Autonomic Vs. Somatic Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

Autonomic Vs. Somatic Nervous System Objectives z Know ANS divisionsand organization z Functional units z Principal neurotransmitters z Receptor types z Identify sensory input to ANS z Explain how it integrates function (BP) z List main physiological responses under ANS control z Distinguish SNS from PSNS mediatedresponses z Understand the consequences of ANS dysregulation Autonomic vs. Somatic Nervous System • AUTONOMIC Effectors: cardiac & smooth muscle, viscera & glands Efferent: 2‐neuron chain Neurotransmitter (NT) effects Stimulatory or inhibitory dependent on NT & receptor type SOMATIC Effectors: skeletal muscles Efferent: Heavily myelinated axons from CNS to muscle Neurotransmitter Effects: Acetylcholine excitatory effect in nicotinic (N1) receptors 1 z Autonomic Nervous System z Efferent motor neurons: innervate viscera & involuntary muscle z Afferent sensory neurons respond to: z Stretch (heart, arteries) z Glucose, PCO2, PO2 (blood) z Osmolarity & pH (blood & intestinal content) z Temperature (skin & internal organs) SNS & PSNS Functional unit 2 neuron pathway 2 Sympathetic z Preganglionic: z Preganglionic Cholinergic neuron; neurons Nicoti n ic recept(Ntor (N2) z Thoracolumbar spinal z Postganglionic: cord: T1-L3 Adrenergic neuron; z Postganglionic Adrenergic receptor neurons z α 1: vasculature z Paravertebral or z α 2: presynaptic prevertebral ganglia z β 1: heart, adipose z Distant to target organ z β 2 : bronchioles, vasculature z β 3: adipose- thermogenic Parasympathetic z Preganglionic z Preganglionic: Cholinergic neurons neuron; Nicotinic (N2) receptor z Brainstem: cranial nerve z Nicotinic: ion-gated nuclei z Postganglionic: Cholinergic z III oculomotor neuron; Muscarinic receptor z VII facial z G-protein coupled z IX glossopharyngeal z Effect on cell z X Vagus z Excitatory or inhibitory: z Sacral spinal cord receptor & oogargan specifi c z Postganglionic neurons z Parasympathetic ganglia z Near or in wall of target organ 3 Neurotransmitters z Principal: Acetylcholine & norepinephrine z NtditilNon traditional z ATP z Colocalized with NE in SNS z Purinoceptors (i.e., smooth muscle cells) z Nitric oxide z Pre & postganglionic neurons SNS & PSNS Enteric nervous system z 2 networks of neurons z Myenteric z Motility z Submucous z Secretions z 3 types of neurons z Motor z Sensory z mechanical, thermal, osmotic & chemical z Interneurons 4 Enteric nervous system z Part of the PNS z Operates largely independently of the CNS z Coordinates gastrointestinal function z Monitors the state of lumen and gut wall z Responds appropriately z Activating intrinsic reflexes z Mixing and propulsive & peristaltic movements z Change blood flow & secretions of water & electrolytes Enteric nervous system z Neurons & glia organized into ganglia z Neurotransmitters: z Acetylcholine z ↑ motility z ↑ intestinal secretions z ↑ enteric hormone release z NihiNorepinephrine z ↓ acetylcholine effects z Others: VIP, opioids, 5-HT, Substance P, NO, etc. 5 SNS: “fight or flight” z Dilation of pupils z ↑ HR, contractility &BP& BP z Blood flow z ↓ non-essential organs z ↑ Bronchial dilation z ↑ Respiratory rate z ↑ Fuel mobilization z Glucose & FFA Exercise Excitement Embarrassment PSNS: “rest-digest” z Conserve & restore energy z Normally PSNS tone > SNS z SLUDD responses: z salivation, lacrimation, urination, digestion & defecation z 3 “decreases” z ↓ HR, airway & pupil diameter z PdilfParadoxical fear z No escape/“No win situation” Digestion z Massive PSNS activation z Loss of urination & defecation Defecation control Diuresis z ↓HR & BP 6 SNS/PSNS z Dual/antagonistic: GI, CV z Exclusive SNS z Adrenal medulla z Sweat glands z Erector pili muscles z Kidneys: RAS →↑ MABP z Most blood