorzugt) ϕ = 18´ Breite (∅ vgl. I, M) 92 % der Höhe Format (Punktmatrix) > 7 * 9 > 5 * 7 Modulation CM > 0,75 0,71 Kontrast Verhältnis CR 3 : 1 – 15 : 1 (6 : 1 bevorzugt) Gleichmäßigkeit > 50 % Leuchtdichte CRT Flicker (Bildrate) Nicht beobachtet von 50 – 60 Hz Negativmode, vgl. 100 Hz Fernseher 90 % der Betrachter 80 Hz Positivmode Empfohlene Buchstabenhöhe Bla FHDiagonale Pf Höhe 21" 4,0 mm Die Höhe nimmt mit der Diagonalen ab, da der 19" 3,6 mm typische Betrachtungsabstand größer wird 17" 3,0 mm Blankenbach / Elektronische Displays / 08.11.01 7 / 81 Elektronische Displays Darstellungs - Modi Positiv Negativ Darstellung Dunkle Information auf Helle Information auf hellem Hintergrund dunklem Hintergrund Alternativ Positivkontrast Negativkontrast Buchstabenleuchtdichte /cd/m² 10 - 15 80 - 160 Hintergrundleuchtdichte /cd/m² - 170 10 - 15 Optimaler Kontrast 1 : 8 - 1 : 12 8 : 1 - 10 : 1 CRT - Bildfrequenz /Hz 70 - 80 50 - 60 CRT : Negativmode ist wegen geringerer Bildfrequenz bei Computern leichter zu realisieren, da die Wiederholrate geringer ist; vergleiche 'DOS – Mode' alter Computer mit Bernstein- oder grüner Farbe (lange Abklingdauer des Phosphors ermöglicht eine flimmerfreie Bildfrequenz < 25 Hz) Reflexionen scheinen bei Positivdarstellung (hell auf hellem Hintergrund) geringer auszufallen als bei Negativdarstellung (hell auf dunklem Hintergrund), da die mittlere Leuchtdichte bei Office-Anwendungen des Displays größer ist ! Displaynormen : CECC 20000 A3, ISO 9241, ISO 13406, IEC 47(CO)16, ... Bla FH Pf Blankenbach / Elektronische Displays / 08.11.01 8 / 81 Elektronische Displays 2. Displaytechnologien 2.1 Kathodenstrahlröhre (Cathode Ray Tube) - seit mehr als 100 Jahren - bis 1990 die einzige Technologie für Fernsehen und hochauflösende Anwendungen - heutiger Marktanteil: > 60 % der Computermonitore und > 90 % der Fernseher - einzigartiges Prinzip: ein Strahl wählt jedes Pixel an und steuert dessen Leuchtdichte Hauptkomponente 1 n der CRT 2 3 6 5 . 9 7 4 10 8 - + - + 1 Evakuierter Glaskolben 2 Heizelement 3 aufgeheizte Kathode emittiert Elektronen 4 Wehnelt Zylinder (negatives Potential) fokussiert den Elektronenstrahl 5 abgelenkter Elektronenstrahl 6 Ablenksystem - elektrostatisch für hohe Frequenzen (Oszilloskop) und kleine Ablenkwinkel - magnetisch für große Ablenkwinkel und niedrigeren Frequenzen 7 Anode Bla FH Pf 8 Anodenspannung bis 35 kV zur Beschleunigung 9 Phosphor zur Lichterzeugung durch Aufprall schneller Elektronen 10 Wehnelt Spannung (Kathode, ≈ 80 V): je höher die Spannung desto geringer die Strahlintensität und demzufolge die Leuchtdichte Blankenbach / Elektronische Displays / 08.11.01 9 / 81 Elektronische Displays 2.2.1 Lichterzeugung - Elektronen treffen mit hoher Geschwindigkeit auf die Innenseite des Phosphors - die Strahlung muß die Phosphorschicht zum Betrachter hin durchdringen (Dämpfung) Bandbreite Video - Verstärker Pixelfrequency - Videobandwidth Displayed Signal f pixel << f video f pixel < f video f pixel ~ f video Bla FH Pf U D t eine geringe Bandbreite des Videoverstärkers 'verwäscht' die Konturen Blankenbach / Elektronische Displays / 08.11.01 10 / 81 Elektronische Displays 2.1.3 Magnetische Ablenkung flat Bewegte Elektronen werden in Magnetfeldern sphere auf Kreisbahnen (Lorentz - Kraft) abgelenkt; das tritt auch in Halbleitern auf (Hall - Effekt). b > a β = α Abgeflachte und Flachbildröhren : b > a α a bei 'gleichem' Ablenkwinkel ! R Bemerkungen - typische Ablenkwinkel : 90°, 110° ('short neck'), definiert als 'Öffnungswinkel' links oben - rechts unten - 110° ermöglichen eine geringere Bautiefe als 90° Ablenkwinkel - kleinere Anodenspannung