Starfish: Resilient Image Compression for Aiot Cameras

Total Page:16

File Type:pdf, Size:1020Kb

Starfish: Resilient Image Compression for Aiot Cameras Starfish: Resilient Image Compression for AIoT Cameras Pan Hu Junha Im [email protected] [email protected] Stanford University Stanford University, Samsung Electronics Zain Asgar Sachin Katti [email protected] [email protected] Stanford University Stanford University IoT Camera Lossy Image Lossy IoT Gateway ABSTRACT Compression Link Cameras are key enablers for a wide range of IoT use cases including smart cities, intelligent transportation, AI-enabled farms, and more. These IoT applications require cloud software (including models) to Starfish act on the images. However, traditional task oblivious compression techniques are a poor fit for delivering images over low power IoT networks that are lossy and limited in capacity. The key challenge is their brittleness against packet loss; they are highly sensitive to small amounts of packet loss requiring retransmission for transport, which further reduces the available capacity of the network. We JPEG propose Starfish, a design that achieves better compression ratios and is graceful with packet loss. In addition to that, Starfish features content-awareness and task-awareness, meaning that we can build Figure 1: Illustration of uploading image from IoT camera specialized codecs for each application scenario and optimized to Gateway with Starfish and conventional JPEG-based for task objectives, including objective/perceptual quality as well methods. DNN-based Starfish is resilient to packet loss as AI tasks directly. We carefully design the DNN architecture and results in better image quality. and use an AutoML method to search for TinyML models that work on extremely low power/cost AIoT accelerators. Starfish is on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY. ACM, New York, not only the first image compress framework that works ona$3 NY, USA, 14 pages. https://doi.org/10.1145/1122445.1122456 AIoT accelerators but also outperforms JPEG, a well-established baseline, by up to 3×, in terms of bandwidth efficiency and up to 2.5× as efficient in energy consumption. It also features graceful 1 INTRODUCTION and gradual performance degradation in the presence of packet Recent advances in computer vision technologies have been a key loss. The application-level simulation indicates that Starfish could enabler for the pervasive growth of vision-based IoT applications deliver 3.7× images while providing better image quality. ranging from smart cities, intelligent transportation, AI-enabled factory to farms [51]. Cities and construction sites use cameras for CCS CONCEPTS intelligent transportation and monitoring to increase safety and security [2, 10, 44]. Oil refineries and farms use cameras to perform • Computer systems organization ! Neural networks; • Net- predictive maintenance and irrigation [49, 66]. The camera, being works ! Error detection and error correction; Cyber-physical one of the most information-rich and versatile sensors maximizes networks. it’s potential when coupled with powerful machine perception KEYWORDS algorithms. Although some computer vision applications can be performed artificial intelligence, internet of things, compression, resilient onsite without cloud support, many applications need to leverage ACM Reference Format: the vast compute and storage available on the cloud. These applica- Pan Hu, Junha Im, Zain Asgar, and Sachin Katti. 2018. Starfish: Resilient tions typically require heavy computation, perform computation Image Compression for AIoT Cameras. In Woodstock ’18: ACM Symposium on data from multiple camera streams, or store the raw data for archival purposes and future applications. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed Transferring images efficiently to the cloud is essential for for profit or commercial advantage and that copies bear this notice and the full citation many battery-powered IoT cameras. Current solutions rely on LP- on the first page. Copyrights for components of this work owned by others than ACM WAN(Low Power Wide Area Network) such as LoRaWAN and 5G must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a IoT for communication that tends to have very limited bandwidth fee. Request permissions from [email protected]. and high packet loss rate due to low transmit power, high path loss, Woodstock ’18, June 03–05, 2018, Woodstock, NY and collision. Increasing the reliability of the network is possible. © 2018 Association for Computing Machinery. ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00 However, this comes at the cost of more complexity and retrans- https://doi.org/10.1145/1122445.1122456 mission of data, significantly reducing the total network capacity. Woodstock ’18, June 03–05, 2018, Woodstock, NY Pan Hu, Junha Im, Zain Asgar, and Sachin Katti Studies show that reducing the packet error rate by 20% reduces according to the learning performance predictor. We start with network capacity by 5.2 times [75] in LoRaWAN. sampling a small fraction of the design space and train them until The highly limited network capacity in LPWAN call for extreme they converge. The training curves are used to train the learning image compression. However, traditional image compression such performance predictor based on LSTM that predicts performance as JPEG is a poor fit for most IoT applications; specifically, wemake from first a few epochs of the training curve. We then train each the following observations about the design objectives of JPEG: configuration in the design space for a few epochs and continue to 1) designed to be used on reliable