vessels z Exclusive PSNS z Erectile tissues SNS/PSNS: Dual/antagonistic modulation of CV function. z Carotid sinus & aortic arch pressure z Afferent signals integrated in brainstem z ↑ Pressure z ↓ SNS activity & ↓ BP z ↑ PSNS activity & ↓ HR z ↓ Pressure z ↑ SNS activity & ↑ HR & BP 7 SNS & PSNS: Dual/antagonistic modulation of GI function z PSNS favors digestive processes z Increased gut motility, acid & enzyme secretions z Relaxation of sphincters z SNS inhibits digestive processes z Contraction of sphincters z Pyy,loric, ileo-cecal & internal anal z Inhibition of motor neurons throughout the gut SNS: Exclusive modulation of thermoregulation z ↑ Environmental temperature z ↓ Environmental temperature z Sweat gland activation z Skin vasoconstriction z Skin vasodilation z Blood retained in vital organs z Warm blood to surface z Shivering z Piloerection 8 ANS during fever z Increased body temperature 1-4°C z Upregulation of thermostatic set point z Body “feels cold” z Autonomics kick in z Skin vasoconstriction z Blood retained in vital organs z Shivering z Piloerection z No sweating SNS/PSNS: Cooperative control of sexual function z Erection z PSNS: Vasodilation of penile blood vessels z ACh & NO z SNS: ↓ tone during erection z Emission (ejaculation) z SNS: smooth muscle contraction distal epididymis z Emission 9 Autonomic nervous system z ANS divisions and organization z Functional units z Principal neurotransmitters z Receptor types z Sensory input to ANS & role in control of BP z Main physiological responses under SNS & PSNS contro l z Coordinated/antagonistic/exclusive z ANS dysfunction? z Examples? Manifestations? 10.
Recommended publications
  • The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
    life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions.
    [Show full text]
  • What Is the Autonomic Nervous System?
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_3.iii31 on 21 August 2003. Downloaded from AUTONOMIC DISEASES: CLINICAL FEATURES AND LABORATORY EVALUATION *iii31 Christopher J Mathias J Neurol Neurosurg Psychiatry 2003;74(Suppl III):iii31–iii41 he autonomic nervous system has a craniosacral parasympathetic and a thoracolumbar sym- pathetic pathway (fig 1) and supplies every organ in the body. It influences localised organ Tfunction and also integrated processes that control vital functions such as arterial blood pres- sure and body temperature. There are specific neurotransmitters in each system that influence ganglionic and post-ganglionic function (fig 2). The symptoms and signs of autonomic disease cover a wide spectrum (table 1) that vary depending upon the aetiology (tables 2 and 3). In some they are localised (table 4). Autonomic dis- ease can result in underactivity or overactivity. Sympathetic adrenergic failure causes orthostatic (postural) hypotension and in the male ejaculatory failure, while sympathetic cholinergic failure results in anhidrosis; parasympathetic failure causes dilated pupils, a fixed heart rate, a sluggish urinary bladder, an atonic large bowel and, in the male, erectile failure. With autonomic hyperac- tivity, the reverse occurs. In some disorders, particularly in neurally mediated syncope, there may be a combination of effects, with bradycardia caused by parasympathetic activity and hypotension resulting from withdrawal of sympathetic activity. The history is of particular importance in the consideration and recognition of autonomic disease, and in separating dysfunction that may result from non-autonomic disorders. CLINICAL FEATURES c copyright. General aspects Autonomic disease may present at any age group; at birth in familial dysautonomia (Riley-Day syndrome), in teenage years in vasovagal syncope, and between the ages of 30–50 years in familial amyloid polyneuropathy (FAP).
