Biological Control of Saltcedar Allen Knutson, Mark Muegge and C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coleoptera: Chrysomelidae: Alticinae) of the Fauna of Latvia
Acta Zoologica Lituanica, 2009, Volumen 19, Numerus 2 DOI: 10.2478/v10043-009-0011-x ISSN 1648-6919 TO THE KNOWLEDGE OF FLEA BEETLES (COLEOPTERA: CHRYSOMELIDAE: ALTICINAE) OF THE FAUNA OF LATVIA. 3. GENERA NEOCREPIDODERA HEIKERTINGER, 1911 AND CREPIDODERA CHEVROLAT, 1836 Andris BUKEJS Institute of Systematic Biology, Daugavpils University, Vienības 13, Daugavpils, LV-5401, Latvia. E-mail: [email protected] Abstract. Faunal data on four species of the genus Neocrepidodera Heikertinger, 1911 and on five spe- cies of the genus Crepidodera Chevrolat, 1836 are presented. A total of 806 specimens of these genera have been processed. The bibliographic information on these flea beetle genera in Latvia is summarised for the first time. One species, Crepidodera lamina (Bedel, 1901), is deleted from the list of Latvian Coleoptera. The annotated list of Latvian species is given, including five species of Neocrepidodera Heikertinger, 1911 and five species of Crepidodera Chevrolat, 1836. Key words: Coleoptera, Chrysomelidae, Alticinae, Neocrepidodera, Crepidodera, fauna, Latvia INTRODUCT I ON and Pūtele 1976; Rūtenberga 1992; Barševskis 1993, 1997; Bukejs and Telnov 2007. The most recent lists of This publication continues our study on flea beetles of Latvian Neocrepidodera and Crepidodera can be found the Latvian fauna (Bukejs 2008b, c). in the published catalogues of Latvian Coleoptera by There are 48 species and subspecies of the genus Neo- Telnov et al. (1997) and Telnov (2004), respectively. crepidodera Heikertinger, 1911 and 17 species of the The imagoes of Crepidodera feed on leaves of Salix genus Crepidodera Chevrolat, 1836 known in the Pa- and Populus. The larvae of Crepidodera aurata (Mar- laearctic region (Gruev & Döberl 1997). -
Overcoming the Challenges of Tamarix Management with Diorhabda Carinulata Through the Identification and Application of Semioche
OVERCOMING THE CHALLENGES OF TAMARIX MANAGEMENT WITH DIORHABDA CARINULATA THROUGH THE IDENTIFICATION AND APPLICATION OF SEMIOCHEMICALS by Alexander Michael Gaffke A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology and Environmental Sciences MONTANA STATE UNIVERSITY Bozeman, Montana May 2018 ©COPYRIGHT by Alexander Michael Gaffke 2018 All Rights Reserved ii ACKNOWLEDGEMENTS This project would not have been possible without the unconditional support of my family, Mike, Shelly, and Tony Gaffke. I must thank Dr. Roxie Sporleder for opening my world to the joy of reading. Thanks must also be shared with Dr. Allard Cossé, Dr. Robert Bartelt, Dr. Bruce Zilkowshi, Dr. Richard Petroski, Dr. C. Jack Deloach, Dr. Tom Dudley, and Dr. Dan Bean whose previous work with Tamarix and Diorhabda carinulata set the foundations for this research. I must express my sincerest gratitude to my Advisor Dr. David Weaver, and my committee: Dr. Sharlene Sing, Dr. Bob Peterson and Dr. Dan Bean for their guidance throughout this project. To Megan Hofland and Norma Irish, thanks for keeping me sane. iii TABLE OF CONTENTS 1. INTRODUCTION ...........................................................................................................1 Tamarix ............................................................................................................................1 Taxonomy ................................................................................................................1 Introduction -
Hybridization Affects Life-History Traits and Host Specificity in Diorhabda Spp