vergrößert Bild (Leuchtdichte geringerer) - Flachbildröhren benötigen Korrekturmaßnahmen um Konvergenz, Farbreinheit und Schärfe zu gewährleisten Bildaufbau Magnetische Ablenkeinheit Bla FH Pf Blankenbach / Elektronische Displays / 08.11.01 11 / 81 Elektronische Displays 2.1.4 Bildqualität Phosphorschicht, Ablenkung, nicht kugelförmiger Schirm etc. bedingen eine Beeinträchtigung der Bildqualität. Mit speziellen Schaltungen und Spulen kann Abhilfe geschaffen werden - zu Lasten des Preises. Geometrische Fehler verursacht durch magnetische Ablenkung Linearität bmin bmax Linearitätsabweichung sollte < 10 % sein amin − = amax amin ⋅ vertikal : dv 100% amax a b − b max horizontal : d = max min ⋅100% h b Bla FH Pf max Beispiel : 21" CRT für CAD Anwendungen Gitterbreite Soll 20 mm, gemessen 19 mm (Minimum) und 21 mm (Maximum) − − = amax amin ⋅ = 21 19 ⋅ = dX 100 % 100 % 9.5 % amax 21 Blankenbach / Elektronische Displays / 08.11.01 12 / 81 Elektronische
Recommended publications
  • Idw ’08 the 15Th International Display Workshops
    IDW ’08 THE 15TH INTERNATIONAL DISPLAY WORKSHOPS Workshops on • LC Science and Technologies • Active Matrix Displays • FPD Manufacturing, Materials and Components • Plasma Displays • EL Displays and Phosphors • Field Emission Display and CRT • Organic LED Displays • 3D/Hyper-Realistic Displays and Systems • Applied Vision and Human Factors • Projection and Large-Area Displays, and Their Components • Electronic Paper • MEMS for Future Displays and Related Electron Devices • Display Electronic Systems Topical Sessions on • Display Technologies for Professional Use • Flexible Displays • Final Program Toki Messe Niigata Convention Center Niigata, Japan December 3(Wed) – 5(Fri), 2008 CONTENTS Program Highlights............................................................................... 5 General Information.............................................................................. 9 Hotel and Travel Information............................................................... 12 Plenary Sessions Wednesday, December 3 IDW ’08 Opening ............................................................................... 16 IDW ’08 Keynote Addresses.............................................................. 16 IDW ’08 Invited Address.................................................................... 17 Workshop on LC Science and Technologies Wednesday, December 3 Opening............................................................................................... 18 LCT1 Fascinating LC Materials ......................................................
    [Show full text]
  • Wo 2009/026223 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 26 February 2009 (26.02.2009) PCT WO 2009/026223 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every B60R 1/12 (2006.01) H04N 7/18 (2006.01) kind of national protection available): AE, AG, AL, AM, B60R 1/00 (2006.01) AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, (21) International Application Number: EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, PCT/US2008/073474 IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (22) International Filing Date: 18 August 2008 (18.08.2008) LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, (25) Filing Language: English RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (30) Priority Data: 60/956,263 16 August 2007 (16.08.2007) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): GENTEX GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, CORPORATION [US/US]; 600 North Centennial Street, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Zeeland, MI 49464 (US).