    [Show full text]
  • Brainstem Dysfunction in Critically Ill Patients
    Benghanem et al. Critical Care (2020) 24:5 https://doi.org/10.1186/s13054-019-2718-9 REVIEW Open Access Brainstem dysfunction in critically ill patients Sarah Benghanem1,2 , Aurélien Mazeraud3,4, Eric Azabou5, Vibol Chhor6, Cassia Righy Shinotsuka7,8, Jan Claassen9, Benjamin Rohaut1,9,10† and Tarek Sharshar3,4*† Abstract The brainstem conveys sensory and motor inputs between the spinal cord and the brain, and contains nuclei of the cranial nerves. It controls the sleep-wake cycle and vital functions via the ascending reticular activating system and the autonomic nuclei, respectively. Brainstem dysfunction may lead to sensory and motor deficits, cranial nerve palsies, impairment of consciousness, dysautonomia, and respiratory failure. The brainstem is prone to various primary and secondary insults, resulting in acute or chronic dysfunction. Of particular importance for characterizing brainstem dysfunction and identifying the underlying etiology are a detailed clinical examination, MRI, neurophysiologic tests such as brainstem auditory evoked potentials, and an analysis of the cerebrospinal fluid. Detection of brainstem dysfunction is challenging but of utmost importance in comatose and deeply sedated patients both to guide therapy and to support outcome prediction. In the present review, we summarize the neuroanatomy, clinical syndromes, and diagnostic techniques of critical illness-associated brainstem dysfunction for the critical care setting. Keywords: Brainstem dysfunction, Brain injured patients, Intensive care unit, Sedation, Brainstem
    [Show full text]
  • The Autonomic Nervous System and Gastrointestinal Tract Disorders
    NEUROMODULATION THE AUTONOMIC NERVOUS SYSTEM AND GASTROINTESTINALTRACT DISORDERS TERRY L. POWLEY, PH.D. PURDUE UNIVERSITY • MULTIPLE REFRACTORY GI DISORDERS EXIST. • VISCERAL ATLASES OF THE GI TRACT ARE AVAILABLE. • REMEDIATION WITH ELECTROMODULATION MAY BE PRACTICAL. TERRY l. POWLEY, PH.D. PURDUE NEUROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM AND GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY 50 INTERNATIONAL I:"' NEUROMODULATION SOCIETY 0 40 ·­IS 12TH WORLD CONGRESS -I: -• 30 !"' A. -..0 20 ..a• E 10 z::::t TERRY l. POWLEY, PH.D. PURDUE NEUROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM AND GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY DISORDERS TO TREAT WITH NEUROMODULATION ACHALASIA DYSPHAGIA GASTROPARESIS GERD GUT DYSMOTILITY MEGA ESOPHAGUS DYSPEPSIA ,, VISCERAL PAIN l1 ' I NAUSEA, EMESIS OBESITY ,, ' 11 I PYLORIC STENOSIS ==..:.= --- "" .:.= --- .. _ _, DUMPING REFLUX COLITIS I:' . - IBS -·-- - CROHN'S DISEASE HIRSCHSPRUNG DISEASE CHAGAS DISUSE Gastrointestinal Tract Awodesk@ Ma;·a@ TERRY l. POWLEY, PH.D. PURDUE NEUROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM AND GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY TIME The Obesity Epidemic in America ·. TERRY l. POWLEY, PH.D. PURDUE NEU ROMODUlATION : THE AUTO N OMIC NERVOUS SYSTEM A N D G A STP.OINTESTINAL TRACT DISORDERS UNI V E R SI TY ROUX-EN-Y BYPASS Bypassed portion of stomach Gastric -"'~­ pouch Bypassed - ­ Jejunum duodenum -1" food -___----_,,.,. digestivejuice TERRY l. POWLEY, PH.D. PURDUE NEU ROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM A N D GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY 8y~s~ portionof i t()(l\3Ch • TERRYl. POWLEY, PH.D. PURDUE NEUROMOOUlATION: THE AUTONOMIC NERVOUS SYSTEM ANO 0.-STP.OINTESTINAL TRACT DISORDERS UHIVlflSITY • DESPERATE PATIENTS • ABSENCE OF SATISFACTORY PHARMACOLOGICAL TREATMENTS • POPULAR MEDIA HYPE • ABSENCE OF A SOLID MECHANISTIC UNDERSTANDING • UNCRITICAL ACCEPTANCE OF PROPONENT'S CLAIMS • MYOPIA REGARDING SIDE EFFECTS TERRY l.