bioRxiv preprint doi: https://doi.org/10.1101/105494; this version posted February 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Hybridization affects life-history traits and host specificity in Diorhabda spp. 2 3 Bitume, E.V., Bean, D. Stahlke, A.R., Hufbauer, R. A. 4 5 6 Addresses 7 1 Bioagricultural Science and Pest Management, Plant Sciences C129, Colorado State University, 8 Fort Collins, CO 9 2 Colorado Department of Agriculture, Palisade, CO 10 Statement of authorship: EB, DB, and RA designed the experiments, EB performed the 11 experiments and analysed the data. EB wrote the first draft of the manuscript, and DB, AS, and 12 RH contributed substantially to revisions. 13 Running title: Hybridization in Diorhabda 14 15 16 Corresponding author: 17 Ellyn Bitume 18 BSPM 19 Plant Sciences C129 20 Colorado State University 21 Fort Collins, CO 80523-1177 22 [email protected] 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/105494; this version posted February 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 Abstract 26 27 Hybridization is an influential evolutionary process that has been viewed alternatively as an 28 evolutionary dead-end or as an important creative evolutionary force. In colonizing species, such 29 as introduced biological control agents, hybridization can negate the effects of bottlenecks and 30 genetic drift through increasing genetic variation. -
The Leafhoppers of Minnesota
Technical Bulletin 155 June 1942 The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station Accepted for publication June 19, 1942 CONTENTS Page Introduction 3 Acknowledgments 3 Sources of material 4 Systematic treatment 4 Eurymelinae 6 Macropsinae 12 Agalliinae 22 Bythoscopinae 25 Penthimiinae 26 Gyponinae 26 Ledrinae 31 Amblycephalinae 31 Evacanthinae 37 Aphrodinae 38 Dorydiinae 40 Jassinae 43 Athysaninae 43 Balcluthinae 120 Cicadellinae 122 Literature cited 163 Plates 171 Index of plant names 190 Index of leafhopper names 190 2M-6-42 The Leafhoppers of Minnesota John T. Medler INTRODUCTION HIS bulletin attempts to present as accurate and complete a T guide to the leafhoppers of Minnesota as possible within the limits of the material available for study. It is realized that cer- tain groups could not be treated completely because of the lack of available material. Nevertheless, it is hoped that in its present form this treatise will serve as a convenient and useful manual for the systematic and economic worker concerned with the forms of the upper Mississippi Valley. In all cases a reference to the original description of the species and genus is given. Keys are included for the separation of species, genera, and supergeneric groups. In addition to the keys a brief diagnostic description of the important characters of each species is given. Extended descriptions or long lists of references have been omitted since citations to this literature are available from other sources if ac- tually needed (Van Duzee, 1917). -
Insects for Weed Control: Status in North Dakota
Insects for Weed Control: Status in North Dakota E. U. Balsbaugh, Jr. Associate Professor, Department of Entomology R. D. Frye Professor, Department of Entomology C. G. Scholl Plant Protection Specialist, North Dakota State Department of Agriculture A. W. Anderson Associate Professor, Department of Entomology Two foreign species of weevils have been introduced into North Dakota for the biological control of musk thistle, Carduus nutans L. - Rhinocyllus conicus (Froelich), a seed feeding weevH, and Ceutorrhynchidius horridus (Panzer), an internal root and lower stem inhabiting species. R. conicus has survived for several generations and is showing some promise for thistle suppression in Walsh County, but releases of C. hor ridus have been unsuccessful. The pigweed nea beetle, Disonycha glabrata (Fab.), which is native in southern United States, has been introduced into experimental sugarbeet plots in the Red River Valley for testing its effects at controlling rough pigweed or redroot, Amaranthus retroflexus L. Although both larvae and adults of these beetles feed heavily on pigweed, damage to the weed occurs too late in the season for them to be effective in suppressing weed growth or seed set. An initial survey for native insects of bindweed has been conducted. Feeding by localized populations of various insects, particularly tortoise beetles, has been observed. Several foreign species of nea beetles and a stem boring beetle are anticipated for release against leafy spurge. Entomologists at North Dakota State University are successful. In 1940, the cactus-feeding moth, Cac studying insects that feed on weeds to determine if the toblastis cactorum (Berg), was transported from its insects can reduce populations of selected weeds to native Argentina to Australia where it greatly reduced levels at which the weeds no longer are economically im the numbers of prickly pear cactus, Opuntia spp. -
