Paragenetic History of the Ordovician Trenton Group Carbonates, Southwestern Ontario

Total Page:16

File Type:pdf, Size:1020Kb

Paragenetic History of the Ordovician Trenton Group Carbonates, Southwestern Ontario Paragenetic History of the Ordovician Trenton Group Carbonates, Southwestern Ontario by Ian M. Colquhoun, B.Sc. A Thesis submitted to the Department of Geological Sciences in partial fulfillment of the requirements for the degree of Master of Science January 1991 Brock University St. Catharines, Ontario © Ian Colquhoun, 1991 The author has agreed that the Department of Geological Sciences, Brock University, may make this thesis freely available for inspection. Moreover, that permission for extensive copying of the thesis for scholarly purposes may be granted by the Chair of the Department of Geological Sciences. It is understood that due recognition will be given to the author of this thesis and to Brock University in any use of material in this thesis. Copying or duplication or any use of the thesis for financial gain without approval by Brock University (or the author's written permission) is prohibited. Requests for permIssIOn to copy or to make other use of material in this thesis in whole or in part should be addressed to: Chair, Department of Geological Sciences, Brock University, S1. Catharines, Ontario, Canada. L2S 3Al 1 Abstract Geochemical examination of the rock matrix and cements from core material extracted from four oil wells within southwestern Ontario suggest various stages of diagenetic alteration and preservation of the Trenton Group carbonates. The geochemical compositions of Middle Ordovician (LMC) brachiopods reflect the physicochemical water conditions of the ambient depositional environment. The sediments appear to have been altered in the presence of mixed waters during burial in a relatively open diagenetic microenvironment. Conodont CAl determination suggests that the maturation levels of the Trenton Group carbonates are low and proceeded at temperatures of about 30 - 50°C within the shallow burial environment. The Trenton Group carbonates are characterized by two distinct stages of dolomitization which proceeded at elevated temperatures. Pre­ existing fracture patterns, and block faulting controlled the initial dolomitization of the precursor carbonate matrix. Dolomitization progressed In the presence of warm fluids (60 75°C) with physicochemical conditions characteristic of a progressively depleted basinal water. The matrix is mostly Idiotopic-S and Idiotopic-E dolomite, with Xenotopic-A dolomite dominating the matrix where fractures occur. The second stage of dolomitization involved hydrothermal basinal fluid(s) with temperatures of about 60 - 70°C. These are the postulated source for the saddle dolomite and blocky calcite cements occurring in pore space and fractures. Rock porosity was partly occluded by Idiotopic-E type dolomite. Late stage saddle dolomite, calcite, anhydrite, pyrite, marcasite and minor sphalerite and celestite cements effectively fill any remaining porosity within specific horizons. Based on cathode luminescence, precipitation of the different diagenetic phases probably proceeded in open diagenetic systems from chemically homogeneous fluids. Ultraviolet fluorescence of 11 the matrix and cements demonstrated that hydrocarbons were present during the earliest formation of saddle dolomite. Oxygen isotope values of -7.6 to -8.5 %0 (PDB), and carbon isotope values of - 0.5 and -3.0 %0 (PDB) from the latest stage dog-tooth calcite cement suggest that meteoric water was introduced into the system during their formation. This is estimated to have occurred at temperatures of about 25 - 40°C. Specific facies associations within the Trenton Group carbonates exhibit good hydrocarbon generating potential based on organic carbon preservation (1-3.5%). Thermal maturation and Lopatin burial-history evaluations suggest that hydrocarbons were generated within the Trenton Group carbonates some time after 300 Ma . Progressively depleted vanadium trends measured from hydrocarbon samples within southwestern Ontario suggests its potential use as a hydrocarbon migration indicator on local (within an oilfield) and on regional scales. 