The Real Singlet Scalar Dark Matter Model
Total Page:16
File Type:pdf, Size:1020Kb
1 The real singlet scalar dark matter model Wan-Lei Guo and Yue-Liang Wu, JHEP10(2010)083 Wan-Lei Guo, Yue-Liang Wu, Yu-Feng Zhou, PRD82:095004,2010 Wan-Lei Guo and Yue-Liang Wu, in preparation 1. Real singlet scalar DM model 2. Gauge singlet DM in the LR model 3. Neutrino signals in Super-K and IceCube 郭万磊 中国科学院理论物理研究所 暗物质与重子物质起源冬季研讨会 2010.12.13-15 The real singlet scalar dark matter model 2 Z2 3 parameters Dark matter relic density 3 Boltzmann Equation: Constraints from the DM relic density 4 W.L. Guo, Y.L. Wu, JHEP10(2010)083 W.L. Guo and Y.L. Wu, PRD 79,055012 (2009) V=0.02 V=0.001 S-channel Resonance : Resonance! 1 σ v ∝ ; ()sM−+Γ22 M 2 2 Breit-Wigner effect! For PAMELA… sm≈+4(1)22 v The dark matter direct detection 5 For scalar interaction: 2λv WIMP-nucleus cross section mvq / MN()= mMDN /( m D+ M N ) Mn()=+ mMDn /( m D M n ) WIMP-nucleon cross section λmq aq = 2 mmDh Constraints from the DM direct search 6 W.L. Guo, Y.L. Wu, JHEP10(2010)083 Two excluded regions! Atmosphere neutrino! Future experiments A. Gutlein, et. al, 1003.5530 Constraints from the DM indirect search 7 Thermally averaged annihilation cross section: 33 EE12 3 3 dp dp −− 1 dp dp 2 gg 12eTT e 3 4M(2πδ )44 ( p+++ p p p) 12∫ 33 3 3 1234 (2)(2)ππ 4EE1234 (2)2π E (2)2 π E σv ≡ 33 EE 6 −−12 dp12 dp TT xmT≡=×D /310gg e e 12∫ (2ππ )33 (2 ) σ v arXiv:0909.2799 0.4 GeV Both direct and indirect are very small for resonance region! Implications on the Higgs search 8 The Higgs visible decay branching ratio: Gauge singlet DM in the Left-Right model W.L. Guo, L.M. Wang, Y.L. Wu, Y.F. Zhou and C. Zhuang, PRD 79, 055015 (2009) 9 Left-right symmetry model: SU(2)LRBL× SU (2)× U (1) − right-handed gauge bosons, right-handed neutrinos and P and CP properties: SiS+ S S * If we introduce a gauge singlet SSS=⎯σ D with ⎯PP→⎯⎯ and * → 2 CP S * CP S Unique way! SSB and Mass spectrum in 1HBDM 10 After the SSB: 22 κκκ=+=12246 GeV Mass spectrum : ⎧⎫vL ≈ 0 ⎪⎪ ⎨⎬κκ12 ⎪⎪ ⎩⎭vR ∼10 TeV DarkDark mattermatter massmass andand interactionsinteractions 11 For WIMP: 10 GeV≤ mD ≤ 1 TeV vR ~ 10 TeV⇒ An approximate global symmetry: S⎯⎯⎯U(1)→⇒eSiq light DM mass ⇒+ SS* Higgs potential related to the Singlet: Dark matter annihilation in 1HBDM 12 Same as the simplest DM model before Higgs channel is open! 22 mv0 =→≡2/ρ 11RRλαλρ3, D(21) H 2 ParameterParameter spacespace forfor 200200 GeVGeV --500500 GeVGeV 13 W.L. Guo, Y.L. Wu, Y.F. Zhou,arXiv:1008.4479 Central Continuous LR symmetric two Higgs bidoublet model (2HBDM) 14 SSB Light Higgs mixing: oo o Case I: θθθxyz=60 , =60 , =150 oo o Case II: θθθxyz=30 , =0 , =0 ooo Case III: θθθxyz=0 , =90 , =75 Yukawa interactions: Complex symmetric! R =1 Diagonal! R = 5 Dark matter annihilation in 2HBLR 15 λ v 1,D New processes λ1,Dv λ1,Dv 2 3/mvh λ 1,D New products λDvσ WIMP-quark coupling: f2,4,6Velocity dependent! Numerical results for coupling 16 W.L. Guo, Y.L. Wu, Y.F. Zhou,arXiv:1008.4479 dependent on mixing and R Independent of R and mixing for mD < 120 GeV for mD > 120 GeV Numerical results for direct search 17 W.L. Guo, Y.L. Wu, Y.F. Zhou,arXiv:1008.4479 Depend on R and mixing Two resonances: Case I III: Case II: More enhanced suppressed Numerical results for indirect search 18 W.L. Guo, Y.L. Wu, Y.F. Zhou,arXiv:1008.4479 Independent of R and mixing Direct and Indirect are very small! Numerical results for 200 < mD < 500 with R=1 19 Same with 10-200 GeV Numerical results for 200 < mD < 500 with R=5 20 Case I: enhanced Case II: suppressed cancellation DM captured and annihilation in the Sun 21 DM DM elastic scattering DM captured Instantaneous in the Sun when VDM < Vesc thermalization DM capture and annihilation rates 22 The evolution of DM number in the Sun: DM distribution in the Sun The DM annihilation rate in the Sun: > > 1 The flux of neutrinos at the Earth 23 • Differential spectrum • Neutrino interactions • Neutrino oscillations T. Schwetz, et. al, 0808.2016V3 WIMPSIM ! M. Blennow, et. al., 0709.3898 = 0 Neutrino induced upward muon flux in Super-K 24 Neutrino induced upward muon flux: Ethr = 1.6 GeV Approximation: T.K. Gaisser and T. Stanev, PRD 30,985 (1984) g is the probability that a muon of initial energy E`_\mu has energy E_\mu after propagating a distance X in rock. SuperSuper--KK resultsresults 25 PRD 48, 5505 (1993) W.L. Guo and Y.L. Wu, in preparation PRD 70,083523 (2004) Preliminary IceCubeIceCube 26 Neutrino induced upward muon numbers per year : Ethr = 50 GeV M.C. Gonzalez-Garcia, F. Halzen, M. Maltoni, PRD,71 093010 (2005) Jun 23.43 Sep Mar Atmosphere Background 27 Atmosphere Background: Take half-angle to be 2 degree! Liu, Yin and Zhu, PRD 77, 115014 (2008) E_\mu from 50 to 200 GeV M. Honda, et. al, PRD 75,043006 (2007) IceCubeIceCube resultsresults 28 W.L. Guo and Y.L. Wu, in preparation Preliminary Summary 29 In the simplest DM model, the DM direct search experiments can exclude two regions; the DM indirect search experiment PAMELA can exclude a very narrow region. In the 2HBLR, the predicted direct detection cross section depends on the Higgs mixing and Yukawa couplings. However, the indirect detection cross section is independent of the above two factors. The neutrino signals from the DM annihilation in the Sun are far less than the upper bound in the Super-K and the atmosphere background in the IceCube. 30 !.