International Journal of Molecular Sciences Article Molecular Characterization of TRPA Subfamily Genes and Function in Temperature Preference in Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) Xiao-Di Wang 1, Ze-Kai Lin 1 , Shun-Xia Ji 1, Si-Yan Bi 1, Wan-Xue Liu 1, Gui-Fen Zhang 1, Fang-Hao Wan 1,2 and Zhi-Chuang Lü 1,* 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
[email protected] (X.-D.W.);
[email protected] (Z.-K.L.);
[email protected] (S.-X.J.);
[email protected] (S.-Y.B.);
[email protected] (W.-X.L.);
[email protected] (G.-F.Z.);
[email protected] (F.-H.W.) 2 Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China * Correspondence:
[email protected]; Tel.: +86-10-8210-9572 Abstract: To reveal the mechanism of temperature preference in Tuta absoluta, one of the top 20 plant pests in the world, we cloned and identified TaTRPA1, TaPain, and TaPyx genes by RACE and bioinformatic analysis, and clarified their expression profiles during different development stages using real-time PCR, and revealed their function in preference temperature by RNAi. The full-length cDNA of TaPain was 3136 bp, with a 2865-bp open reading frame encoding a 259.89-kDa Citation: Wang, X.-D.; Lin, Z.-K.; Ji, protein; and the partial length cDNA of TaPyx was 2326-bp, with a 2025-bp open reading frame S.-X.; Bi, S.-Y.; Liu, W.-X.; Zhang, G.-F.; encoding a 193.16-kDa protein.