111 Acknowledgements I am indebted to Telesis Oil and Gas Ltd. for funding this research, through a grant to Professor Uwe Brand, and for kindly making information relative to this research freely available. I also wish to acknowledge funding of part of this thesis through equipment grants, from NSERC (0043282) and URIF ( BRll-OOl) and NSERC Operating grant A7961 to Dr. Uwe Brand. I am especially grateful to my supervisor, Professor Uwe Brand, for his professional contributions to this thesis. I would also like to thank him for the thorough education that he has provided. I would like to extend gratitude to Allan R. Phillips (Kerr-McGee Corporation) and Steven A. Colquhoun (Telesis Oil and Gas Ltd.) for the experience of working with them on the preparation of the B. A. Liberty Memorial Core Workshop, Cores of the Trenton-Black River, for the Ontario Petroleum Institute Annual Meeting held in November of 1989. This professional co-operation led to the development of the subsurface facies analysis presented in this thesis. I also appreciate the help given me by the staff, and the interest In my work expressed by the management, of Telesis Oil and Gas Ltd. Thanks is extended to the Ministry of Natural Resources in London Ontario, particularly Terry Carter, for the co-operation and use of their facilities, and to Professor Anita Harris (Case Western University) for providing the type-Ordovician conodont samples. At Brock University, Professor M. Manocha of the Department of Biological Sciences generously allowed me use of the ultraviolet fluorescence microscope. From the Department of Geological Sciences, special thanks to William Parkins for help and advice with the conodont extractions, and Professor J aan Terasmae for use of the facilities in the Palynology Laboratory. Departmental technicians Candace Kramer and lV Mike Lozon are thanked for special efforts and assistance above their normal duties. I also acknowledge my parents who have supported me both morally and financially over the years. Finally, the most important of all the people in my life to date has been the friendship and love given to me from Maria Goulbourne. We have come a long way together. I thank you for being there for me time after time and for the unselfish love that has grown over the last two years. v Table of Contents Page No. Abstract 1 Acknowledgements 111 Table of Contents v List of Figures IX List of Tables Xl List of Plates X11 Introduction 1 History of Oil and Gas Discovery Pre-Hillman Discoveries 4 Essex County/Hillman Discoveries 6 Background-General Geology 8 Paleoenvironments of the Trenton-Black River sediments 8 Structural review of the Michigan Basin within southwestern Ontario 13 Structural similarities recognized m Michigan Basin Hydrocarbon Reservoirs 1 8 Theoretical Background: Carbonate Geochemistry 20 Stable Isotope Geochemistry 22 Isotopic variations of Geological Relevance Carbon isotopic variations 22 Oxygen isotopic variations 23 Use of stable isotopes in the analysis of ancient carbonates 24 Dolomitization 25 Burial Compaction Model 26 VI Table of Contents Page No. Sabhka and Coorong Models 27 Mixed Water Model 27 Pressure Solution Model 28 Hydrothermal or Saddle Dolomite 29 Dedolomite 3 1 Thermal Maturation Conodont Colour Alteration Studies 32 Limitations with the CAl determination 33 Host