Ranking Upper Stages in Low Earth Orbit for Active Removal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Master Table of All Deep Space, Lunar, and Planetary Probes, 1958–2000 Official Name Spacecraft / 1958 “Pioneer” Mass[Luna] No
Deep Space Chronicle: Master Table of All Deep Space, Lunar, and Planetary Probes, 1958–2000 Official Spacecraft / Mass Launch Date / Launch Place / Launch Vehicle / Nation / Design & Objective Outcome* Name No. Time Pad No. Organization Operation 1958 “Pioneer” Able 1 38 kg 08-17-58 / 12:18 ETR / 17A Thor-Able I / 127 U.S. AFBMD lunar orbit U [Luna] Ye-1 / 1 c. 360 kg 09-23-58 / 09:03:23 NIIP-5 / 1 Luna / B1-3 USSR OKB-1 lunar impact U Pioneer Able 2 38.3 kg 10-11-58 / 08:42:13 ETR / 17A Thor-Able I / 130 U.S. NASA / AFBMD lunar orbit U [Luna] Ye-1 / 2 c. 360 kg 10-11-58 / 23:41:58 NIIP-5 / 1 Luna / B1-4 USSR OKB-1 lunar impact U Pioneer 2 Able 3 39.6 kg 11-08-58 / 07:30 ETR / 17A Thor-Able I / 129 U.S. NASA / AFBMD lunar orbit U [Luna] Ye-1 / 3 c. 360 kg 12-04-58 / 18:18:44 NIIP-5 / 1 Luna / B1-5 USSR OKB-1 lunar impact U Pioneer 3 - 5.87 kg 12-06-58 / 05:44:52 ETR / 5 Juno II / AM-11 U.S. NASA / ABMA lunar flyby U 1959 Luna 1 Ye-1 / 4 361.3 kg 01-02-59 / 16:41:21 NIIP-5 / 1 Luna / B1-6 USSR OKB-1 lunar impact P Master Table of All Deep Space, Lunar, andPlanetary Probes1958–2000 ofAllDeepSpace,Lunar, Master Table Pioneer 4 - 6.1 kg 03-03-59 / 05:10:45 ETR / 5 Juno II / AM-14 U.S. -
Collezione Per Genova
1958-1978: 20 anni di sperimentazioni spaziali in Occidente La collezione copre il ventennio 1958-1978 che è stato particolarmente importante nella storia della esplorazio- ne spaziale, in quanto ha posto le basi delle conoscenze tecnico-scientifiche necessarie per andare nello spa- zio in sicurezza e per imparare ad utilizzare le grandi potenzialità offerte dallo spazio per varie esigenze civili e militari. Nel clima di guerra fredda, lo spazio è stato fin dai primi tempi, utilizzato dagli Americani per tenere sotto con- trollo l’avversario e le sue dotazioni militari, in risposta ad analoghe misure adottate dai Sovietici. Per preparare le missioni umane nello spazio, era indispensabile raccogliere dati e conoscenze sull’alta atmo- sfera e sulle radiazioni che si incontrano nello spazio che circonda la Terra. Dopo la sfida lanciata da Kennedy, gli Americani dovettero anche prepararsi allo sbarco dell’uomo sulla Luna ed intensificarono gli sforzi per conoscere l’ambiente lunare. Fin dai primi anni, le sonde automatiche fecero compiere progressi giganteschi alla conoscenza del sistema solare. Ben presto si imparò ad utilizzare i satelliti per la comunicazione intercontinentale e il supporto alla navigazio- ne, per le previsioni meteorologiche, per l’osservazione della Terra. La Collezione testimonia anche i primi tentativi delle nuove “potenze spaziali” che si avvicinano al nuovo mon- do dei satelliti, che inizialmente erano monopolio delle due Superpotenze URSS e USA. L’Italia, con San Mar- co, diventò il terzo Paese al mondo a lanciare un proprio satellite e allestì a Malindi la prima base equatoriale, che fu largamente utilizzata dalla NASA. Alla fine degli anni ’60 anche l’Europa entrò attivamente nell’arena spaziale, lanciando i propri satelliti scientifici e di telecomunicazione dalla propria base equatoriale di Kourou. -
Project Number: JMW-USC1