networks; 2) general-purpose train only if the predicted performance falls in the top percentile. compression applicable to a variety of images; 3) content and task We showcase our design and test a tiny DNN that runs on a $3 AIoT oblivious. While JPEG is an excellent general-purpose image com- accelerator, as well as the more powerful Google Edge TPU. pression algorithm, it’s not necessarily the best fit for IoT appli- Benchmark results on four large public datasets indicate that we cations where the task objective and context are typically clear. can achieve the same task objective while using only a small fraction Further, since many IoT devices use low-power networks with un- of the energy/bandwidth, thus significantly reducing the cost of reliable transport making JPEGs brittleness to any packet loss a operation and accommodating more AIoT cameras and increase substantial limitation. task performance. We summarize our contributions as follows: If our goal is to send a lossy-compressed image over LPWAN, • We propose Starfish, a lossy image compression framework why do we need to assume lossless transmission of compressed designed for LPWAN that processes all the information loss data? We present Starfish, an application layer solution that in the application layer, thus simplifying wireless protocol de- works with intrinsically lossy wireless links. Starfish avoids inef- sign, improves the network throughput and battery life of IoT ficient retransmission by addressing information loss and data loss cameras. altogether in the application space utilizing information about the • To our best knowledge, Starfish is the first DNN-based com- context and task objectives. Inspired by recent advances in DNN pression framework that runs efficiently on low-cost AIoT de- hardware and software, Starfish uses a tiny DNN to generate vices. We generate DNN configuration with NAS automatically, a loss-resilient, unstructured compressed representation that de- making it future-proof and generalizable to a diverse set of DNN grades gracefully in the presence of data loss, as shown in Figure 1. architectures and AIoT hardware. Unlike structured representation in JPEG, the information is dis- • Benchmarks on a large-scale image dataset and IoT links sug- tributed uniformly in DNN representation: reconstructing an image gest that Starfish is up to 3∼4× as efficient in compression takes inputs from all bytes in representation rather than relying on size, and up to 2.5× as efficient in terms of time and energy effi- specific bytes. DNN does not need the header in which dataloss ciency for lossless traffic, due to the task-awareness and content- could be fatal. As a result, image quality degrades gracefully as data awareness of Starfish. Simulation of 100 to 1000 nodes sug- loss occurs rather than completely damage part of the image. gests Starfish could deliver more than 3.7× images with better The ability to tolerate packet loss in application space not only image quality in lossy traffic scenarios. simplifies MAC(Medium Access Control) layer protocol but also brings significant benefits in energy consumption and network ca- pacity. LPWAN nodes can send at higher bitrates without the need 2 BACKGROUND AND MOTIVATION to wait during the back-off period before retransmission. Such abil- We describe the background work motivating the design of our ity is extremely powerful in LPWAN, where thousands to millions streaming framework in this section, starting with an analysis of of nodes are connected to each base station or gateway, and nodes network/compression and AIoT hardware, then show the challenges need to conserve energy as much as possible to extend battery life. of using conventional image compression and our approach to deal Nevertheless, our DNN-based
Recommended publications
  • Energy-Efficient Design of the Secure Better Portable
    Energy-Efficient Design of the Secure Better Portable Graphics Compression Architecture for Trusted Image Communication in the IoT Umar Albalawi Saraju P. Mohanty Elias Kougianos Computer Science and Engineering Computer Science and Engineering Engineering Technology University of North Texas, USA. University of North Texas, USA. University of North Texas. USA. Email: [email protected] Email: [email protected] Email: [email protected] Abstract—Energy consumption has become a major concern it. On the other hand, researchers from the software field in portable applications. This paper proposes an energy-efficient investigate how the software itself and its different uses can design of the Secure Better Portable Graphics Compression influence energy consumption. An efficient software is capable (SBPG) Architecture. The architecture proposed in this paper is suitable for imaging in the Internet of Things (IoT) as the main of adapting to the requirements of everyday usage while saving concentration is on the energy efficiency. The novel contributions as much energy as possible. Software engineers contribute to of this paper are divided into two parts. One is the energy efficient improving energy consumption by designing frameworks and SBPG architecture, which offers encryption and watermarking, tools used in the process of energy metering and profiling [2]. a double layer protection to address most of the issues related to As a specific type of data, images can have a long life if privacy, security and digital rights management. The other novel contribution is the Secure Digital Camera integrated with the stored properly. However, images require a large storage space. SBPG architecture. The combination of these two gives the best The process of storing an image starts with its compression.
