Final Report of the International Space Station Independent Safety

Total Page:16

File Type:pdf, Size:1020Kb

Final Report of the International Space Station Independent Safety I Contents Executive Summary........................................................................................ 1 Principal Observations ..................................................................................... 3 Principal Recommendations ............................................................................. 3 1. Introduction..................................................................................................... 5 Charter/Scope ................................................................................................... 5 Approach........................................................................................................... 5 Report Organization ......................................................................................... 5 2. The International Space Station Program.................................................... 7 International Space Station Characteristics..................................................... 8 3. International Space Station Crosscutting Management Functions............ 12 Robust On-Orbit Systems.................................................................................. 12 The Design ........................................................................................................ 12 Verification Requirements ................................................................................ 12 Physical (Fit) Verification ................................................................................ 13 Multi-element Integrated Test........................................................................... 13 Stage Verification Reviews ............................................................................... 13 Critical Items and Hazard Analyses ................................................................. 14 International Space Station Mission Management Team ................................. 15 Safety and Mission Assurance .......................................................................... 15 International Space Station Safety Review Panels ........................................... 16 Anomaly Resolution .......................................................................................... 16 Fleet Leader Program....................................................................................... 16 Program Risk Advisory Board.......................................................................... 17 International Space Station Certification of Flight Readiness Process ........... 18 NASA Engineering and Safety Center............................................................... 19 NASA Engineering Technical Authority ........................................................... 19 NASA Advisory Council .................................................................................... 20 Aerospace Safety Advisory Council.................................................................. 20 Office of the Inspector General......................................................................... 20 Summary ........................................................................................................... 21 4. Threats to and Vulnerabilities of the International Space Station............. 22 4.1 Loss of Crew and/or ISS Destruction ............................................................... 22 4.1.1 Micrometeoroid and orbital debris damage/penetration ................................... 22 4.1.2. Collision with visiting vehicles or Remote Manipulator System ..................... 22 Visiting Vehicle Background............................................................................. 23 Risk Mitigation for Visiting Vehicle Collision.................................................. 23 Mobile Servicing System Description ............................................................... 24 Space Station Remote Manipulator System Collision Avoidance..................... 24 Space Station Remote Manipulator System Modifications for Free-Flyer Capture and Berthing..................................................................... 26 Shuttle Remote Manipulator System ................................................................. 26 Japanese Experiment Module Remote Manipulator System............................. 26 4.1.3 Fire .................................................................................................................... 26 iii 4.1.4 Toxic spills........................................................................................................ 27 4.1.5 Catastrophic system failures ............................................................................. 27 Summary ........................................................................................................... 27 International Space Station Safety Analysis ..................................................... 27 Post-Columbia Noncompliance Report Review................................................ 28 Post-Columbia Failure Mode and Effects Analysis/ Critical Items List Review................................................................................. 29 Post-Columbia International Space Station Enhancements Review ................ 29 Conclusion ........................................................................................................ 29 4.1.6 Critical hardware and software design flaws.................................................... 29 Summary ........................................................................................................... 29 Design Specification Methodology ................................................................... 29 Testing and Verification Methodology.............................................................. 30 Hardware and Software Acceptance Process................................................... 31 On-Orbit System Monitoring ............................................................................ 31 4.1.7 Extravehicular activity...................................................................................... 31 Summary ........................................................................................................... 31 Extravehicular Mobility Unit Background ....................................................... 32 Inadvertent Separation from the Vehicle .......................................................... 32 Extravehicular Activity Micrometeoroid and Orbital Debris Risk................... 32 Contaminant Exposure...................................................................................... 33 System Failure .................................................................................................. 33 4.1.8 Security compromise of the ground system...................................................... 34 4.1.9 Errant critical command from the crew or ground controllers ......................... 34 4.2 Premature Abandonment .................................................................................. 35 4.2.1 Maintaining a pressurized cabin environment .................................................. 35 Summary ........................................................................................................... 35 Design and Testing ........................................................................................... 35 Pressure Monitoring and Control..................................................................... 36 On-Orbit Leak Isolation and Repair Hardware ............................................... 36 Leak Response................................................................................................... 36 4.2.2 Providing a habitable atmosphere..................................................................... 36 Summary ........................................................................................................... 36 Contaminant Release or Toxic Spill ................................................................. 37 Microbial Overgrowth ...................................................................................... 37 On-board Fire................................................................................................... 37 Life Support....................................................................................................... 38 4.2.3 Ensuring critical systems functionality............................................................. 39 Summary ........................................................................................................... 39 Assembly Sequence Planning............................................................................ 39 System Resiliency.............................................................................................. 40 Anomaly Detection and Resolution................................................................... 40 Ongoing Improvements..................................................................................... 40 4.2.4 Sufficient consumables availability .................................................................. 41 Summary ........................................................................................................... 41 Transportation for Consumables ...................................................................... 41 Consumables Baseline ...................................................................................... 41 International Space Station Consumables Team .............................................