    [Show full text]
  • Biology 251 Fall 2015 1 TOPIC 6: CENTRAL NERVOUS SYSTEM I
    Biology 251 Fall 2015 TOPIC 6: CENTRAL NERVOUS SYSTEM I. Introduction to the Nervous System A. Objective: We’ve discussed mechanisms of how electrical signals are transmitted within a neuron (Topic 4), and how they are transmitted from neuron to neuron (Topic 5). For the next 3 Topics, we will discuss how neurons are organized into functioning units that allow you to think, walk, smell, feel pain, etc. B. Organization of nervous system. Note that this is a subdivision of a single integrated system, based on differences in structure, function and location (Fig 7.1). Such a subdivision allows easier analysis and understanding than trying to comprehend the system as a whole. 1. Central Nervous System (integrates and issues information) a) brain b) spinal cord 2. Peripheral Nervous System a) Afferent Division (sends information to CNS) b) Efferent Division (receives information from CNS) (1) Somatic nervous system (2) Autonomic nervous system (a) Sympathetic nervous system (b) Parasympathetic nervous system C. Three classes of neurons (Fig 7.4) 1. afferent neurons a) have sensory receptors b) axon terminals in CNS c) send information to CNS from body 2. efferent neurons a) cell body in CNS b) axon terminals in effector organ c) send information from CNS to body 3. interneurons a) lie within CNS b) some connect afferent neurons and efferent neurons (1) integrate peripheral responses and peripheral information c) some connect other interneurons (1) responsible for activity of the “mind”, i.e., thoughts, emotions, motivation, etc. d) 99% of all neurons are interneurons II. The Brain: Gross Structure and Associated Functions (Fig 9.11) A.
    [Show full text]
  • Anatomy Review: Digestive System
    THE DIGESTIVE SYSTEM Topic 2: Control of the Digestive System Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1: Title Page • The autonomic nervous system, hormones, and other chemicals control motility and secretion of the digestive system. The Autonomic Nervous System Parasympathetic Sympathetic Page 2: Goals • To list the phases of GI control • To describe the interaction between the enteric and autonomic nervous systems • To discuss short and long reflexes. • To list the hormones that control digestion and describe the function of each hormone. Page 3: Control of the GI tract depends on the location of food • The sight, smell, taste, and mental images of food trigger the cephalic phase of digestion via the vagus nerve (N X) which includes: o salivation o gastric juice production o gastric contractions • Increased volume of food in the stomach and subsequent stimulation of stomach stretch receptors triggers the gastric phase of digestion which includes: o gastric juice production o increased gastric motility • As food moves into the small intestine (duodenum), the chemical composition and volume of that food triggers specific reflexes during the intestinal phase of digestion which may include: o pancreatic secretion of bicarbonate into the duodenum o pancreatic secretion of digestive enzymes into the duodenum o gall bladder release of bile into the duodenum o segmentation contractions of the small intestine • The small intestine reflexively slows gastric emptying to allow for neutralizing, enzymatic digestion, and absorption of its contents Page 4: Parasympathetic and sympathetic nerves innervate the GI tract • Both parasympathetic and sympathetic divisions of the autonomic nervous system control digestion by contacting the enteric nervous system in the wall of the digestive tract • The parasympathetic division typically stimulates digestion while the sympathetic division typically inhibits it.
    [Show full text]
  • Human Physiology/The Nervous System 1 Human Physiology/The Nervous System
    Human Physiology/The Nervous System 1 Human Physiology/The Nervous System ← Integumentary System — Human Physiology — Senses → Homeostasis — Cells — Integumentary — Nervous — Senses — Muscular — Blood — Cardiovascular — Immune — Urinary — Respiratory — Gastrointestinal — Nutrition — Endocrine — Reproduction (male) — Reproduction (female) — Pregnancy — Genetics — Development — Answers The central nervous system includes the brain and spinal cord. The brain and spinal cord are protected by bony structures, membranes, and fluid. The brain is held in the cranial cavity of the skull and it consists of the cerebrum, cerebellum, and the brain stem. The nerves involved are cranial nerves and spinal nerves. Overview of the entire nervous system The nervous system has three main functions: sensory input, integration of data and motor output. Sensory input is when the body gathers information or data, by way of neurons, glia and synapses. The nervous system is composed of excitable nerve cells (neurons) and synapses that form between the neurons and connect them to centers throughout the body or to other neurons. These neurons operate on excitation or inhibition, and although nerve cells can vary in size and location, their communication with one another determines their function. These nerves conduct impulses from sensory receptors to the brain and spinal cord. The data is then processed by way of integration of data, which occurs only in the brain. After the brain has processed the information, impulses are then conducted from the brain and spinal cord to muscles and glands, which is called motor output. Glia cells are found within tissues and are not excitable but help with myelination, ionic regulation and extracellular fluid. The nervous system is comprised of two major parts, or subdivisions, the central nervous system (CNS) and the peripheral nervous system Nervous system (PNS).