    [Show full text]
  • “实时交互”的im技术,将会有什么新机遇? 2019-08-26 袁武林
    ᭆʼn ᩪᭆŊ ᶾݐᩪᭆᔜߝ᧞ᑕݎ ғמஙے ᤒ 下载APPڜහਁʼn Ŋ ឴ݐռᓉݎ 开篇词 | 搞懂“实时交互”的IM技术,将会有什么新机遇? 2019-08-26 袁武林 即时消息技术剖析与实战 进入课程 讲述:袁武林 时长 13:14 大小 12.13M 你好,我是袁武林。我来自新浪微博,目前在微博主要负责消息箱和直播互动相关的业务。 接下来的一段时间,我会给你带来一个即时消息技术方面的专栏课程。 你可能会很好奇,为什么是来自微博的技术人来讲这个课程,微博会用到 IM 的技术吗? 在我回答之前,先请你思考一个问题: 除了 QQ 和微信,你知道还有什么 App 会用到即时(实时)消息技术吗? 其实,除了 QQ 和微信外,陌陌、抖音等直播业务为主的 App 也都深度用到了 IM 相关的 技术。 比如在线学习软件中的“实时在线白板”,导航打车软件中的“实时位置共享”,以及和我 们生活密切相关的智能家居的“远程控制”,也都会通过 IM 技术来提升人和人、人和物的 实时互动性。 我觉得可以这么理解:包括聊天、直播、在线客服、物联网等这些业务领域在内,所有需 要“实时互动”“高实时性”的场景,都需要、也应该用到 IM 技术。 微博因为其多重的业务需求,在许多业务中都应用到了 IM 技术,目前除了我负责的消息箱 和直播互动业务外,还有其他业务也逐渐来通过我们的 IM 通用服务,提升各自业务的用户 体验。 为什么这么多场景都用到了 IM 技术呢,IM 的技术究竟是什么呢? 所以,在正式开始讲解技术之前,我想先从应用场景的角度,带你了解一下 IM 技术是什 么,它为互联网带来了哪些巨大变革,以及自身蕴含着怎样的价值。 什么是 IM 系统? 我们不妨先看一段旧闻: 2014 年 Facebook 以 190 亿美元的价格,收购了当时火爆的即时通信工具 WhatsApp,而此时 WhatsApp 仅有 50 名员工。 是的,也就是说这 50 名员工人均创造了 3.8 亿美元的价值。这里,我们不去讨论当时谷歌 和 Facebook 为争抢 WhatsApp 发起的价格战,从而推动这笔交易水涨船高的合理性,从 另一个侧面我们看到的是:依托于 IM 技术的社交软件,在完成了“连接人与人”的使命 后,体现出的巨大价值。 同样的价值体现也发生在国内。1996 年,几名以色列大学生发明的即时聊天软件 ICQ 一 时间风靡全球,3 年后的深圳,它的效仿者在中国悄然出现,通过熟人关系的快速构建,在 一票基于陌生人关系的网络聊天室中脱颖而出,逐渐成为国内社交网络的巨头。 那时候这个聊天工具还叫 OICQ,后来更名为 QQ,说到这,大家应该知道我说的是哪家公 司了,没错,这家公司叫腾讯。在之后的数年里,腾讯正是通过不断优化升级 IM 相关的功 能和架构,凭借 QQ 和微信这两大 IM 工具,牢牢控制了强关系领域的社交圈。 ے஠ۓ由此可见,IM 技术作为互联网实时互动场景的底层架构,在整个互动生态圈的价值所在。᧗ 随着互联网的发展,人们对于实时互动的要求越来越高。于是,IMᴠྊෙๅ 技术不止应用于 QQ、 微信这样的面向聊天的软件,它其实有着宽广的应用场景和足够有想象力的前景。甚至在不 。ғ 系统已经根植于我们的互联网生活中,成为各大 App 必不可少的模块מஙݎ知不觉之间,IMḒ 除了我在前面图中列出的业务之外,如果你希望在自己的 App 里加上实时聊天或者弹幕的 功能,通过 IM 云服务商提供的 SDK 就能快速实现(当然如果需求比较简单,你也可以自 己动手来实现)。 比如,在极客时间 App 中,我们可以加上一个支持大家点对点聊天的功能,或者增加针对 某一门课程的独立聊天室。 例子太多,我就不做一一列举了。其实我想说的是:IM
    [Show full text]
  • Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks
    Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks Nick Johnston, Damien Vincent, David Minnen, Michele Covell, Saurabh Singh, Troy Chinen, Sung Jin Hwang, Joel Shor, George Toderici {nickj, damienv, dminnen, covell, saurabhsingh, tchinen, sjhwang, joelshor, gtoderici} @google.com, Google Research Abstract formation from the current residual and combines it with context stored in the hidden state of the recurrent layers. By We propose a method for lossy image compression based saving the bits from the quantized bottleneck after each it- on recurrent, convolutional neural networks that outper- eration, the model generates a progressive encoding of the forms BPG (4:2:0), WebP, JPEG2000, and JPEG as mea- input image. sured by MS-SSIM. We introduce three improvements over Our method provides a significant increase in compres- previous research that lead to this state-of-the-art