    [Show full text]
  • Ambient Contrast Ratio of Lcds and OLED Displays
    Vol. 25, No. 26 | 25 Dec 2017 | OPTICS EXPRESS 33643 Ambient contrast ratio of LCDs and OLED displays * HAIWEI CHEN, GUANJUN TAN, AND SHIN-TSON WU College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA *[email protected] Abstract: We systematically analyze the ambient contrast ratio (ACR) of liquid crystal displays (LCDs) and organic light-emitting diode (OLED) displays for smartphones, TVs, and public displays. The influencing factors such as display brightness, ambient light illuminance, and surface reflection are investigated in detail. At low ambient light conditions, high static contrast ratio plays a key role for ACR. As the ambient light increases, high brightness gradually takes over. These quantitative results set important guidelines for future display optimization. Meanwhile, to improve an OLED’s ACR at large oblique angles, we propose a new broadband and wide-view circular polarizer consisting of one linear polarizer and two biaxial films. Good performance is realized. © 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement OCIS codes: (120.2040) Displays; (230.3720) Liquid-crystal devices; (160.3710) Liquid crystals. References and links 1. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices, 2nd ed. (John Wiley & Sons, 2014). 2. H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004). 3. Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl.
    [Show full text]
  • Liquid-Crystal Displays: Big and Bigger Manufacturers Are Pinning Their Hopes on the Entertainment Market to Use up Increasing Production Capacity
    Innovation and LCD TV' Highlight SID 2003 • SID 2003 Review • Show Overview • LCDs • Emissives • Microdisplays • Equipment and Materials • Display Semiconductors and Electronics • Business Conference • Awards Cost reduction, evolution, and innovation could all be seen at SID 2003, which bodes well for the display industry's future. 2 Editorial When Did PCs Get Boring ? Kenneth I. Werner 12 Overview: Finding a Theme Cost reduction, evolution, and innovation could all be seen at SID 2003, which bodes well for the display industry's future. Ken Werner 16 Liquid-Crystal Displays: Big and Bigger Manufacturers are pinning their hopes on the entertainment market to use up increasing production capacity. Alfred Poor 20 Emissive Displays Shine On Greg Pease for SID Light-emitting ·displays are being used in applications from head­ mounted viewers to stadium displays - and everywhere in between. David Lieberman 26 Microdisplays: LCoS Projects a Bright Future At SID 2003, more companies were showing real LCoS-display products, and with supporting components commercially available, more micro­ display-based products will reach consumers during the next year. Stephen P. Atwood Next Month in Information Display 30 Manufacturing: Equipment and Materials This year, about one-third of the SID exhibitors were equipment or Large-Area Displays materials suppliers - not counting chip suppliers. • DLP"' Rear Projection Patrick Dunn • Tiled Displays 34 Electronics Is Where You Find It • LCDTV The display-electronics environment is changing so rapidly that it is hard • LCoS Projection to recognize a single trend - except that every conceivable ecological niche is being explored for competitive advantages. Ken Werner 38 Expert Opinion: LCD-TV Technology Gary Feather 39 Expert Opinion: Predicting the Future INFORMATION DISPLAY (ISSN 0362-0972) is published eleven Yoichi Taira times a year for the Society for Information Display by Palisades Convention Management, 4 11 Lafayette Street, 2nd Floor, New 40 The First SID Business Conference York, NY 10003; Leonard H.
    [Show full text]
  • Copyrighted Material
    1 Introduction 1.1 Flat panel displays A display is an interface containing information which stimulates human vision. Information may be pictures, animation, movies and articles. One can say that the functions of a display are to produce or reproduce colors and images. Using ink to write, draw or print on paper is a traditional display, like a painting or a book. However, the content of such a traditional display is motionless and typically inerasable. In addition, a light source, synthetic or natural, is needed for reading a book or seeing a picture. There are lots of electronic displays that use an electronic signal to create images on a panel and stimulate the human eye. Typically, they can be classified as emissive and nonemissive. Emissive displays emit light from each pixel which constitutes an image on the panel. In contrast, nonemissive displays modulate light, by means of absorption, reflection, refraction and scattering, to display colors and images. For a nonemissive display, a light source is needed. Hence, these can be classified into transmissive and reflective displays. One of the most successful display technologies for home entertainment is the cathode ray tube (CRT), which is in widespread use in televisions (TVs). CRT is already a mature technology which has the advantages of self-emission, wide viewing angle, fast response, good color saturation, long lifetime and good image quality. However, a major disadvantage is its bulky size. The depth of a CRT is roughly equal to the length and width of the panel. For example, a monitor’s depth is about 40 cm for a 19-inch (38.6 cm × 30.0 cm) CRT with an aspect ratio of 4:3.