The Leafhopper Vectors of Phytopathogenic Viruses (Homoptera, Cicadellidae) Taxonomy, Biology, and Virus Transmission
/«' THE LEAFHOPPER VECTORS OF PHYTOPATHOGENIC VIRUSES (HOMOPTERA, CICADELLIDAE) TAXONOMY, BIOLOGY, AND VIRUS TRANSMISSION Technical Bulletin No. 1382 Agricultural Research Service UMTED STATES DEPARTMENT OF AGRICULTURE ACKNOWLEDGMENTS Many individuals gave valuable assistance in the preparation of this work, for which I am deeply grateful. I am especially indebted to Miss Julianne Rolfe for dissecting and preparing numerous specimens for study and for recording data from the literature on the subject matter. Sincere appreciation is expressed to James P. Kramer, U.S. National Museum, Washington, D.C., for providing the bulk of material for study, for allowing access to type speci- mens, and for many helpful suggestions. I am also grateful to William J. Knight, British Museum (Natural History), London, for loan of valuable specimens, for comparing type material, and for giving much useful information regarding the taxonomy of many important species. I am also grateful to the following persons who allowed me to examine and study type specimens: René Beique, Laval Univer- sity, Ste. Foy, Quebec; George W. Byers, University of Kansas, Lawrence; Dwight M. DeLong and Paul H. Freytag, Ohio State University, Columbus; Jean L. LaiFoon, Iowa State University, Ames; and S. L. Tuxen, Universitetets Zoologiske Museum, Co- penhagen, Denmark. To the following individuals who provided additional valuable material for study, I give my sincere thanks: E. W. Anthon, Tree Fruit Experiment Station, Wenatchee, Wash.; L. M. Black, Uni- versity of Illinois, Urbana; W. E. China, British Museum (Natu- ral History), London; L. N. Chiykowski, Canada Department of Agriculture, Ottawa ; G. H. L. Dicker, East Mailing Research Sta- tion, Kent, England; J. -
Leaf Beetle Larvae
Scottish Beetles BeesIntroduction and wasps to Leaf Beetles (Chrysomelidae) There are approximately 281 species of leaf beetles in the UK. This guide is an introduction to 17 species found in this family. It is intended to be used in combination with the beetle anatomy guide and survey and recording guides. Colourful and often metallic beetles, where the 3rd tarsi is heart shaped. Species in this family are 1-18mm and are oval or elongated oval shaped. The plants each beetle is found on are usually key to their identification. Many of the species of beetles found in Scotland need careful examination with a microscope to identify them. This guide is designed to introduce some of the leaf beetles you may find and give some key Dead nettle leaf beetle (Chrysolina fastuosa ) 5-6mm This leaf beetle is found on hemp nettle and dead nettle plants. It is beautifully coloured with its typically metallic green base and blue, red and gold banding. The elytra are densely punctured. Where to look - Found mainly in wetlands from March to December from the Central Belt to Aberdeenshire and Inverness © Ben Hamers © Ben Rosemary leaf beetle (Chrysolina americana ) 6-8mm The Rosemary beetle is a recent invasive non- native species introduced to the UK through the international plant trade. This beetle is metallic red/burgundy with green striping. There are lines of punctures typically following the green stripes. Where to look - Found in nurseries, gardens and parks. Feeds on lavender and rosemary in particular. There have been records in Edinburgh but this beetle is spreading. -
Tamarisk Beetle (Diorhabda Spp.) in the Colorado River Basin: Synthesis of an Expert Panel Forum Benjamin R