result us- sion performance over previous models due to three im- ing a single model. First, we modify the recurrent architec- provements. First, by “priming” the network, that is, run- ture to improve spatial diffusion, which allows the network ning several iterations before generating the binary codes to more effectively capture and propagate image informa- (in the encoder) or a reconstructed image (in the decoder), tion through the network’s hidden state. Second, in addition we expand the spatial context, which allows the network to lossless entropy coding, we use a spatially adaptive bit to represent more complex representations in early itera- allocation algorithm to more efficiently use the limited num- tions. Second, we add support for spatially adaptive bit rates ber of bits to encode visually complex image regions.
    [Show full text]
  • Seed Selection for Successful Fuzzing
    Seed Selection for Successful Fuzzing Adrian Herrera Hendra Gunadi Shane Magrath ANU & DST ANU DST Australia Australia Australia Michael Norrish Mathias Payer Antony L. Hosking CSIRO’s Data61 & ANU EPFL ANU & CSIRO’s Data61 Australia Switzerland Australia ABSTRACT ACM Reference Format: Mutation-based greybox fuzzing—unquestionably the most widely- Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer, and Antony L. Hosking. 2021. Seed Selection for Successful Fuzzing. used fuzzing technique—relies on a set of non-crashing seed inputs In Proceedings of the 30th ACM SIGSOFT International Symposium on Software (a corpus) to bootstrap the bug-finding process. When evaluating a Testing and Analysis (ISSTA ’21), July 11–17, 2021, Virtual, Denmark. ACM, fuzzer, common approaches for constructing this corpus include: New York, NY, USA, 14 pages. https://doi.org/10.1145/3460319.3464795 (i) using an empty file; (ii) using a single seed representative of the target’s input format; or (iii) collecting a large number of seeds (e.g., 1 INTRODUCTION by crawling the Internet). Little thought is given to how this seed Fuzzing is a dynamic analysis technique for finding bugs and vul- choice affects the fuzzing process, and there is no consensus on nerabilities in software, triggering crashes in a target program by which approach is best (or even if a best approach exists). subjecting it to a large number of (possibly malformed) inputs. To address this gap in knowledge, we systematically investigate Mutation-based fuzzing typically uses an initial set of valid seed and evaluate how seed selection affects a fuzzer’s ability to find bugs inputs from which to generate new seeds by random mutation.