    [Show full text]
  • Autonomic Nervous System (Ans)
    AUTONOMIC NERVOUS SYSTEM (ANS) (Source-Vertebrates- Comparative Anatomy, Function, Evolution by KV Kardong 6th Edition) The nervous system is divided into two division, these are:- Central nervous system (CNS): Which Includes brain and spinal cord. Peripheral nervous system (PNS): All nervous tissue outside the CNS. Peripheral nerves serve either somatic or visceral tissues and carry sensory or motor information. Somatic nerves pass to or from somatic tissues—skeletal muscle, skin, and their derivatives. Visceral nerves pass to or from viscera—involuntary muscles and glands. Nerves carrying information from tissues to the central nervous system are afferent, or sensory, neurons. Nerves carrying information away from the CNS to effectors are efferent, or motor, neurons. Thus, a somatic sensory nerve might carry information about touch, pain, or temperature from the skin to the central nervous system. A somatic motor nerve carries impulses from the CNS to a striated muscle to stimulate its contraction. A visceral sensory nerve delivers information about the condition of internal viscera to the CNS. A visceral motor nerve innervates visceral effectors (cardiac muscle, smooth muscle, or glands). The components of the PNS that control visceral activity constitute the autonomic nervous system (ANS). Functional Divisions of the Autonomic Nervous System In mammals, the autonomic nervous system is divided into two contrasting, antagonistic systems of control over visceral activity: the sympathetic system and the parasympathetic system. The sympathetic nervous system prepares the body for strenuous action by increasing activity of the viscera, although it slows digestive processes. Stimulation of the sympathetic system inhibits activity of the alimentary canal but promotes contraction of the spleen (causing it to release extra red blood cells into the general circulation), increases heart rate and blood pressure, dilates coronary blood vessels, and mobilizes glucose from glycogen storage in the liver.
    [Show full text]
  • Nervous System and Eye Dissection
    Nervous System and Eye Dissection Friday 14th th • Monday 10 • Finish notes • Take notes on Slides 4-10 • Write pre-reflection for dissection (write • Introduction to Nervous System separate paper) • Brain Metaphor Activity • Quiz Each other on notes • Dissection lab Safety • • th Study Word Parts and Eye Dissection Tuesday 11 Terms • Guest Speaker th • Wednesday 12 Staple following order to turn in Monday 17th • Take notes on slides 11-13 and Eye 1. Brain Metaphor Activity Dissection PowerPoint (Online) 2. Notes Neuron , CNS, PNS • Thursday 13th 3. Eye terms • Take notes on Slides 14-19 4. Senses – Mechanoreceptors and • Notes for lab on Monday Thermoreceptors • Mechanoreceptors and 5. Pre-Reflection (write separate paper) Thermoreceptors • Take the Quizizz’s once you have finished and reviewed the notes. https://join.quizizz.com • Chapter 5 and Nervous System Code: 284401 • Sheep Eye Dissection Code : 709952 • Nervous System Code: 73542 • Senses and Eyes Code: 831720 1. Draw neuron , label parts, and functions 2. Quiz Self of Nervous Cell and Functions 3. http://myclass.theinspiredinstructor.com/science/health_diagrams/ Neuron_Label.htm The Nervous System is divided into two parts: 1. Central NS a. Brain and spinal cord b. Processes info 2. Peripheral NS a. Mainly of nerves, sense organs b. Connect the CNS to every other part of the body c. Receives/sends info to and from the body 3. Nerves that transmit signals from the brain are called motor or efferent nerves 4. Nerves that transmit information from the body to the CNS are called sensory or afferent. Central Nervous System •Cerebrum •Frontal •Parietal •Occipital •Temporal •Cerebellum •Brain Stem Peripheral Nervous System Divided into three parts: 1.