    [Show full text]
  • Information Display Magazine November/December 2012
    Nov-Dec Cover.qxp_SID Cover 11/27/12 9:16 AM Page 1 TV TECHNOLOGY ISSUE Nov./Dec. 2012 Official Monthly Publication of the Society for Information Display • www.informationdisplay.org Vol. 28, Nos. 11 & 12 ID ND12 Jaco pC2_Layout 1 11/27/12 9:38 AM Page C2 NEED HELP WITH YOUR DISPLAY SOLUTION? Embedded Computer Systems /ŶĚƵƐƚƌŝĂů>͛ƐĨƌŽŵϭ͟ƚŽϭϬϮ͟ Touch Screen Solutions Optical Enhancements Custom Enclosures LED Backlight / Driver Design EXPERIENCE MATTERS! PROVIDING DISPLAY SOLUTIONS FOR OVER FIFTEEN YEARS AS-9100 Registered ISO-9001 Registered www.jacodisplays.com 877.FPD.JACO / 877.373.5226 e-mail: [email protected] ID TOC NDec p1 11/29/12 8:11 AM Page 1 SID Information SOCIETY FOR INFORMATION DISPLAY NOVEMBER/DECEMBER 2012 ON THE COVER: Illustrated is a representa- DISPLAY VOL. 28, NOS. 11&12 tion of the color richness, high details of the world, and how each incremental improvement in television systems (represented by the correspond- ing labeled rectangles) opens up our view and enables us to experience the scene. In this scope, contents the original NTSC/PAL television would be like looking through a paper-towel tube. By includ- ing the red DCI (Digital Cinema rectangles), 2 Editorial: TVs under Pressure the cover properly represents what we would see in By Stephen P. Atwood the theater today compared to the latest television standards. 3 Industry News: Large-OLED-TV Makers Face Manufacturing Challengers By Jenny Donelan 4 Guest Editorial: A Look at Television Past and Future By David Trzcinski 6 Display Marketplace: Now Is the Winter of Our Discontent Selling TVs isn’t the profitable business it used to be.
    [Show full text]
  • Society for Information Display by Palisades Convention Management, 411 Lafayette Street, 2Nd Floor, New York, NY 10003; Leonard H
    2008 DISPLAY WEEK / DISPLAY OF THE YEAR AWARDS ISSUE More Energyenergy efficient.Efficient. May/June 2008 Vol. 24, Nos. 5 & 6 INFORMATION DISPLAY INFORMATION SID Official Monthly Publication of the Society for Information Display • www.informationdisplay.org MAY/JUNE 2008 MAY/JUNE THE BEST OF 2007 SID ’08 SHOW ISSUE ● Display of the Year Awards ● Products on Display at Display Week 2008 ● Glass Substrates for LCD TV ● History of Projection Display Technology (Part 1) vikuiti.com ● 1-800-553-9215 The difference is amazing. 3 Journal of the SID May Preview © 3M 2008 See Us at SID ’08 Booth 307 See Us at SID ’08 Booth 329 MAY/JUNE 2008 Information VOL. 24, NOS. 5&6 DISPLAY COVER: The 2008 Display of the Year Awards honor the best display products of 2007 with outstanding features, novel and outstanding display 2 Editorial applications, and novel components that significantly Welcome to LA! enhance the performance of displays. See page 16 Stephen P. Atwood for the details 4 Industry News Werner Haas, LCD Pioneer at Xerox, Dies at Age 79. 6 President’s Corner Are You Hungry? THE BEST OF Paul Drzaic 2007 8 The Business of Displays OLED Displays on the Verge of Commercial Breakthrough? Robert Jan Visser 16 2008 Display of the Year Award Winners Show the Future is Now From the commercialization of OLED displays to the rebirth of 3-D cinema, CREDIT: Clockwise from top left: FUJIFILM, Samsung SDI, Ltd., Luminus Devices, the best display products of 2007 point to the realization of many years of Sony Corp., Apple, and RealD.