    [Show full text]
  • Darwinian Code Optimisation
    Darwinian Code Optimisation Michail Basios A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy of University College London. Department of Computer Science University College London January 18, 2019 2 I, Michail Basios, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the work. Abstract Programming is laborious. A long-standing goal is to reduce this cost through automation. Genetic Improvement (GI) is a new direction for achieving this goal. It applies search to the task of program improvement. The research conducted in this thesis applies GI to program optimisation and to enable program optimisation. In particular, it focuses on automatic code optimisation for complex managed runtimes, such as Java and Ethereum Virtual Machines. We introduce the term Darwinian Data Structures (DDS) for the data structures of a program that share a common interface and enjoy multiple implementations. We call them Darwinian since we can subject their implementations to the survival of the fittest. We introduce ARTEMIS, a novel cloud-based multi-objective multi-language optimisation framework that automatically finds optimal, tuned data structures and rewrites the source code of applications accordingly to use them. ARTEMIS achieves substantial performance improvements for 44 diverse programs. ARTEMIS achieves 4:8%, 10:1%, 5:1% median improvement for runtime, memory and CPU usage. Even though GI has been applied succesfully to improve properties of programs running in different runtimes, GI has not been applied in Blockchains, such as Ethereum.
    [Show full text]
  • Comparison of JPEG's Competitors for Document Images
    Comparison of JPEG’s competitors for document images Mostafa Darwiche1, The-Anh Pham1 and Mathieu Delalandre1 1 Laboratoire d’Informatique, 64 Avenue Jean Portalis, 37200 Tours, France e-mail: fi[email protected] Abstract— In this work, we carry out a study on the per- in [6] concerns assessing quality of common image formats formance of potential JPEG’s competitors when applied to (e.g., JPEG, TIFF, and PNG) that relies on optical charac- document images. Many novel codecs, such as BPG, Mozjpeg, ter recognition (OCR) errors and peak signal to noise ratio WebP and JPEG-XR, have been recently introduced in order to substitute the standard JPEG. Nonetheless, there is a lack of (PSNR) metric. The authors in [3] compare the performance performance evaluation of these codecs, especially for a particular of different coding methods (JPEG, JPEG 2000, MRC) using category of document images. Therefore, this work makes an traditional PSNR metric applied to several document samples. attempt to provide a detailed and thorough analysis of the Since our target is to provide a study on document images, aforementioned JPEG’s competitors. To this aim, we first provide we then use a large dataset with different image resolutions, a review of the most famous codecs that have been considered as being JPEG replacements. Next, some experiments are performed compress them at very low bit-rate and after that evaluate the to study the behavior of these coding schemes. Finally, we extract output images using OCR accuracy. We also take into account main remarks and conclusions characterizing the performance the PSNR measure to serve as an additional quality metric.
    [Show full text]
  • Microsoft / Vcpkg
    Microsoft / vcpkg master vcpkg / ports / Create new file Find file History Fetching latest commit… .. abseil [abseil][aws-sdk-cpp][breakpad][chakracore][cimg][date][exiv2][libzip… Apr 13, 2018 ace Update to ACE 6.4.7 (#3059) Mar 19, 2018 alac-decoder [alac-decoder] Fix x64 Mar 7, 2018 alac [ports] Mark several ports as unbuildable on UWP Nov 26, 2017 alembic [alembic] update to 1.7.7 Mar 25, 2018 allegro5 [many ports] Updates to latest Nov 30, 2017 anax [anax] Use vcpkg_from_github(). Add missing vcpkg_copy_pdbs() Sep 25, 2017 angle [angle] Add CMake package with modules. (#2223) Nov 20, 2017 antlr4 [ports] Mark several ports as unbuildable on UWP Nov 26, 2017 apr-util vcpkg_configure_cmake (and _meson) now embed debug symbols within sta… Sep 9, 2017 apr [ports] Mark several ports as unbuildable on UWP Nov 26, 2017 arb [arb] prefer ninja Nov 26, 2017 args [args] Fix hash Feb 24, 2018 armadillo add armadillo (#2954) Mar 8, 2018 arrow Update downstream libraries to use modularized boost Dec 19, 2017 asio [asio] Avoid boost dependency by always specifying ASIO_STANDALONE Apr 6, 2018 asmjit [asmjit] init Jan 29, 2018 assimp [assimp] Fixup: add missing patchfile Dec 21, 2017 atk [glib][atk] Disable static builds, fix generation to happen outside t… Mar 5, 2018 atkmm [vcpkg-build-msbuild] Add option to use vcpkg's integration. Fixes #891… Mar 21, 2018 atlmfc [atlmfc] Add dummy port to detect atl presence in VS Apr 23, 2017 aubio [aubio] Fix missing required dependencies Mar 27, 2018 aurora Added aurora as independant portfile Jun 21, 2017 avro-c
    [Show full text]
  • Forcepoint DLP Supported File Formats and Size Limits
    Forcepoint DLP Supported File Formats and Size Limits Supported File Formats and Size Limits | Forcepoint DLP | v8.8.1 This article provides a list of the file formats that can be analyzed by Forcepoint DLP, file formats from which content and meta data can be extracted, and the file size limits for network, endpoint, and discovery functions. See: ● Supported File Formats ● File Size Limits © 2021 Forcepoint LLC Supported File Formats Supported File Formats and Size Limits | Forcepoint DLP | v8.8.1 The following tables lists the file formats supported by Forcepoint DLP. File formats are in alphabetical order by format group. ● Archive For mats, page 3 ● Backup Formats, page 7 ● Business Intelligence (BI) and Analysis Formats, page 8 ● Computer-Aided Design Formats, page 9 ● Cryptography Formats, page 12 ● Database Formats, page 14 ● Desktop publishing formats, page 16 ● eBook/Audio book formats, page 17 ● Executable formats, page 18 ● Font formats, page 20 ● Graphics formats - general, page 21 ● Graphics formats - vector graphics, page 26 ● Library formats, page 29 ● Log formats, page 30 ● Mail formats, page 31 ● Multimedia formats, page 32 ● Object formats, page 37 ● Presentation formats, page 38 ● Project management formats, page 40 ● Spreadsheet formats, page 41 ● Text and markup formats, page 43 ● Word processing formats, page 45 ● Miscellaneous formats, page 53 Supported file formats are added and updated frequently. Key to support tables Symbol Description Y The format is supported N The format is not supported P Partial metadata
    [Show full text]
  • PDF Bekijken
    OSS voor Windows: Fotografie en Grafisch Ook Ook Naam Functie Website Linux NL Wireless photo download from Airnef Nikon, Canon and Sony ja nee testcams.com/airnef cameras ArgyllCMS Color Management System ja nee argyllcms.com Birdfont Font editor ja ja birdfont.org 3D grafisch modelleren, Blender animeren, weergeven en ja ja www.blender.org terugspelen RAW image editor (sinds Darktable ja ja www.darktable.org versie 2.4 ook voor Windows) Creating and editing technical Dia ja nee live.gnome.org/Dia diagrams Geavanceerd programma voor Digikam ja ja www.digikam.org het beheren van digitale foto's Display Calibration and DisplayCAL Characterization powered by ja nee displaycal.net Argyll CMS Drawpile Tekenprogramma ja nee drawpile.net Reading, writing and editing Exiftool photographic metadata in a ja ? sno.phy.queensu.ca/~phil/exiftool/ wide variety of files Met Fotowall kunnen FotoWall fotocollages in hoge resolutie ja nee www.enricoros.com/opensource/fotowall worden gemaakt. 3D CAD and CAM (Computer gCAD3D Aided Design and ja nee gcad3d.org Manufacturing) A Gtk/Qt front-end to gImageReader Tesseract OCR (Optical ja nee github.com/.../gImageReader Character Recognition). GNU Image Manipulation Program voor het bewerken The GIMP ja ja www.gimp.org van digitale foto's en maken van afbeeldingen Workflow oriented photo GTKRawGallery ja nee gtkrawgallery.sourceforge.net retouching software Guetzli Perceptual JPEG encoder ja nee github.com/google/guetzli Maakt panorama uit meerdere Hugin ja ja hugin.sourceforge.net foto's Lightweight, versatile image ImageGlass nee nee www.imageglass.org viewer Create, edit, compose, or ImageMagick ja ? www.imagemagick.org convert bitmap images.