rock maturation 33 Evaluation of Hydrocarbon Potential 34 Geoporph yrin s 36 Application to Hydrocarbon Geochemistry 39 Analytical Techniques: Part 1: Petrographic Analyses Light Microscopy 41 Cathodoluminescence 41 Ultraviolet Fluorescence 42 Part 2: Geochemical Analyses Rock and Cement Trace Element Determination 42 Shale Trace Element Determination 44 Brine and Oil Trace Element Determination 44 Organic Carbon and Leco Sulphur Determination 46 Part 3: Stable Isotope Analyses Rock and Cement Stable Isotope Determination 47 Oxygen and Deuterium Determination of the Brines 47 Part 4: Thermal Maturation Analysis 48 Petrographic Analyses: Results and Discussion Part 1: Light Microscopy: Discussion of Dolomite Textures 49 Dolomite Matrix 49 vii Table of Contents Page No. Idiotopic-S Dolomite Texture 52 Idiotopic-E Dolomite Texture 54 Xenotopic-A Dolomite Texture 56 Saddle Dolomite 57 Dedolomite 57 Silica 57 Stylolites 60 Pyrite and Anhydrite 60 Calcite, Sphalerite, and Celestite 62 Porosity and Permeability 66 Part 2: Cathodoluminescence 68 Part 3: Ultraviolet Fluorescence 72 Geochemical Results and Discussion Calcium and Magnesium 75 Strontium 75 Sodium 76 Covarient Trace Element Trends Strontium and Sodium 77 Strontium and Manganese 77 Limestone Diagenesis Trace Element Trends 78 Stable Isotope Trends 8 1 Dolomitization Trace Element Trends 84 Stable Isotope Trends 86 Saddle Dolomite and Calcite Cements Trace Element Trends 88 Stable Isotope Trends 93 Evidence for Dolomitization and Cement formation during burial at elevated temperatures 9 9 Estimate temperature of diagenetic pore fluids using a18 0 100 VI11 Table of Contents Page No. Geochemistry of Formation Waters Trace Element Trends 102 Stable Isotope Trends 111 Thermal Maturation Analysis: Results and Discussion 114 Reconstruction of the Ancient Geothermal Gradient 119 Thermal Maturation and Lopatin Basin Modeling 122 Evaluation of Hydrocarbon Potential: Results and Discussion 126 Hydrocarbon Geochemistry: Results and Discussion 136 Dolomitization Model and Reservoir Development Early Burial History 147 Dolomitization Model 147 Evidence for Mississippi Valley-type processes In the Michigan Basin 149 Summary of Results Evolution
Recommended publications
  • The Classic Upper Ordovician Stratigraphy and Paleontology of the Eastern Cincinnati Arch
    International Geoscience Programme Project 653 Third Annual Meeting - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett – Kyle R. Hartshorn – Allison L. Young – Cameron E. Schwalbach – Alycia L. Stigall International Geoscience Programme (IGCP) Project 653 Third Annual Meeting - 2018 - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Kyle R. Hartshorn Dry Dredgers, 6473 Jayfield Drive, Hamilton, Ohio 45011, USA ([email protected]) Allison L. Young Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Cameron E. Schwalbach 1099 Clough Pike, Batavia, OH 45103, USA ([email protected]) Alycia L. Stigall Department of Geological Sciences and OHIO Center for Ecology and Evolutionary Studies, Ohio University, 316 Clippinger Lab, Athens, Ohio 45701, USA ([email protected]) ACKNOWLEDGMENTS We extend our thanks to the many colleagues and students who have aided us in our field work, discussions, and publications, including Chris Aucoin, Ben Dattilo, Brad Deline, Rebecca Freeman, Steve Holland, T.J. Malgieri, Pat McLaughlin, Charles Mitchell, Tim Paton, Alex Ries, Tom Schramm, and James Thomka. No less gratitude goes to the many local collectors, amateurs in name only: Jack Kallmeyer, Tom Bantel, Don Bissett, Dan Cooper, Stephen Felton, Ron Fine, Rich Fuchs, Bill Heimbrock, Jerry Rush, and dozens of other Dry Dredgers. We are also grateful to David Meyer and Arnie Miller for insightful discussions of the Cincinnatian, and to Richard A.