Project Number: JMW-USC1 Department of Social Science and Policy Studies THE FUTURE OF UNMANNED SPACE: A SPECULATIVE ANALYSIS OF THE COMMERCIAL MARKET An Interactive Qualifying Project Report: Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by ______________________________ Peter Brayshaw ______________________________ Brooks Farnham ______________________________ Jon Leslie December 16, 2004 _____________________________ ________________________________ Professor John M. Wilkes, Advisor Professor Peter Campisano, Co-Advisor Abstract: This report is one of many which deal with the unmanned space race. It is a prediction of who will have the greatest competitive advantage in the commercial market over the next 25 years, based on historical analogy. Background information on Russia, China, Japan, the United States and the European Space Agency, including the launch vehicles and launch services each provides, is covered. The new prospect of space platforms is also investigated. 2 Table of Contents Abstract: ...................................................................................................... 2 Table of Contents ......................................................................................... 3 Introduction ................................................................................................. 5 Literature Review ...................................................................................... 5 Project -
Douglas Missile & Space Systems Division
·, THE THOR HISTORY. MAY 1963 DOUGLAS REPORT SM-41860 APPROVED BY: W.H.. HOOPER CHIEF, THOR SYSTEMS ENGINEERING AEROSPACE SYSTEMS ENGINEERING DOUGLAS MISSILE & SPACE SYSTEMS DIVISION ABSTRACT This history is intended as a quick orientation source and as n ready-reference for review of the Thor and its sys tems. The report briefly states the development of Thor, sur'lli-:arizes and chronicles Thor missile and booster launch inGs, provides illustrations and descriptions of the vehicle systcn1s, relates their genealogy, explains sane of the per fon:iance capabilities of the Thor and Thor-based vehicles used, and focuses attention to the exploration of space by Douelas Aircraf't Company, Inc. (DAC). iii PREFACE The purpose of The Thor History is to survey the launch record of the Thor Weapon, Special Weapon, and Space Systems; give a systematic account of the major events; and review Thor's participation in the military and space programs of this nation. The period covered is from December 27, 1955, the date of the first contract award, through May, 1963. V �LE OF CONTENTS Page Contract'Award . • • • • • • • • • • • • • • • • • • • • • • • • • 1 Background • • • • • • • • • • • • • • • • • • • • • • • • • • • • l Basic Or�anization and Objectives • • • • • • • • • • • • • • • • 1 Basic Developmenta� Philosophy . • • • • • • • • • • • • • • • • • 2 Early Research and Development Launches • • • ·• • • • • • • • • • 4 Transition to ICBM with Space Capabilities--Multi-Stage Vehicles . 6 Initial Lunar and Space Probes ••••••• • • • • • • • -
OUFTI-1 Environmental Impact Assessment
Date: 11/02/2016 Issue: 1 Rev: 1 Page: 1 of 11 OUFTI-1 Environmental Impact Assessment Reference 3_OUF_ENV_IMPACT_1.0 Issue/Rev Issue 1 Rev 0 Date 11/02/2016 Distribution OUFTI-1 team OUFTI-1 Environmental Impact Assessment Date: 11/02/2016 Issue: 1 Rev: 1 Page: 2 of 11 AUTHORS Name Email Telephone X. Werner [email protected] +32 4 366 37 38 S. De Dijcker [email protected] +32 4 366 37 38 RECORD OF REVISIONS Iss/Rev Date Author Section/page Change description 1/0 11/02/2016 X.Werner, All Initial issue S. De Dijcker Copyright University of Liège [2016]. OUFTI-1 Environmental Impact Assessment Date: 11/02/2016 Issue: 1 Rev: 1 Page: 3 of 11 TABLE OF CONTENTS Authors ....................................................................................................................................... 2 Record of revisions ..................................................................................................................... 2 1. Activities and Objectives ................................................................................................... 4 1.1. Project description ....................................................................................................... 4 1.2. Soyuz launch vehicle ................................................................................................... 5 1.3. Arianespace ................................................................................................................. 7 1.4. Conclusion .................................................................................................................. -