Recommended publications
  • A Feasibility Study for Using Commercial Off the Shelf (COTS)
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2011 A Feasibility Study for Using Commercial Off The Shelf (COTS) Hardware for Meeting NASA’s Need for a Commercial Orbital Transportation Services (COTS) to the International Space Station - [COTS]2 Chad Lee Davis University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aerodynamics and Fluid Mechanics Commons, Other Aerospace Engineering Commons, and the Space Vehicles Commons Recommended Citation Davis, Chad Lee, "A Feasibility Study for Using Commercial Off The Shelf (COTS) Hardware for Meeting NASA’s Need for a Commercial Orbital Transportation Services (COTS) to the International Space Station - [COTS]2. " Master's Thesis, University of Tennessee, 2011. https://trace.tennessee.edu/utk_gradthes/965 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Chad Lee Davis entitled "A Feasibility Study for Using Commercial Off The Shelf (COTS) Hardware for Meeting NASA’s Need for a Commercial Orbital Transportation Services (COTS) to the International Space Station - [COTS]2." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Aerospace Engineering.
    [Show full text]
  • Development of the Crew Dragon ECLSS
    ICES-2020-333 Development of the Crew Dragon ECLSS Jason Silverman1, Andrew Irby2, and Theodore Agerton3 Space Exploration Technologies, Hawthorne, California, 90250 SpaceX designed the Crew Dragon spacecraft to be the safest ever flown and to restore the ability of the United States to launch astronauts. One of the key systems required for human flight is the Environmental Control and Life Support System (ECLSS), which was designed to work in concert with the spacesuit and spacecraft. The tight coupling of many subsystems combined with an emphasis on simplicity and fault tolerance created unique challenges and opportunities for the design team. During the development of the crew ECLSS, the Dragon 1 cargo spacecraft flew with a simple ECLSS for animals, providing an opportunity for technology development and the early characterization of system-level behavior. As the ECLSS design matured a series of tests were conducted, including with humans in a prototype capsule in November 2016, the Demo-1 test flight to the ISS in March 2019, and human-in-the-loop ground testing in the Demo-2 capsule in January 2020 before the same vehicle performs a crewed test flight. This paper describes the design and operations of the ECLSS, the development process, and the lessons learned. Nomenclature AC = air conditioning AQM = air quality monitor AVV = active vent valve CCiCap = Commercial Crew Integrated Capability CCtCap = Commercial Crew Transportation Capability CFD = computational fluid dynamics conops = concept of operations COPV = composite overwrapped
    [Show full text]
  • Robotic Arm.Indd
    Ages: 8-12 Topic: Engineering design and teamwork Standards: This activity is aligned to national standards in science, technology, health and mathematics. Mission X: Train Like an Astronaut Next Generation: 3-5-ETS1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely A Robotic Arm to meet the criteria and constraints of the problem. 3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be EDUCATOR SECTION (PAGES 1-7) improved. STUDENT SECTION (PAGES 8-15) Background Why do we need robotic arms when working in space? As an example, try holding a book in your hands straight out in front of you and not moving them for one or two minutes. After a while, do your hands start to shake or move around? Imagine how hard it would be to hold your hands steady for many days in a row, or to lift something really heavy. Wouldn’t it be nice to have a really long arm that never gets tired? Well, to help out in space, scientists have designed and used robotic arms for years. On Earth, scientists have designed robotic arms for everything from moving heavy equipment to performing delicate surgery. Robotic arms are important machines that help people work on Earth as well as in space. Astronaut attached to a robotic arm on the ISS. Look at your arms once again. Your arms are covered in skin for protection.
