(Early Eocene) Lithornithids (Aves) and the Relationships of Lithornithidae Author(S): Sterling J

Total Page:16

File Type:pdf, Size:1020Kb

(Early Eocene) Lithornithids (Aves) and the Relationships of Lithornithidae Author(S): Sterling J The Anatomy and Taxonomy of the Exquisitely Preserved Green River Formation (Early Eocene) Lithornithids (Aves) and the Relationships of Lithornithidae Author(s): Sterling J. NesbittJulia A. Clarke Source: Bulletin of the American Museum of Natural History, :1-91. Published By: American Museum of Natural History DOI: http://dx.doi.org/10.1206/0003-0090-406.1.1 URL: http://www.bioone.org/doi/full/10.1206/0003-0090-406.1.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. THE ANATOMY AND TAXONOMY OF THE EXQUISITELY PRESERVED GREEN RIVER FORMATION (EARLY EOCENE) LITHORNITHIDS (AVES) AND THE RELATIONSHIPS OF LITHORNITHIDAE STERLING J. NESBITT Jackson School of Geosciences, the University of Texas at Austin; Division of Paleontology, American Museum of Natural History; Department of Geosciences, Virginia Polytechnic Institute and State University JULIA A. CLARKE Jackson School of Geosciences, the University of Texas at Austin, Division of Paleontology, American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 406, 91 pp., 35 figures, 7 tables Issued June 30, 2016 Copyright © American Museum of Natural History 2016 ISSN 0003-0090 CONTENTS Abstract.............................................................................4 Introduction.........................................................................4 Anatomical abbreviations . .9 Institutional acronyms ...............................................................10 Terminology........................................................................10 Systematic paleontology..............................................................11 Description of Calciavis grandei (AMNH 30578) ........................................11 Skull ............................................................................13 Vertebral column .................................................................16 Ribs.............................................................................18 Pectoral girdle....................................................................19 Forelimb ........................................................................19 Pelvic girdle......................................................................22 Hind limb .......................................................................23 Soft tissue .......................................................................24 Referred specimen of Calciavis grandei AMNH 30560 .................................. 25 Locality .........................................................................25 Preservation .....................................................................25 Skull ............................................................................25 Postcrania .......................................................................27 Other new Green River Formation lithornithid specimens................................29 FMNH PA 729 ...................................................................29 Locality.......................................................................29 Preservation...................................................................29 Description ...................................................................29 Feathering ....................................................................31 Phylogenetic assignment ........................................................31 FMNH PA 739 ...................................................................32 Locality.......................................................................32 Preservation...................................................................32 Description ...................................................................32 Phylogenetic assignment ........................................................34 WSGS U1b-2001 .................................................................34 Locality.......................................................................34 Preservation...................................................................34 Description ...................................................................34 Feathering ....................................................................35 Phylogenetic assignment ........................................................37 Phylogenetic analysis . 37 Taxon sampling ..................................................................37 Character sampling ...............................................................39 Methods.........................................................................40 Results . 41 Alternative hypotheses of the relationships of Lithornithidae ...........................44 2 2016 NESBITT & CLARKE: ANATOMY, TAXONOMY, AND RELATIONSHIPS OF LITHORNITHIDS 3 Alternative hypothesis discussion ................................................51 Discussion .........................................................................53 Species diversity of Green River Formation lithornithids...............................53 Ontogenetic age . .53 Morphological differences.......................................................54 Sexual dimorphism?............................................................56 Monophyly of Lithornithidae and diagnostic features of the clade.......................59 Is Paracathartes howardae part of Lithornithidae?.....................................60 What is the basalmost lithornithid lineage? ..........................................62 Variation within Lithornithidae.....................................................63 Relationships of Lithornithidae .....................................................67 Perspectives ........................................................................70 Acknowledgments...................................................................70 References..........................................................................70 Appendix 1. Phylogenetic characters and data set .......................................75 Appendix 2. Lithornithid terminal taxa ................................................86 ABSTRACT Fossil remains of Paleogene Palaeognathae are poorly documented and are exceedingly rare. One group of palaeognaths, the lithornithids, is