The SKYLON Spaceplane
The SKYLON Spaceplane Borg K.⇤ and Matula E.⇤ University of Colorado, Boulder, CO, 80309, USA This report outlines the major technical aspects of the SKYLON spaceplane as a final project for the ASEN 5053 class. The SKYLON spaceplane is designed as a single stage to orbit vehicle capable of lifting 15 mT to LEO from a 5.5 km runway and returning to land at the same location. It is powered by a unique engine design that combines an air- breathing and rocket mode into a single engine. This is achieved through the use of a novel lightweight heat exchanger that has been demonstrated on a reduced scale. The program has received funding from the UK government and ESA to build a full scale prototype of the engine as it’s next step. The project is technically feasible but will need to overcome some manufacturing issues and high start-up costs. This report is not intended for publication or commercial use. Nomenclature SSTO Single Stage To Orbit REL Reaction Engines Ltd UK United Kingdom LEO Low Earth Orbit SABRE Synergetic Air-Breathing Rocket Engine SOMA SKYLON Orbital Maneuvering Assembly HOTOL Horizontal Take-O↵and Landing NASP National Aerospace Program GT OW Gross Take-O↵Weight MECO Main Engine Cut-O↵ LACE Liquid Air Cooled Engine RCS Reaction Control System MLI Multi-Layer Insulation mT Tonne I. Introduction The SKYLON spaceplane is a single stage to orbit concept vehicle being developed by Reaction Engines Ltd in the United Kingdom. It is designed to take o↵and land on a runway delivering 15 mT of payload into LEO, in the current D-1 configuration. -
Design for Demise Analysis for Launch Vehicles
A first design for demise analysis for launch vehicles Henrik Simon, Stijn Lemmens Space debris: Inactive, manmade objects in space Source: ESA Overview Introduction Fundamentals Modelling approach Results and discussion Summary and outlook What is the motivation and task? INTRODUCTION Motivation . Mitigation: Prevention of creation and limitation of long-term presence . Guidelines: LEO removal within 25 years . LEO removal within 25 years after mission end . Casualty risk limit for re-entry: 1 in 10,000 Rising altitude Decay & re-entry above 2000 km Source: NASA Source: NASA Solution: Design for demise Source: ESA Scope of the thesis . Typical design of upper stages . General Risk assessment . Design for demise solutions to reduce the risk ? ? ? Risk A Risk B Risk C Source: CNES How do we assess the risk and simulate the re-entry? FUNDAMENTALS Fundamentals: Ground risk assessment Ah = + 2 Ai � ℎ = =1 � Source: NASA Source: NASA 3.5 m 5.0 m 2 2 ≈ ≈ Fundamentals: Re-entry simulation tools SCARAB: Spacecraft-oriented approach . CAD-like modelling . 6 DoF flight dynamics . Break-up / fragmentation computed How does a rocket upper stage look like? MODELLING Modelling approach . Research on typical design: . Elongated . Platform . Solid Rocket Motor . Lack of information: . Create common intersection . Deliberately stay top-level and only compare effects Modelling approach Modelling approach 12 Length [m] 9 7 5 3 2 150 300 500 700 800 1500 2200 Mass [kg] How much is the risk and how can we reduce it? SIMULATIONS Example of SCARAB re-entry simulation 6x Casualty risk of all reference cases Typical survivors Smaller Smaller fragments fragments Pressure tanks Pressure tanks Main tank Engine Main structure + tanks Design for Demise . -