    [Show full text]
  • International Space Station Program Mobile Servicing System (MSS) To
    SSP 42004 Revision E Mobile Servicing System (MSS) to User (Generic) Interface Control Document Part I International Space Station Program Revision E, May 22, 1997 Type 1 Approved by NASA National Aeronautics and Space Administration International Space Station Program Johnson Space Center Houston, Texas Contract No. NAS15–10000 SSP 42004, Part 1, Revision E May 22, 1997 REVISION AND HISTORY PAGE REV. DESCRIPTION PUB. DATE C Totally revised Space Station Freedom Document into an International Space Station Alpha Document 03–14–94 D Revision D reference PIRNs 42004–CS–0004A, 42004–NA–0002, 42004–NA–0003, TBD 42004–NA–0004, 42004–NA–0007D, 42004–NA–0008A, 42004–NA–0009C, 42004–NA–0010B, 42004–NA–0013A SSP 42004, Part 1, Revision E May 22, 1997 INTERNATIONAL SPACE STATION PROGRAM MOBILE SERVICING SYSTEM TO USER (GENERIC) INTERFACE CONTROL DOCUMENT MAY 22, 1997 CONCURRENCE PREPARED BY: PRINT NAME ORGN SIGNATURE DATE CHECKED BY: PRINT NAME ORGN SIGNATURE DATE SUPERVISED BY (BOEING): PRINT NAME ORGN SIGNATURE DATE SUPERVISED BY (NASA): PRINT NAME ORGN SIGNATURE DATE DQA: PRINT NAME ORGN SIGNATURE DATE i SSP 42004, Part 1, Revision E May 22, 1997 NASA/CSA INTERNATIONAL SPACE STATION PROGRAM MOBILE SERVICING SYSTEM (MSS) TO USER INTERFACE CONTROL DOCUMENT MAY 22, 1997 Print Name For NASA DATE Print Name For CSA DATE ii SSP 42004, Part 1, Revision E May 22, 1997 PREFACE SSP 42004, Mobile Servicing System (MSS) to User Interface Control Document (ICD) Part I shall be implemented on all new Program contractual and internal activities and shall be included in any existing contracts through contract changes.
    [Show full text]
  • Glex-2021 – 6.1.1
    Global Space Exploration Conference (GLEX 2021), St Petersburg, Russian Federation, 14-18 June 2021. Copyright ©2021 by Christophe Bonnal (CNES). All rights reserved. GLEX-2021 – 6.1.1 Human spaceflight from Guiana Space Center Ch. Bonnal1* – J-M. Bahu1 – Ph. Berthe2 – J. Bertrand1 – Ch. Bonhomme1 – M. Caporicci2 J-F. Clervoy3 – N. Costedoat4 – E. Coletti5 – G. Collange5 – G. Debas5 – R. Delage6 – J. Droz5 E. Louaas1 – P. Marx8 – B. Muller6 – S. Perezzan1 – I. Quinquis5 – S. Sandrone7 D. Schmitt2 – V. Taponier1 1 CNES Launcher Directorate, Pairs, France – 2 ESA Human & Robotic Exploration Directorate, ESTEC, Noordwijk, Netherlands – 3 Astronaut Novespace, Paris, France – 4CNES Guiana Space Center, Kourou, France 5ArianeGroup, Les Mureaux, France – 6Airbus Defence & Space, Toulouse, France – 7Airbus Defence & Space, Bremen Germany – 8Consultant, Paris, France * Corresponding Author Abstract The use of Space has drastically evolved these last ten years. Tomorrow will see easier and cheaper access to Space, satellite servicing, in-orbit manufacturing, human private spaceflights to ever increasing number of Orbital Stations, road to the Moon, Asteroids, Mars. It seems fundamental to make sure we can rely on robust, reliable, frequent and affordable access to and from LEO with both automatic systems and human missions; such systems are the bricks with which all the future operations in Space will be built. Independent human access to space from Europe for our astronauts is a key to any future in Space. It has been studied in depth since the 80's with Hermes Spaceplane, then through numerous studies, pre- development activities, and demonstrations such as ARD, X38-CRV or IXV, which now allow Europe to reconsider such an endeavor with a much higher confidence.