    [Show full text]
  • Ordovician Point Pleasant/Utica-Lower Paleozoic
    Ordovician Point Pleasant/Utica-Lower Paleozoic Total Petroleum System—Revisions to the Utica- Lower Paleozoic Total Petroleum System in the Appalachian Basin Province Scientific Investigations Report 2019–5025 U.S. Department of the Interior U.S. Geological Survey Cover. An outcrop of planar- to irregular-bedded limestone and shale of the Point Pleasant Formation that is exposed along Big Run in Clermont County, Ohio. The red and white measuring stick is approximately 0.5 meters in length (1.6 feet). Permission was required prior to entering private property to visit this exposure. Photograph from Schumacher and others (2013). Inset photograph. Well core no. 3003 (API no. 3403122838) from the Point Pleasant Formation, Coshocton County, Ohio (interval depth, 5,660–5,670 feet). Total length of core shown is approximately 3 feet. Photograph provided by Michael Solis, Ohio Department of Natural Resources, Division of Geological Survey. Ordovician Point Pleasant/Utica-Lower Paleozoic Total Petroleum System— Revisions to the Utica-Lower Paleozoic Total Petroleum System in the Appalachian Basin Province By Catherine B. Enomoto, Michael H. Trippi, and Debra K. Higley Scientific Investigations Report 2019–5025 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov.
    [Show full text]
  • Ordovician News 2005
    ORDOVICIAN NEWS SUBCOMMISSION ON ORDOVICIAN STRATIGRAPHY INTERNATIONAL COMMISSION ON STRATIGRAPHY Nº 22 2005 ORDOVICIAN NEWS Nº 22 INTERNATIONAL UNION OF GEOLOGIAL SCIENCES President: ZHANG HONGREN (China) Vice-President: S. HALDORSEN (Norway) Secretary General: P. T. BOBROWSKI (Canada) Treasurer: A. BRAMBATI (Italy) Past-President: E.F.J. DE MULDER (The Netherlands) INTERNATIONAL COMMISSION ON STRATIGRAPHY Chairman: F. GRADSTEIN (Norway) Vice-Chairman: S. C. FINNEY (USA) Secretary General: J. OGG (USA) Past-Chairman: J. REMANE (Switzerland) INTERNATIONAL SUBCOMMISSION ON ORDOVICIAN STRATIGRAPHY Chairman: CHEN XU (China) Vice-Chairman: J. C. GUTIÉRREZ MARCO (Spain) Secretary: G. L. ALBANESI (Argentina) F. G. ACEÑOLAZA (Argentina) A. V. DRONOV (Russia) O. FATKA (Czech Republic) S. C. FINNEY (USA) R. A. FORTEY (UK) D. A. HARPER (Denmark) W. D. HUFF (USA) LI JUN (China) C. E. MITCHELL (USA) R. S. NICOLL (Australia) G. S. NOWLAN (Canada) A. W. OWEN (UK) F. PARIS (France) I. PERCIVAL (Australia) L. E. POPOV (Russia) M. R. SALTZMAN (USA) Copyright © IUGS 2005 i ORDOVICIAN NEWS Nº 22 CONTENTS Page NOTE FOR CONTRIBUTORS iii EDITOR'S NOTE iii CHAIRMAN´S AND SECRETARY´S ADDRESSES iii CHAIRMAN´S REPORT 1 SOS ANNUAL REPORT FOR 2001 1 INTERNATIONAL SYMPOSIA AND CONFERENCES 4 PROJECTS 7 SCIENTIFIC REPORTS 7 HONORARY NOTES 8 MISCELLANEA 9 CURRENT RESEARCH 9 RECENT ORDOVICIAN PUBLICATIONS 25 NAMES AND ADDRESS CHANGES 40 URL: http://www.ordovician.cn, http://seis.natsci.csulb.edu/ISOS Cover: The Wangjiawan GSSP for the base of the Hirnantian Stage, China. ii ORDOVICIAN NEWS Nº 22 NOTE FOR CONTRIBUTORS The continued health and survival of Ordovician News depends on YOU to send in items of Ordovician interest such as lists and reviews of recent publications, brief summaries of current research, notices of relevant local, national and international meetings, etc.