    [Show full text]
  • Viewing Zones Alf-Screen
    USO08075138B2 (12) United States Patent (10) Patent No.: US 8,075,138 B2 Thomas (45) Date of Patent: Dec. 13, 2011 (54) SYSTEMAND METHODS FOR ANGULAR SS A t 3. E. SLICE TRUE 3-D DISPLAY 6,229,561- - - B1 5/2001 SoncLaughlin 6,533,420 B1 3/2003 Eichenlaub (75) Inventor: Clarence E. Thomas, Knoxville, TN 6,665,100 B1 12/2003 Klug (US) 6,877,857 B2 4/2005 Perlin 2005/0213182 A1 9, 2005 Cossairt 2006, O256302 A1 11, 2006 HSu (73) Assignee: This pimension IP LLC, Knoxville, 2007. O139767 A1 6, 2007 Yoshikawa FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this JP 2002184402 6, 2002 patent is extended or adjusted under 35 WO WO99/39513 8, 1999 U.S.C. 154(b) by 415 days. WO WO2005,117458 12/2005 Appl. No.: 12/391,178 Primary Examiner — William C Dowling (21) ppl. No 9 (74) Attorney, Agent, or Firm — Law Offices of Mark L (22) Filed: Feb. 23, 2009 Berrier (65) Prior Publication Data (57) ABSTRACT Systems and methods for generating a true 3-D display, where US 2010/0214537 A1 Aug. 26, 2010 each of a viewer's eyes not only sees a different scene, but the Int. Cl scene changes continuously as the viewer moves his/her head (51) or change his/her position from one angular location to G03B 2/14 (2006.01) anotherangular location with respect to the display screen. In (52) U.S. Cl. ............... 353/7, 353/94; 359/472: 359/458 one embodiment, a system comprises a set of 2-D image (58) Field of Classification Search .................
    [Show full text]
  • High Performance Micro-Scale Light Emitting Diode Display
    University of Central Florida STARS Electronic Theses and Dissertations, 2020- 2020 High Performance Micro-scale Light Emitting Diode Display Fangwang Gou University of Central Florida Part of the Electromagnetics and Photonics Commons, and the Optics Commons Find similar works at: https://stars.library.ucf.edu/etd2020 University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Gou, Fangwang, "High Performance Micro-scale Light Emitting Diode Display" (2020). Electronic Theses and Dissertations, 2020-. 222. https://stars.library.ucf.edu/etd2020/222 HIGH-PERFORMANCE MICRO-SCALE LIGHT EMITTING DIODE DISPLAY by FANGWANG GOU B.S. University of Electronic Science and Technology of China, 2012 M.S. Peking University, 2015 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Optics and Photonics at the University of Central Florida Orlando, Florida Summer Term 2020 Major Professor: Shin-Tson Wu 2020 Fangwang Gou ii ABSTRACT Micro-scale light emitting diode (micro-LED) is a potentially disruptive display technology because of its outstanding features such as high dynamic range, good sunlight readability, long lifetime, low power consumption, and wide color gamut. To achieve full-color displays, three approaches are commonly used: 1) to assemble individual RGB micro-LED pixels from semiconductor wafers to the same driving backplane through pick-and-place approach, which is referred to as mass transfer process; 2) to utilize monochromatic blue micro-LED with a color conversion film to obtain a white source first, and then employ color filters to form RGB pixels, and 3) to use blue or ultraviolet (UV) micro-LEDs to pump pixelated quantum dots (QDs).
    [Show full text]
  • Appendix a Flat Panel Displays
    Appendix A Flat Panel Displays In the last years, the technological advances enabled flat panel displays (FPDs) to be introduced in a wide range of applications and devices and have enabled applications otherwise impossible, which are limited only by the fantasy of the designer. A.1 Technologies and Classification Other than the LCD, the subject of this book, many other types of flat display technologies have been devised such as: PDP (Plasma Display Panel), LED (Light Emitting Diode) OLED (Organic LED), VFD (Vacuum Fluorescent Display), TFELD (Thin Film Electroluminescent Display), FED (Field Emission Display), DMD (Digital Micro-mirror Machine), PALC (Plasma Addressed LCD), Bistable Displays (including the Electrophoretic and the Nematic Bistable). According to the application and price-to-performance ratio, the most suitable technology has to be chosen. In the following we shall briefly discuss the display technologies that have reached a sufficient development and commercial application. In such a multitude of applications and display types, it is useful to operate a first classification in: Direct view displays and Projection displays. In the first case the name is self explaining, in the second one the image can be projected on a screen either for home/office application or car/airplane application. The image can be also projected on the human eye retina by microdisplays. Then, a second classification, related to the display technologies, must be performed between: Emissive displays and Nonemissive displays In the first case, the device emits light from each pixel. In the second case, the device modulates light (from a light source) by means of absorption, reflection, refraction, and/or scattering mechanisms.