    [Show full text]
  • Fachprogramme Raumfahrt
    Fachprogramme Raumfahrt Aktualisierung 2002/2003 Raumfahrtmanagement Herausgeber: Deutsches Zentrum für Luft- und Raumfahrt e.V. Raumfahrtmanagement Königswinterer Str. 522 – 524 53227 Bonn-Oberkassel Fachprogramme Raumfahrt Aktualisierung 2002/2003 Gliederung TEIL 1 - ALLGEMEINE ASPEKTE 1. PROGRAMMRAHMEN UND -UMFELD .................................................................................... 5 2. STRUKTUR UND MITTELEINSATZ ........................................................................................... 6 TEIL 2 - FACHPROGRAMME EINFÜHRUNG................................................................................................................... 11 1. FACHPROGRAMM KOMMUNIKATION .................................................................................... 13 2. FACHPROGRAMM NAVIGATION .......................................................................................... 23 3. FACHPROGRAMM ERDBEOBACHTUNG .................................................................................. 31 4. FACHPROGRAMM ERFORSCHUNG DES WELTRAUMS................................................................. 43 5. FACHPROGRAMM FORSCHUNG UNTER WELTRAUMBEDINGUNGEN............................................... 55 6. FACHPROGRAMM RAUMSTATION ........................................................................................ 69 7. FACHPROGRAMM RAUMTRANSPORT .................................................................................... 79 8. FACHPROGRAMM TECHNIK FÜR RAUMFAHRTSYSTEME.............................................................
    [Show full text]
  • Evaluation of X-38 Crew Return Vehicle Input Control Devices in a Microgravity Environment
    NASA/TM--2000-208925 Evaluation of X-38 Crew Return Vehicle Input Control Devices in a Microgravity Environment Kirsten Welge Alicia Moore Ruth Ann Pope Suzette Shivers Longview High School Longview, Texas December 2(X)0 The NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated 'to * CONFERENCE PUBLICATION. the advancement of aeronautics and space Collected papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key meetings sponsored or co-sponsored by NASA. part in helping NASA maintain this important role. * SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA The NASA STI Program Office is operated by programs, projects, and missions, often Langley Research Center, the lead center for concerned with subjects having substantial NASA's scientific and technical information. The public interest. NASA STI Program Office provides access to the NASA STI Database, the largest collection of * TECHNICAL TRANSLATION. aeronautical and space science STI in the world. English-language translations of foreign The Program Office is also NASA's institutional scientific and technical material pertinent to mechanism for disseminating the results of its NASA's mission. research and development activities. These results are published by NASA in the NASA STI Specialized services that complement the STI Report Series, which includes the following Program Office's diverse offerings include report types: creating custom thesauri, building customized databases, organizing and publishing research * TECHNICAL PUBLICATION. Reports results ... even providing videos. of completed research or a major significant phase of research that present the results of For more information about the NASA STI NASA programs and include extensive data or Program Office, see the following: theoretical analysis.