    [Show full text]
  • Business Development Opportunities in the Utica Shale Play in Consideration of the Geographic Alignment of the Fairway
    Business Development Opportunities in the Utica Shale Play in Consideration of the Geographic Alignment of the Fairway Defining Business Opportunities within a Geographic Footprint Jim Scherrer, Energy Resources Director Geologic Analysis November 2015 The purpose of this document is to highlight the current business development opportunities that arise across the breadth of the Utica Shale fairway. The oil and gas resources underlying the Marcellus from within the “Utica Shale” play have become better defined through the shale resource exploration and recovery operations of various exploration and production (E&P) Above: The “tiramisu model” companies. The geographic alignment is unique and now is provides a visualization of the better defined; offering opportunities for business horizontal drilling taking place in development that aligns with the geography of the fairway. shale repositories worldwide. Additionally, boundaries such as the “Line of Death” for economic quantities of oil and gas within the play have been better delineated. More recent test drilling within the Appalachian Basin below the Marcellus (Devonian Period), in stratigraphy generally known as the “Utica” (Ordovician Period), there has been a resurgence of activity as this carbon-rich play has yielded unexpected, very positive results. This Utica formation assessment also includes the Point Pleasant formation. Taury Smith (NY State Geological Survey) says the Utica Shale play is more appropriately called the “Utica Shale and associated organic‐rich calcareous shale and interbedded limestone and shale play.” This report relies on many sources, but primarily the Utica Shale Appalachian Basin Exploration Consortium (the Consortium). The 15 members of the Consortium were joined by individuals from four state geological surveys, two universities, one consulting company, the U.S.
    [Show full text]
  • Utica Shale Play Geology Review
    Utica Shale Play Geology review April 2017 Independent Statistics & Analysis U.S. Department of Energy www.eia.gov Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA’s data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other federal agencies EIA author contact: Dr. Olga Popova Email: [email protected] U.S. Energy Information Administration | Utica Shale Play i April 2017 Introduction The U.S. Energy Information Administration (EIA) is adding and updating geologic information and maps of the major tight formations and shale plays for the continental United States. This document outlines updated information and maps for the Utica shale play of the Appalachian basin. The geologic features characterized include a contoured elevation of the formation top (structure), contoured thickness (isopach), paleogeography elements, and tectonic structures (regional faults and folds, etc.), as well as play boundaries, well location, and initial GOR (gas-to-oil ratio) of wells producing from January 2004 through December 2016. EIA integrates these geologic elements into a series of maps. The Utica play map consists of layers of geologic and production information that users can view either as separate thematic maps (such as Figure 1) or as interactive layers of the U.S. Energy Mapping System. Additional map layers may be added if additional geologic data (such as petrophysical and thermodynamic formation properties) become available.
    [Show full text]
  • The Depositional History of the Point Pleasant Member of the Cynthiana Formation in Northern Kentucky
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 12-1984 The Depositional History of the Point Pleasant Member of the Cynthiana Formation in Northern Kentucky Gary J. Stefaniak Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Geology Commons Recommended Citation Stefaniak, Gary J., "The Depositional History of the Point Pleasant Member of the Cynthiana Formation in Northern Kentucky" (1984). Master's Theses. 1545. https://scholarworks.wmich.edu/masters_theses/1545 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. THE DEPOSITIONAL HISTORY OF THE POINT PLEASANT MEMBER OF THE CYNTHIANA FORMATION IN NORTHERN KENTUCKY by Gary J. Stefaniak A Thesis Submitted to the Faculty o f The Graduate College in partial fulfillm ent of the requirements for the Degree o f Master o f Science Department of Geology Western Michigan U niversity Kalamazoo, Michigan December 1984 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. THE DEPOSITIONAL HISTORY OF THE POINT PLEASANT MEMBER OF THE CYNTHIANA FORMATION IN NORTHERN KENTUCKY Gary J. Stefaniak, M.S. Western Michigan U nive rsity, 1984 Bioclastic limestones, siltstones, and shales of the Point Pleasant Member were deposited in a shallow marine environment immediately below normal e ffe c tiv e wave base. High-energy conditions produced by storms lowered the e ffe ctive wave base and s tirre d the bottom sediments and redistributed them into bedforms.