    [Show full text]
  • L CF Eurodisplays17 FC 1017 Abstracts.Indd
    Abstract book EuroDisplay 2017 31 October – 2 November 2017 Meliá Berlin, Berlin, Germany Organised jointly by the IOP Optical Group and the Society for Information Displays http://eurodisplay2017.iopconfs.org OPEN FOR SUBMISSIONS Connecting science, engineering & technology Launching in January 2018, Nature Electronics will publish both fundamental and applied research across all areas of electronics, from the study of novel phenomena and devices, to the design, construction and wider application of electronic circuits. It will also cover commercial and industrial aspects of electronics research. At its core, the journal will be concerned with the development of new technologies and understanding the impact of these developments on society. Nature Electronics will incorporate the research of scientists, engineers and industry, and will also provide comment, review and analysis of the key issues shaping the field and the technology reshaping society. Topics covered in the journal include: 2D and carbon electronics Memory RF electronics Analogue circuits NEMS/MEMS Sensors Bioelectronics Neuromorphic systems Signal processing Digital circuits Optoelectronics Spintronics Displays Organic electronics VLSI Flexible electronics Power electronics Wireless systems Consider submitting your next research paper to the journal. nature.com/natureelectronics A46198 Welcome to the EuroDisplay-2017 I am happy to welcome you in Berlin for the 33d international Conference EuroDisplay 2017 co-organized by the Society for Information Display and Institute of Physics. The program of this three-days event is in the trend set by previous EuroDisplay Conferences (former International Display Research Conferences IDRC) in Strasbourg (1993), Birmingham (1996), Berlin (1999), Nice (2002), Edinburgh (2005), Moscow (2007), Rome (2009), Arcashon (2011), London (2013) and Ghent (2015).
    [Show full text]
  • Liquid Crystal Display and Organic Light-Emitting Diode Display: Present Status and Future Perspectives
    Light: Science & Applications (2018) 7, 17168; doi:10.1038/lsa.2017.168 OPEN Official journal of the CIOMP 2047-7538/18 www.nature.com/lsa REVIEW ARTICLE Liquid crystal display and organic light-emitting diode display: present status and future perspectives Hai-Wei Chen1, Jiun-Haw Lee2, Bo-Yen Lin2, Stanley Chen3 and Shin-Tson Wu1 Recently, ‘Liquid crystal display (LCD) vs. organic light-emitting diode (OLED) display: who wins?’ has become a topic of heated debate. In this review, we perform a systematic and comparative study of these two flat panel display technologies. First, we review recent advances in LCDs and OLEDs, including material development, device configuration and system integration. Next we analyze and compare their performances by six key display metrics: response time, contrast ratio, color gamut, lifetime, power efficiency, and panel flexibility. In this section, we focus on two key parameters: motion picture response time (MPRT) and ambient contrast ratio (ACR), which dramatically affect image quality in practical application scenarios. MPRT determines the image blur of a moving picture, and ACR governs the perceived image contrast under ambient lighting conditions. It is intri- guing that LCD can achieve comparable or even slightly better MPRT and ACR than OLED, although its response time and con- trast ratio are generally perceived to be much inferior to those of OLED. Finally, three future trends are highlighted, including high dynamic range, virtual reality/augmented reality and smart displays with versatile functions. Light: Science & Applications (2018) 7, 17168; doi:10.1038/lsa.2017.168; published online 23 March 2018 Keywords: ambient contrast ratio; liquid crystal displays; motion picture response time; organic light-emitting diode INTRODUCTION at half maximum (FWHM) of green and red QDs is only 25 nm.
    [Show full text]