    [Show full text]
  • The International Space Station: Legal Framework and Current Status, 64 J
    Journal of Air Law and Commerce Volume 64 | Issue 4 Article 3 1999 The nI ternational Space Station: Legal Framework and Current Status Rochus Moenter Follow this and additional works at: https://scholar.smu.edu/jalc Recommended Citation Rochus Moenter, The International Space Station: Legal Framework and Current Status, 64 J. Air L. & Com. 1033 (1999) https://scholar.smu.edu/jalc/vol64/iss4/3 This Article is brought to you for free and open access by the Law Journals at SMU Scholar. It has been accepted for inclusion in Journal of Air Law and Commerce by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. THE INTERNATIONAL SPACE STATION: LEGAL FRAMEWORK AND CURRENT STATUS ROCHUS MOENTER I. THE INTERNATIONAL SPACE STATION A. BACKGROUND AND CURRENT STATUS HE DEVELOPMENT and construction of an International Space Station (ISS) began with President Reagan's an- nouncement in 1984 that the United States of America intended to build a permanently inhabited civil space station in the earth's orbit, later labeled "Space Station Freedom."' In con- nection with the announcement, President Reagan invited other countries, in particular Canada, Europe and Japan, to partici- pate in the project. This invitation was subsequently accepted by several countries, including the members of the European Space Agency (ESA).2 Some of the countries accepting were Belgium, the Federal Republic of Germany, France, Italy, the Netherlands, Norway, Spain, the United Kingdom, Canada through the Canadian Space Agency (CSA) and the Govern- ment of Japan (GOJ). Many years of negotiations followed, mainly between NASA (National Aeronautics and Space Administration) and the re- spective national space agencies, regarding the construction, de- velopment and operation of an ISS.
    [Show full text]
  • T-NSIAD-91-26 Questions Remain on the Costs, Uses, and Risks of The
    United States Gkneral Accounting OfRce /f,3 7 7 Testimony llllllllMlll 143776 For Release ' Questions Remain on the Costs, Uses, and Risks on Delivery of the Redesigned Space Station Expected at 9:30 a.m. EST Wednesday, May 1, 1991 Statement of Charles A. Bowsher Comptroller General of the United States Before the Subcommittee on Government Activites and Transportation House Committee on Government Operations GAO/T-NSIAD-91-26 GAO FOG 160w/87) . Madam Chair and Members of the Subcommittee: I appreciate the opportunity to testify before the Subcommittee today on the National Aeronautics and Space Administration's (NASA) space station program. My testimony will provide an overview of the space station --one of the most ambitious, costly, and controversial space projects the nation has ever undertaken. I will discuss the station's history, the concerns that led to the 1990 congressional directive to redesign the station, and the recommendations made by the Advisory Committee on the Future of the U.S. Space Program (commonly referred to as the Augustine Committee). In addition, on the basis of preliminary data gathered to date and interviews with leading space scientists, I will address the following critical questions about NASA's redesigned station: -- Have all station-related costs been identified and fully disclosed7 -- Are station program re,serves adequate, and is the station affordable? -- Is the station justified on the basis of its tangible benefits to scientific research7 -- What technical challenges need to be considered before proceeding with the station? RESULTSIN BRIEF In response to congressional direction, NASA recently redesigned the space station.
    [Show full text]
  • Nanoracks External Cubesat Deployer (NRCSD-E) Interface Definition Document (IDD) 08/31/2018
    NanoRacks External CubeSat Deployer (NRCSD-E) Interface Definition Document (IDD) 08/31/2018 Doc No: NR-NRCSD-S0004 Revision: - THIS DOCUMENT HAS NOT BEEN APPROVED FOR PUBLIC RELEASE BY THE UNITED STATES DEPARTMENT OF DEFENSE. NANORACKS PROPRIETARY RIGHTS ARE INCLUDED HEREIN. RECIPIENT AGREES THAT NEITHER THIS DOCUMENT NOR THE INFORMATION DISCUSSED HEREIN NOR ANY PART THEREOF SHALL BE REPRODUCED OR DISCLOSED TO OTHERS. NanoRacks External CubeSat Deployer IDD NRCSD External Doc No: NR-NRCSD-S0004 Rev: - NanoRacks External CubeSat Deployer Interface Definition Document (IDD) Prepared by Nathan Daniels; Mission Manager; Date Reviewed by Henry Martin; Senior Mission Manager; Date Reviewed by Conor Brown; External