    [Show full text]
  • Analysis of Appalachia's Utica/Point Pleasant and Marcellus Formations
    Analysis of Appalachia’s Utica/Point Pleasant and Marcellus Formations’ Geology on Estimated Ultimate Recovery Nicholas Cuaresma and Brittany Martin 2019, Marietta College Cuaresma and Martin 2 Abstract: The purpose of this study was to identify the optimum horizontal wellbore azimuths in the Ordovician Utica/Point Pleasant Formation and Devonian Marcellus Formation unconventional petroleum plays in three locations in Ohio, Pennsylvania, and West Virginia, from data contributed by Knobloch Petroleum of Marietta, Ohio. The assumption was that the stress state in the crust determined both the orientations of natural hydraulic fractures formed during the Pennsylvanian Alleghanian orogeny would control the orientation of the fractures formed during present day hydraulic fracturing of horizontal wells. Therefore, the orientation of the horizontal wellbores with respect to fracture orientations would affect the estimated ultimate recovery of petroleum. Multivariable regression analyses, with estimated ultimate recovery as the dependent variable and amount of water used during hydraulic fracturing, amount of sand used as a fracture proppant, and the horizontal wellbore azimuth as the independent variables, were run using data from 1400 wells. A brief overview of the geology of the Appalachian basin, the basin in which both the Utica/Point Pleasant and Marcellus formations were deposited, along with an explanation of the conditions under which natural hydraulic fracturing occurs were included in the study. The study concluded that the amount of water used during hydraulic fracturing in Ohio has the largest effect on the estimated ultimate recovery and the amount of sand used as a fracture proppant in Pennsylvania and West Virginia a numerically large effect on the estimated ultimate recovery, whereas the orientation (azimuth) of the wellbore appears to have an insignificant effect.
    [Show full text]
  • Geochemical Characterization of the Utica Shale Play Using XRF-Based Chemostratigraphy in Ohio
    Stephen F. Austin State University SFA ScholarWorks Electronic Theses and Dissertations Spring 5-4-2021 Geochemical Characterization of the Utica Shale Play using XRF- Based Chemostratigraphy in Ohio Barbara Kemeh [email protected] Julie M. Bloxson Stephen F Austin State University, [email protected] Follow this and additional works at: https://scholarworks.sfasu.edu/etds Part of the Geology Commons Tell us how this article helped you. Repository Citation Kemeh, Barbara and Bloxson, Julie M., "Geochemical Characterization of the Utica Shale Play using XRF- Based Chemostratigraphy in Ohio" (2021). Electronic Theses and Dissertations. 383. https://scholarworks.sfasu.edu/etds/383 This Thesis is brought to you for free and open access by SFA ScholarWorks. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. Geochemical Characterization of the Utica Shale Play using XRF-Based Chemostratigraphy in Ohio Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This thesis is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/etds/383 GEOCHEMICAL CHARACTERIZATION OF THE UTICA SHALE PLAY USING XRF-BASED CHEMOSTRATIGRAPHY IN OHIO By BARBARA M. KEMEH, Bachelor of Science Presented to the Faculty of the Graduate School of Stephen F. Austin State University In Partial Fulfillment Of the Requirements For the Degree of Master of Science STEPHEN F. AUSTIN STATE UNIVERSITY May, 2021 GEOCHEMICAL CHARACTERIZATION OF THE UTICA SHALE PLAY USING XRF-BASED CHEMOSTRATIGRAPHY IN OHIO By BARBARA M. KEMEH, Bachelor of Science APPROVED: Dr.