Enabling Interstellar Probe
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Acta Astronautica 68 (2011) 790–801 Contents lists available at ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro Enabling interstellar probe Ralph L. McNutt Jr.a,n, Robert F. Wimmer-Schweingruber b,1, the International Interstellar Probe Team a The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, M/S MP3-E128, Laurel, MD 20723, USA b Institut fuer Experimentelle und Angewandte Physik, University of Kiel, Leibnizstrasse 11, D-24118 Kiel, Germany article info abstract Article history: The scientific community has advocated a scientific probe to the interstellar medium for Received 15 February 2010 over 30 years. While the Voyager spacecraft have passed through the termination shock Received in revised form of the solar wind, they have limited lifetimes as their radioisotope power supplies 16 June 2010 decay. It remains unclear whether they can reach the heliopause, the boundary between Accepted 2 July 2010 shocked solar wind and interstellar plasmas, and, in any case, they will not reach the Available online 17 August 2010 undisturbed interstellar medium. -
Apollo 13 Mission Review
APOLLO 13 MISSION REVIEW HEAR& BEFORE THE COMMITTEE ON AERONAUTICAL AND SPACE SCIENCES UNITED STATES SENATE NINETY-FIRST CONGRESS SECOR’D SESSION JUR’E 30, 1970 Printed for the use of the Committee on Aeronautical and Space Sciences U.S. GOVERNMENT PRINTING OFFICE 47476 0 WASHINGTON : 1970 COMMITTEE ON AEROKAUTICAL AND SPACE SCIENCES CLINTON P. ANDERSON, New Mexico, Chairman RICHARD B. RUSSELL, Georgia MARGARET CHASE SMITH, Maine WARREN G. MAGNUSON, Washington CARL T. CURTIS, Nebraska STUART SYMINGTON, bfissouri MARK 0. HATFIELD, Oregon JOHN STENNIS, Mississippi BARRY GOLDWATER, Arizona STEPHEN M.YOUNG, Ohio WILLIAM B. SAXBE, Ohio THOJfAS J. DODD, Connecticut RALPH T. SMITH, Illinois HOWARD W. CANNON, Nevada SPESSARD L. HOLLAND, Florida J4MES J. GEHRIG,Stad Director EVERARDH. SMITH, Jr., Professional staffMember Dr. GLENP. WILSOS,Professional #tad Member CRAIGVOORHEES, Professional Staff Nember WILLIAMPARKER, Professional Staff Member SAMBOUCHARD, Assistant Chief Clerk DONALDH. BRESNAS,Research Assistant (11) CONTENTS Tuesday, June 30, 1970 : Page Opening statement by the chairman, Senator Clinton P. Anderson-__- 1 Review Board Findings, Determinations and Recommendations-----_ 2 Testimony of- Dr. Thomas 0. Paine, Administrator of NASA, accompanied by Edgar M. Cortright, Director, Langley Research Center and Chairman of the dpollo 13 Review Board ; Dr. Charles D. Har- rington, Chairman, Aerospace Safety Advisory Panel ; Dr. Dale D. Myers, Associate Administrator for Manned Space Flight, and Dr. Rocco A. Petrone, hpollo Director -___________ 21, 30 Edgar 11. Cortright, Chairman, hpollo 13 Review Board-------- 21,27 Dr. Dale D. Mvers. Associate Administrator for Manned SDace 68 69 105 109 LIST OF ILLUSTRATIOSS 1. Internal coinponents of oxygen tank So. 2 ---_____-_________________ 22 2. -
Implementation of a Femto-Satellite and a Mini-Launcher
Implementation of a femto-satellite and a mini-launcher Joshua Tristancho SUPERVISED BY Jordi Guti errez´ Universitat Polit ecnica` de Catalunya Master in Aerospace Science & Technology May 2010 Implementation of a femto-satellite and a mini-launcher BY Joshua Tristancho DIPLOMA THESIS FOR DEGREE Master in Aerospace Science and Technology AT Universitat Polit ecnica` de Catalunya SUPERVISED BY: Jordi Guti errez´ Applied Physics department A Sonia Quiero agradecer a Dios, a mi familia y a mi iglesia de Salou por el apoyo recibido durante estos a nos˜ de trabajo en el proyecto PicoRover y WikiSat. Sin ellos hubiera sido imposible llegar hasta aqu ´ı. Agradecer tambi en´ el incondicional apoyo de los profesores de la