Payloads Manager; Date Reviewed by Troy Guy; Avionics Manager; Date Reviewed by Teresa Freund; Safety Engineer; Date Approved by Mike Lewis; Chief Technology Officer; Date NanoRacks External CubeSat Deployer IDD NRCSD External Doc No: NR-NRCSD-S0004 Rev: - List of Revisions Revision Revision Date Revised By Revision Description - 8/31/2018 N. Daniels Initial Release NanoRacks External CubeSat Deployer IDD NRCSD External Doc No: NR-NRCSD-S0004 Rev: - Table of Contents 1 Introduction 1 1.1 Purpose 1 1.1.1 Scope 1 1.2 Usage 1 1.3 Exceptions 1 2 Acronyms, Definitions, and Applicable Documents 2 3 NanoRacks External CubeSat Deployer System Overview 5 3.1 NRCSD-E Overview and Payload Capacity 5 3.2 NRCSD-E Coordinate System 5 3.3 NRCSD-E Design Features 6 3.4 NRCSD-E Operations Overview 7 3.4.1 Schedule 7 3.4.2 Ground Operations 8 3.4.3
    [Show full text]
  • Spaceflight a British Interplanetary Society Publication
    SpaceFlight A British Interplanetary Society publication Volume 60 No.8 August 2018 £5.00 The perils of walking on the Moon 08> Charon Tim Peake 634072 Russia-Sino 770038 9 Space watches CONTENTS Features 14 To Russia with Love Philip Corneille describes how Russia fell in love with an iconic Omega timepiece first worn by NASA astronauts. 18 A glimpse of the Cosmos 14 Nicholas Da Costa shows us around the Letter from the Editor refurbished Cosmos Pavilion – the Moscow museum for Russian space achievements. In addition to the usual mix of reports, analyses and commentary 20 Deadly Dust on all space-related matters, I am The Editor looks back at results from the Apollo particularly pleased to re- Moon landings and asks whether we are turning introduce in this month’s issue our a blind eye to perils on the lunar surface. review of books. And to expand that coverage to all forms of 22 Mapping the outer limits media, study and entertainment be SpaceFlight examines the latest findings it in print, on video or in a concerning Charon, Pluto’s major satellite, using 18 computer game – so long as it’s data sent back by NASA's New Horizons. related to space – and to have this as a regular monthly contribution 27 Peake Viewing to the magazine. Rick Mulheirn comes face to face with Tim Specifically, it is gratifying to see a young generation stepping Peake’s Soyuz spacecraft and explains where up and contributing. In which this travelling display can be seen. regard, a warm welcome to the young Henry Philp for having 28 38th BIS Russia-Sino forum provided for us a serious analysis Brian Harvey and Ken MacTaggart sum up the of a space-related computer game latest Society meeting dedicated to Russian and which is (surprisingly, to this Chinese space activities.
    [Show full text]
  • NSIAD-90-192 Space Transportation
    .]Ir1lv . 1!)!)(I SPACE TRANSPORTATION. ’ NASA Has No Firm Need for Increasingly Costly Orbital Maneuvering Vehicle -_ dFb llllll141905 II I (;A()/ NSIAI)-!ml!~2 National Security and International Affair6 JMviaion B-239670 July 31,lQQo The Honorable Robert A. Roe Chairman, Committee on Science, Space,and Technology House of Representatives Dear Mr. Chairman: As you requested, we have reviewed the National Aeronautics and SpaceAdministration’s (NASA) Orbital Maneuvering Vehicle (OMV) program. Specifically, we evaluated the need to continue the OMVprogram in light of reductions in its capabilities and the reasonsfor changes in OMVprogram costs and schedules. We are sending copies of this report to the Administrator of NASA and appropriate congressionalcommittees. Copies will be made available to other interested parties upon request. This report was prepared under the direction of Mr. Mark E. Gebicke, Director, NASA Issues, who may be reached on (202) 276-6140 if you or your staff have any questions concerning the report. Major contributors to the report are listed in appendix I. Sincerely yours, Frank C. Conahan Assistant Comptroller General l3xecutiveSummary . The Orbital Maneuvering Vehicle (OMV) was conceived in 1986 as a Purpose $406 million multipurpose space tug. However, the estimated cost of the program has grown to $736.6 million. In late 1989, the National Aero- nautics and Space Administration (NASA) reduced or eliminated some of the OMV'S planned capabilities to contain growing program costs. The Chairman, House Committee on Science, Space, and Technology, asked GAO to determine (1) whether NASA had established a firm need for the OMV and (2) why the program costs have grown so much.
    [Show full text]