    [Show full text]
  • Eastern Section American Association of Petroleum Geologists 46Th Annual Meeting Morgantown, West Virginia September 24-27, 2017
    Eastern Section American Association of Petroleum Geologists 46th Annual Meeting Morgantown, West Virginia September 24-27, 2017 Program with Abstracts Hosted by: Appalachian Geological Society West Virginia University Department of Geology and Geography With support from the West Virginia Geological and Economic Survey Meeting Sponsors We appreciate your support! Marcellus Level Meeting Sponsors Utica Level Rogersville Level We appreciate your support! Eastern Section American Association of Petroleum Geologists 46th Annual Meeting Morgantown, West Virginia September 24-27, 2017 Program with Abstracts Hosted by: Appalachian Geological Society West Virginia University Department of Geology and Geography With support from the West Virginia Geological and Economic Survey Cover photo used with permission from Jacob Everhart, Canary, LLC Contents Welcome………………………………………………………………………………………………………………………………………1 2017 Meeting Organizing Committee……………………………………………………………………………….1 Eastern Section AAPG Officers………………………………………………………………………………………….2 Appalachian Geological Society Officers……………………………………………………………………………2 General Information…………………………………………………………………………………………………………………….3 Registration Hours……………………………………………………………………………………………………………3 Parking………………………………………………………………………………………………………………………….….3 Maps………………………………………………………………………………………………………………………………..3 Exhibits……………………………………………………………………………………………………………………….……3 Presenters and Judges Room……………………………………………………………………………………..….…3 Presenters, Judges and Session Chairs Breakfast and Information……………………………………3
    [Show full text]
  • Generalized Correlation Chart of Bedrock Units In
    STATE OF OHIO THIS PUBLICATION WAS FINANCED IN PART THROUGH A GRANT George V. Voinovich, Governor GENERALIZED CORRELATION CHART OF BEDROCK UNITS IN OHIO FROM THE OHIO ENVIRONMENTAL PROTECTION AGENCY DEPARTMENT OF NATURAL RESOURCES UNDER PROVISIONS OF SECTION 319 (h) OF THE CLEAN WATER ACT AS AMENDED IN 1987. Donald C. Anderson, Director OPEN-FILE REPORT 98-2 DIVISION OF GEOLOGICAL SURVEY Compiled by Glenn E. Larsen, September 1998 Thomas M. Berg, Chief EXPLANATION This correlation chart is a product of the Ohio Department of Natural Resources, Division of Root, S. I., Rodriguez, Joaquin, and Forsyth, J. L., 1961, Geology of Knox County: Ohio Division of Kleffner, M. A., 1990, Wenlockian (Silurian) conodont biostratigraphy, depositional environments, and CHRONOSTRATIGRAPHIC UNITS Geological Survey and was prepared as part of a grant (project no. 95 (h) EPA-15) from the Ohio Geological Survey Bulletin 59, 232 p. depositional history along the eastern flank of the Cincinnati Arch in southern Ohio: Journal of Environmental Protection Agency under provisions of Section 319 (h) of the Clean Water Act as Scatterday, J. W., 1963, Stratigraphy and conodont faunas of the Maxville Group (Middle and Upper Paleontology, v. 64, no. 2, p. 319-328. amended in 1987. Funding for the geologic mapping that is the basis for the mapped units shown Mississippian) of Ohio: Ohio State University Ph.D. dissertation (unpub.), The Ohio State Kleffner, M. A., 1994, Conodont biostratigraphy and depositional history of strata comprising the on the chart was provided by the U.S. Geological Survey (National Cooperative Geologic Mapping University, 162 p. Niagaran sequence (Silurian) in the northern part of the Cincinnati Arch region, west-central Ohio, and M NORTH M GLOBAL E AMERICAN AREA 1 AREA 2 AREA 3 AREA 4 AREA 5 AREA 6 AREA 7 AREA 8 AREA 9 AREA 10 AREA 11 AREA 12 AREA 13 AREA 14 Program, STATEMAP component), the Ohio Department of Transportation, and the Ohio Shaver, R.