UPC: Cristina Barrado Mux ´ı Dagoberto Jos e´ Salazar Hern andez´ Daniel Crespo Artiaga Enric Pastor Llorens Enrique Carg ´ıa-Berro Montilla Francisco Javier Mora Serrano F. Xavier Estop a` Mulet Jordi Guti errez´ Cabello Jos e´ Luis Andr es´ Yebra Juan L opez´ Rubio M. Ang elica´ Reyes Mu noz˜ Marcos Qu ´ılez Figuerola Miguel Valero Garc ´ıa Oscar Casas Piedrafita Pablo Royo Chic Pilar Gil Pons Ricard Gonz alez´ Cinca Santiago Torres Gil Xavier Prats Men endez´ Yuri Koubychine . Carles, mai t’oblidarem. ABSTRACT In this Master Thesis we begin with a short analysis of the current space market, with the aim of searching solutions that allow us to implement femto-satellites (that is, satellites with a mass less than 100 grams) and mini-launchers (in this case less than 100 kilograms). New synergies will be explored in order to reduce drastically the cost of development, construction, operation and disposal of femto-satellites and mini-launchers for operations in LEO (Low Earth Orbits below 300 kilometers of altitude) and short duration, about one week. -
National Reconnaissance Office Review and Redaction Guide
NRO Approved for Release 16 Dec 2010 —Tep-nm.T7ymqtmthitmemf- (u) National Reconnaissance Office Review and Redaction Guide For Automatic Declassification Of 25-Year-Old Information Version 1.0 2008 Edition Approved: Scott F. Large Director DECL ON: 25x1, 20590201 DRV FROM: NRO Classification Guide 6.0, 20 May 2005 NRO Approved for Release 16 Dec 2010 (U) Table of Contents (U) Preface (U) Background 1 (U) General Methodology 2 (U) File Series Exemptions 4 (U) Continued Exemption from Declassification 4 1. (U) Reveal Information that Involves the Application of Intelligence Sources and Methods (25X1) 6 1.1 (U) Document Administration 7 1.2 (U) About the National Reconnaissance Program (NRP) 10 1.2.1 (U) Fact of Satellite Reconnaissance 10 1.2.2 (U) National Reconnaissance Program Information 12 1.2.3 (U) Organizational Relationships 16 1.2.3.1. (U) SAF/SS 16 1.2.3.2. (U) SAF/SP (Program A) 18 1.2.3.3. (U) CIA (Program B) 18 1.2.3.4. (U) Navy (Program C) 19 1.2.3.5. (U) CIA/Air Force (Program D) 19 1.2.3.6. (U) Defense Recon Support Program (DRSP/DSRP) 19 1.3 (U) Satellite Imagery (IMINT) Systems 21 1.3.1 (U) Imagery System Information 21 1.3.2 (U) Non-Operational IMINT Systems 25 1.3.3 (U) Current and Future IMINT Operational Systems 32 1.3.4 (U) Meteorological Forecasting 33 1.3.5 (U) IMINT System Ground Operations 34 1.4 (U) Signals Intelligence (SIGINT) Systems 36 1.4.1 (U) Signals Intelligence System Information 36 1.4.2 (U) Non-Operational SIGINT Systems 38 1.4.3 (U) Current and Future SIGINT Operational Systems 40 1.4.4 (U) SIGINT -
The European Launchers Between Commerce and Geopolitics
The European Launchers between Commerce and Geopolitics Report 56 March 2016 Marco Aliberti Matteo Tugnoli Short title: ESPI Report 56 ISSN: 2218-0931 (print), 2076-6688 (online) Published in March 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 56; March 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 56 2 March 2016 The European Launchers between Commerce and Geopolitics Table of Contents Executive Summary 5 1. Introduction 10 1.1 Access to Space at the Nexus of Commerce and Geopolitics 10 1.2 Objectives of the Report 12 1.3 Methodology and Structure 12 2. Access to Space in Europe 14 2.1 European Launchers: from Political Autonomy to Market Dominance 14 2.1.1 The Quest for European Independent Access to Space 14 2.1.3 European Launchers: the Current Family 16 2.1.3 The Working System: Launcher Strategy, Development and Exploitation 19 2.2 Preparing for the Future: the 2014 ESA Ministerial Council 22 2.2.1 The Path to the Ministerial 22 2.2.2 A Look at Europe’s Future Launchers and Infrastructure 26 2.2.3 A Revolution in Governance 30 3.