Scientific and Technical Report No. 1 JANUARY 2016 Tamarisk beetle (Diorhabda spp.) in the Colorado River basin: synthesis of an expert panel forum Benjamin R. Bloodworth1, Patrick B. Shafroth2, Anna A. Sher 3, Rebecca B. Manners4, Daniel W. Bean5, Matthew J. Johnson6, and Osvel Hinojosa-Huerta7 1Tamarisk Coalition, Grand Junction, CO 2U.S. Geological Survey, Fort Collins, CO 3University of Denver, Denver, CO 4University of Montana, Missoula, MT 5Colorado Dept. of Agriculture, Palisade Insectary, Palisade, CO 6Colorado Plateau Research Station, Northern Arizona University, Flagstaff, AZ 970.248.1968 7Pronatura Noroeste, La Paz, Mexico 1100 North Avenue Grand Junction, CO 81501-3122 coloradomesa.edu/water-center © 2016 COLORADO MESA UNIVERSITY 1 Tamarisk Beetle in the Colorado River Basin Contents Acknowledgements ............................................................ 2 List of Figures Executive Summary Executive Summary ............................................................. 3 Figure 1 — Close-up of an adult tamarisk beetle In 2001, the U.S. Department of Agriculture approved the release of a biological control agent, the tamarisk beetle (Diorhabda Introduction ......................................................................... 4 (Diorhabda spp.). (Photo by Ed Kosmicki). .......................... 3 spp.), to naturally control tamarisk populations and provide a less costly, and potentially more effective, means of removal compared with mechanical and chemical methods. The invasive plant tamarisk (Tamarix spp.; saltcedar) -
46601932.Pdf
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OAR@UM BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2012) Vol. 5 : 57-72 A preliminary account of the Auchenorrhyncha of the Maltese Islands (Hemiptera) Vera D’URSO1 & David MIFSUD2 ABSTRACT. A total of 46 species of Auchenorrhyncha are reported from the Maltese Islands. They belong to the following families: Cixiidae (3 species), Delphacidae (7 species), Meenoplidae (1 species), Dictyopharidae (1 species), Tettigometridae (2 species), Issidae (2 species), Cicadidae (1 species), Aphrophoridae (2 species) and Cicadellidae (27 species). Since the Auchenorrhyncha fauna of Malta was never studied as such, 40 species reported in this work represent new records for this country and of these, Tamaricella complicata, an eastern Mediterranean species, is confirmed for the European territory. One species, Balclutha brevis is an established alien associated with the invasive Fontain Grass, Pennisetum setaceum. From a biogeographical perspective, the most interesting species are represented by Falcidius ebejeri which is endemic to Malta and Tachycixius remanei, a sub-endemic species so far known only from Italy and Malta. Three species recorded from Malta in the Fauna Europaea database were not found during the present study. KEY WORDS. Malta, Mediterranean, Planthoppers, Leafhoppers, new records. INTRODUCTION The Auchenorrhyncha is represented by a large group of plant sap feeding insects commonly referred to as leafhoppers, planthoppers, cicadas, etc. They occur in all terrestrial ecosystems where plants are present. Some species can transmit plant pathogens (viruses, bacteria and phytoplasmas) and this is often a problem if the host-plant happens to be a cultivated plant. -
Beetle News Vol
Beetle News Vol. 1:1 March 2009 Beetle News ISSN 2040-6177 Circulation: An informal email newsletter circulated periodically to those interested in British beetles Copyright: Text & drawings © 2009 Authors Photographs © 2009 Photographers Citation: Beetle News 1:1, March 2009 Editor: Richard Wright, 70, Norman road, Rugby, CV21 1DN Email:[email protected] Contents Editorial Richard Wright 1. Review: British Scraptiidae by Brian Levey Richard Wright 1 Warwickshire Coleoptera- an update Steve Lane 2 Somerset beetle records wanted Andrew Duff 2 Some observations on the Orange Ladybird Ralph Atherton 3 Vivarium heat mats : a few suggested uses for the coleopterist Andrew Chick 4 Cassida nebulosa