    [Show full text]
  • The Somatic Nervous System Mimi Jakoi, Phd Jennifer Carbrey, Phd
    Introductory Human Physiology ©copyright Jennifer Carbrey & Emma Jakoi The Somatic Nervous System Mimi Jakoi, PhD Jennifer Carbrey, PhD The underlined headings correspond to the two Somatic Nervous system videos. 1. Introduction and structure The efferent portion of the peripheral nervous system consists of the somatic nervous system and the autonomic nervous system. The autonomic nervous system controls the function of glands, smooth muscle, cardiac muscle, and the neurons of the GI tract. It is composed of two neurons in series that can either excite or inhibit the target organ. In contrast, the somatic nervous system contains single neurons that excite skeletal muscles. The movements controlled by the somatic nervous system can be voluntary or involuntary (reflexes). Motor Unit The axons of motor neurons are myelinated and have large diameters for fast conduction of action potentials. As the axon approaches a skeletal muscle fiber (muscle cell) it usually branches to form synapses with anywhere from three to one thousand muscle fibers. However, each muscle fiber is usually innervated by only a single neuron. A motor unit consists of a neuron and all of the muscle fibers it innervates. A single neuron innervates fibers from only one muscle and the innervated muscle fibers are usually spread throughout the muscle. The portion of the skeletal muscle fiber plasma membrane that synapses with the motor neuron axon is called the motor end plate. Once an action potential arrives at the axon terminal, the depolarization of the membrane opens voltage-gated calcium channels (Fig. 1). An increase in intracellular calcium at the terminal causes release of acetylcholine vesicles into the neuromuscular junction.
    [Show full text]
  • Nervous System Central Nervous System Peripheral Nervous System
    Peripheral Nervous System Involuntary reflexes (spinal cord); Organization of Nervous System: voluntary actions (higher brain centers) Nervous system Integration Central nervous system Peripheral nervous system (CNS) (PNS) Motor Sensory output input Brain Spinal cord Motor division Sensory division (efferent) (afferent) Autonomic nervous system Somatic nervous system (involuntary; smooth & cardiac muscle) (voluntary; skeletal muscle) Sympathetic division Parasympathetic division Peripheral Nervous System Motor Units: Motor Unit: A single motor neuron and all the muscle fibers innervated by it (motor unit = all-or-none) Motor unit size dictates control: Fine Control / Rapid Reaction: 1-10 fibers / MU (e.g., ocular muscles) Gross Control / Slow Reaction: 1000’s fibers / MU (e.g., quadriceps) Recruitment: Addition of motor units to produce smooth, steady muscle tension (multiple fiber summation) Motoneuron Pool: Set of motor neurons innervating Small large motor units activated… muscle fibers within the same muscle • Varying thresholds Motor units overlap; provides coordination Marieb & Hoehn – Figure 9.13 1 Peripheral Nervous System Types of Motor Neurons: 1) Alpha () motor neurons: • Give rise to large Type A alpha (A) motor nerve fibers (~ 14 µm diameter) • Innervate extrafusal skeletal muscle fibers (generate force) 2) Gamma () motor neurons: • Give rise to small Type A gamma (Aγ) motor nerve fibers (~ 5 µm diameter) • Innervate intrafusal muscle fibers (small, specialized fibers – muscle spindle) What is the length of the muscle? Proper
    [Show full text]
  • Commercialization of Hfac Electronic Nerve Block Technology to Treat Chronic Post Surgical Pain
    COMMERCIALIZATION OF HFAC ELECTRONIC NERVE BLOCK TECHNOLOGY TO TREAT CHRONIC POST SURGICAL PAIN By ANIRUDHAN NARASIMHAN Submitted in partial fulfillment of the requirements For the degree of Master of Science Department of Biology CASE WESTERN RESERVE UNIVERSITY January 2011 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Anirudhan Narasimhan _____________________________________________________ Master of Science candidate for the ______________________degree *. Roy E.Ritzmann (signed)_______________________________________________ (chair of the committee) Christopher A.Cullis ________________________________________________ Hillel J. Chiel ________________________________________________ Joseph Jankowski ________________________________________________ Zi-Ping Fang ________________________________________________ ________________________________________________ 08/14/2010 (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Dedicated to Revathy Narasimhan Table of Contents TABLE OF CONTENTS ............................................................................................................................ IV LIST OF TABLES .................................................................................................................................... VI LIST OF FIGURES ................................................................................................................................
    [Show full text]