    [Show full text]
  • Forensic Considerations for the High Efficiency Image File Format (HEIF)
    Author’s version DOI: 10.1109/CyberSecurity49315.2020.9138890 ©2020 IEEE IEEE International Conference on Cyber Incident Response, Coordination, Containment & Control (Cyber Incident 2020) Forensic Considerations for the High Efficiency Image File Format (HEIF) Sean McKeown Gordon Russell School of Computing School of Computing Edinburgh Napier University Edinburgh Napier University Edinburgh, Scotland Edinburgh, Scotland [email protected] [email protected] Abstract—The High Efficiency File Format (HEIF) was the relatively recent adoption of the High Efficiency Image File adopted by Apple in 2017 as their favoured means of capturing Format (HEIF) by Apple in 2017, beginning with the iPhone 7, images from their camera application, with Android devices such 6th generation iPad, and Mac computers running OS X High as the Galaxy S10 providing support more recently. The format is positioned to replace JPEG as the de facto image compression Sierra (10.13) and above. While claims of higher encoding file type, touting many modern features and better compression efficiency have done little to sway users in the past, Apple’s ratios over the aging standard. However, while millions of devices hardware and software support across millions of devices across the world are already able to produce HEIF files, digital potentially allows the HEIF format to eventually replace JPEG forensics research has not given the format much attention. in mainstream use. Contemporary Apple devices save images As HEIF is a complex container format, much different from traditional still picture formats, this leaves forensics practitioners from the camera directly in the HEIF format by default. This exposed to risks of potentially mishandling evidence.
    [Show full text]
  • Proceedings of The
    PROCEEDINGS OF THE IEEE CATALOG NUMBERS USB PART NUMBER: CFP 2139D – USB ISBN: 978 – 1 – 7281 – 1064 - 6 ORGANIZED BY 3XEOLFDWLRQ&RQWDFW $+0=DKLUXO$ODP )DFXOW\RI(QJLQHHULQJ ,QWHUQDWLRQDO,VODPLF8QLYHUVLW\0DOD\VLD -DODQ*RPEDN.XDOD/XPSXU 0DOD\VLD 7HO (PDLO]DKLUXODODP#LLXPHGXP\ ZHEKWWSV]DKLUXODODPVWDIIDWLLXPHGXP\ COPYRIGHT Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint or republication permission, email to IEEE Copyrights Manager at pubspermissions@ ieee.org. All rights reserved. Copyright ©2021 by IEEE. IEEE Catalog Number USB Part Number: CFP2139D-USB ISBN : 978-1-7281-1064-6 Additional Resources IEEE Conference Operations 445 Hoes Lane Pistacaway, NJ 08854-4150 USA Fax: +1 732 981 1769 Email: [email protected] © 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. IEEE catalog Number CFP2139D-USB ISBN 978-1-7281-1064-6 Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved.
    [Show full text]
  • High Efficiency Image File Format Implementation
    LASSE HEIKKILÄ HIGH EFFICIENCY IMAGE FILE FORMAT IMPLEMENTATION Master of Science thesis Examiner: Prof. Petri Ihantola Examiner and topic approved by the Faculty Council of the Faculty of Computing and Electrical Engineering on 4th of May 2016 i ABSTRACT LASSE HEIKKILÄ: High Efficiency Image File Format implementation Tampere University of Technology Master of Science thesis, 49 pages, 1 Appendix page June 2016 Master’s Degree Programme in Electrical Engineering Technology Major: Embedded systems Examiner: Prof. Petri Ihantola Keywords: High Efficiency Image File Format, HEIF, HEVC During recent years, methods used to encode video have been developing quickly. However, image file formats commonly used for saving still images, such as PNG and JPEG, are originating from the 1990s. Therefore it is often possible to get better image quality and smaller file sizes, when photographs are compressed with modern video compression techniques. The High Efficiency Video Coding (HEVC) standard was finalized in 2013, and in the same year work for utilizing it for still image storage started. The resulting High Efficiency Image File Format (HEIF) standard offers a competitive image data compression ratio, and several other features such as support for image sequences and non-destructive editing. During this thesis work, writer and reader programs for handling HEIF files were developed. Together with an HEVC encoder the writer can create HEIF compliant files. By utilizing the reader and an HEVC decoder, an HEIF player program can then present images from HEIF files without the most detailed knowledge about their low-level structure. To make development work easier, and improve the extensibility and maintainability of the programs, code correctness and simplicity were given special attention.
    [Show full text]