Linnaeus (Chrysomelidae) in flight Andrew Duff 4 News from recording schemes (Tenebrionoidea, Scirtidae, Stenini, Silphidae) Scotty Dodd, Jonty Denton, Richard Wright 5 Beetle publications for free download Richard Wright 5 Beginner’s Guide Silphidae 1: Nicrophorus Richard Wright 6 Editorial Review: Welcome to the very first edition of “Beetle News”.This British Scraptiidae. Handbooks for the identification of is an internet publication devoted to British Beetles. It is British Insects Vol 5 Part 18. Brian Levey. a public domain publication which can be freely copied Field Studies Council/Royal Entomological Society and distributed provided no charge is made. However, copyright to all text and photographs remains with the This latest volume in the “Handbooks” covers 16 species, original authors and photographers. If you find Beetle 13 of Anaspis and 3 of Scraptia. It follows the format of News of interest, please pass it to others. other recent volumes in the series, with well-illustrated keys followed by further notes on identification, biology, Beetle News will include any relevant material which is distribution, habitat and phenology. -
Zootaxa, Taxonomic Revision and Biogeography of the Tamarix
ZOOTAXA 2101 Taxonomic revision and biogeography of the Tamarix-feeding Diorhabda elongata (Brullé, 1832) species group (Coleoptera: Chrysomelidae: Galerucinae: Galerucini) and analysis of their potential in biological control of Tamarisk JAMES L. TRACY & THOMAS O. ROBBINS Magnolia Press Auckland, New Zealand JAMES L. TRACY & THOMAS O. ROBBINS Taxonomic revision and biogeography of the Tamarix-feeding Diorhabda elongata (Brullé, 1832) species group (Coleoptera: Chrysomelidae: Galerucinae: Galerucini) and analysis of their potential in biologi- cal control of Tamarisk (Zootaxa 2101) 152 pp.; 30 cm. 11 May 2009 ISBN 978-1-86977-359-5 (paperback) ISBN 978-1-86977-360-1 (Online edition) FIRST PUBLISHED IN 2009 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2009 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 2101 © 2009 Magnolia Press TRACY & ROBBINS Zootaxa 2101: 1–152 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) Taxonomic revision and biogeography of the Tamarix-feeding Diorhabda elongata (Brullé, 1832) species group (Coleoptera: Chrysomelidae: Galerucinae: Galerucini) and analysis of their potential in biological control of Tamarisk JAMES L. -
Forest Health: Elm Leaf Beetle
Forest Health: Elm Leaf Beetle The elm leaf beetle (Pyrrhalta luteola) can strip an entire Control: tree of leaves, causing growth loss, and limb or tree mortal- No chemical controls are recommended for this insect un- ity. Adult beetles and larvae feed on the leaves. This insect der forest conditions. If populations build up on valuable is more prevalent in the western 2/3 of Texas. It’s primary ornamental or shade trees, the homeowner may wish to host is Elm trees, especially Chinese elm. use insecticides to control the pest. Adult beetles and lar- vae are easily killed when sprayed with the recommended insecticide. Mix three tablespoons of 80% SP sevin in one Identification: gallon of water. Cover foliage well with spray. Adult beetles are approximately ¼ inch long, and yellow- ish or greenish with black outer margins on the wingcov- ers. Legs and antennae are yellowish-green in color. Larvae are about ½ inch long and yellowish-green with two black stripes along the back. The head and legs are black. The pupae are about ¼ inch long and yellow-orange with a few black hairs. Eggs are small, spindle shaped, and yellowish- orange. Signs of Attack: Skeletonized or shriveled brownish leaves are usually the first indication of an attack by this beetle. Examination of the leaves may reveal beetles, larvae or eggs. Life Cycle: Adult beetles overwinter in protected places near the host tree, especially around buildings. In spring, they fly to the trees and begin feeding on new leaves. Mating and egg lay- ing takes place shortly and each female lays up to 25 yellow eggs in a mass on the underside of a leaf.