    [Show full text]
  • SSD Abstract Book Cover 2013.Indd
    Student Scholars Day 4 • 10 • 2013 Elizabeth Uitvlugt Inspiration, Table of Contents 2013 SSD Committee 2 Welcome from Co-Directors 3 Schedule of Events 4 Statement from the Cover Artist 4 Keynote Lecture 5 Henry Hall Map 6 Kirkhof Center Maps 7 & 8 History of SSD 9 History of Undergraduate Research 10 and Scholarship at GVSU McNair Scholars, Student Summer Scholars, 11 and Academic Conference Fund Fredrick Meijer Office of Fellowships 19 fishladder 20 Poster Presentations Schedule and Abstracts 21 Oral Presentations Schedule and Abstracts 84 Panel Presentations Schedule and Abstracts 116 Performance Presentations Schedule and Abstracts 118 Index of Presenters and Mentors 120 Notes 138 SSD Committee Feryal Alayont Mathematics Rebecca Brittian Student Representative Callista Cook Undergraduate Research and Scholarship Alice Chapman History Amanda Cuevas Frederik Meijer Office of Fellowships Robert Deaner Psychology Andrew Lantz Chemistry Susan Mendoza Undergraduate Research and Scholarship (Director) Azizur Molla Anthropology Melissa Morison Classics (Chair) Debbie Morrow Library Ross Reynolds Physics Michael Scantlebury Hospitality and Tourism Management Shelley Sickrey Undergraduate Research and Scholarship Suganthi Sridhar Biomedical Sciences Richard Vallery Physics Patricia Videtich Geology Janet Vigna Biology 2 Welcome to Student Scholars Day 2013! It is with great pleasure that we welcome you to celebrate the diversity and excellence of faculty- student collaboration at GVSU. In its 18th year, Student Scholars Day continues to grow in scope, including six hundred students and mentors in over four hundred presentations. We are excited to support the achievements of these students representing seventy diverse majors across the university. We encourage you to visit presentations of interest in a variety of disciplines and presentation formats, and to engage these students in meaningful discussions of their work.
    [Show full text]
  • EMD Shale Gas and Liquids Committee
    EMD Shale Gas and Liquids Committee 2016 EMD Shale Gas and Liquids Committee Annual Report Ursula Hammes, Chair Bureau of Economic Geology The University of Texas at Austin May 20, 2016 Vice-Chairs: Vice-Chair: Harris Cander (Industry), BP, Houston, TX Vice-Chair: Sven Egenhoff (University), Colorado State University Vice-Chair: Brian Cardott (Government), Oklahoma Geological Survey, Norman, OK Advisory Group: Kent Bowker, Bowker Petroleum, The Woodlands, TX Brian Cardott, Oklahoma Geological Survey, Norman, OK Peng Li, Arkansas Geological Survey, Little Rock, AK Ken Chew, IHS (retired), Perthsire, Scotland Thomas Chidsey, Utah Geological Survey, Salt Lake City, UT Russell Dubiel, U.S. Geological Survey, Denver, CO Catherine Enomoto, U.S. Geological Survey, Reston, VA William Harrison, Western Michigan University, Kalamazoo, MI Ursula Hammes, Bureau of Economic Geology, Austin, TX Shu Jiang, University of Utah, Salt Lake City, UT Julie LeFever, North Dakota Geological Survey, Grand Forks, ND Jock McCracken, Egret Consulting, Calgary, AB Stephan Nordeng, North Dakota Geological Survey, Grand Forks, ND Rich Nyahay, New York Museum, Albany, NY Stephen Sonnenberg, Colorado School of Mines, Golden, CO Beau Tinnin, Pioneer Natural Resources, TX 1 2016 EMD Shale Gas and Liquids Committee Annual Report EXECUTIVE SUMMARY Shale gas and liquids have been the focus of extensive drilling for the past 10+ years due to improved recovery and high oil and gas prices all over the world. Although there is international interest in exploiting hydrocarbons from these unconventional reservoirs, with active exploration projects on most continents, much of the successful exploitation from shales continues to be in North America, particularly in the United States but increasingly so in Canada.
    [Show full text]