well represented in the Paleogene of North America. Nevertheless, few specimens of the same species are known from each of those Paleogene geologic units. Here, we report five new partial skeletons of lithornithids from the Fossil Butte Member of the Green River Formation (Early Eocene) of Wyoming. One spectacularly preserved specimen is identified as the holotype of a new species, Calciavis grandei, gen. et sp. nov., and fully described. Preserved soft tissues (e.g., feathers, pes scales) surround the nearly articulated and complete skel- eton. A second well-preserved but disarticulated skeleton is referred to this new taxon. We conclude that there are only two lithornithid taxa in the Green River Formation after careful comparisons with the other known taxon from the same geological unit, Pseudocrypturus cercanaxius. Morpho- logical data generated from the new taxon and other Green River Formation lithornithid specimens were integrated into a osteology-only phylogenetic data set containing stem avians as outgroups and extinct and extant members of Palaeognathae (Tinamidae, ratites) and Neognathaes (Anseriformes, Galliformes, Neoaves), unnamed lithornithid specimens, and the following named lithornithid taxa: Lithornis plebius, Lithornis promiscuus, Lithornis celetius, Paracathartes howardae. We find a mono- phyletic Lithornithidae (containing Calciavis grandei, Pseudocrypturus cercanaxius, Lithornis plebius, Lithornis promiscuus, Lithornis celetius, Paracathartes howardae) as the sister taxon of Tinamidae at the base of Palaeognathae and also recover a monophyletic Ratitae in the morphology-only analysis. A Lithornithidae-Tinamidae relationship, which could imply a broad Northern Hemisphere distri- bution in the Paleogene for this total group retracted to the present day Neotropical distribution after the Eocene, is weakly supported in our analysis and is also supported by other lines of evidence such as eggshell morphology. Relationships among flightless palaeognaths and assessment of char- acter homology in this group remain problematic. Indeed, when the morphological analyses were constrained to enforce topologies recovered from all recent analyses of molecular sequence data and retroelement insertions, Lithornithidae is no longer recovered with Tinamidae, which is nested within the now paraphyletic ratites, but remains at the base of Palaeognathae. Thus, regardless of the
Recommended publications
  • Beyond Endocasts: Using Predicted Brain-Structure Volumes of Extinct Birds to Assess Neuroanatomical and Behavioral Inferences
    diversity Article Beyond Endocasts: Using Predicted Brain-Structure Volumes of Extinct Birds to Assess Neuroanatomical and Behavioral Inferences 1, , 2 2 Catherine M. Early * y , Ryan C. Ridgely and Lawrence M. Witmer 1 Department of Biological Sciences, Ohio University, Athens, OH 45701, USA 2 Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; [email protected] (R.C.R.); [email protected] (L.M.W.) * Correspondence: [email protected] Current Address: Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA. y Received: 1 November 2019; Accepted: 30 December 2019; Published: 17 January 2020 Abstract: The shape of the brain influences skull morphology in birds, and both traits are driven by phylogenetic and functional constraints. Studies on avian cranial and neuroanatomical evolution are strengthened by data on extinct birds, but complete, 3D-preserved vertebrate brains are not known from the fossil record, so brain endocasts often serve as proxies. Recent work on extant birds shows that the Wulst and optic lobe faithfully represent the size of their underlying brain structures, both of which are involved in avian visual pathways. The endocasts of seven extinct birds were generated from microCT scans of their skulls to add to an existing sample of endocasts of extant birds, and the surface areas of their Wulsts and optic lobes were measured. A phylogenetic prediction method based on Bayesian inference was used to calculate the volumes of the brain structures of these extinct birds based on the surface areas of their overlying endocast structures. This analysis resulted in hyperpallium volumes of five of these extinct birds and optic tectum volumes of all seven extinct birds.
    [Show full text]
  • Researchers Document Aviary Eggshell with Iridescence for the First Time 10 December 2014, by Bob Yirka
    Researchers document aviary eggshell with iridescence for the first time 10 December 2014, by Bob Yirka they found to be made of calcium phosphate, calcium carbonate, and some other yet to be identified organic compounds) which gave the egg its glossy sheen. When they removed the cuticle from a portion of an egg sample—they found that it was blue underneath, but that the iridescence was gone. Thus, they concluded that the iridescent blue was due to a combination of the pigment and Photographs (a–c) of T. major, E. elegans and N. cuticle. maculosa nests. Average length breadth of eggs (a–c): 58 48 mm, 53 39 mm and 40 29 mm. Photo credits: The researchers can't say for sure why the bird Karsten Thomsen, Sam Houston and Shirley eggs have such features as they would appear to Sekarajasingham. Journal of the Royal Society Interface, draw attention to them, rather than help keep them Published 10 December 2014 . DOI: 10.1098/rsif.2014.1210 hidden. It seems possible that the iridescence actually causes the eggs to be more difficult to see in their particular environment to a particular type of prey. More likely, the researchers suggest is that (Phys.org)—A team of researchers with members eggs that stand out can be more easily spotted or from New Zealand, Czech Republic and the U.S. differentiated from other eggs from birds of the has documented for the first time an example of an same species, which could serve as a means of aviary egg that has iridescence. In their paper encouraging males to assist with incubation.
    [Show full text]
  • From the Middle Eocene of Belgium
    [Palaeontology, Vol. 53, Part 2, 2010, pp. 365–376] BONY-TOOTHED BIRDS (AVES: PELAGORNITHIDAE) FROM THE MIDDLE EOCENE OF BELGIUM by GERALD MAYR* and THIERRY SMITH *Forschungsinstitut Senckenberg, Sektion Ornithologie, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany; e-mail [email protected] Royal Belgian Institute of Natural Sciences, Department of Paleontology, Rue Vautier 29, B-1000 Brussels, Belgium; e-mail [email protected] Typescript received 7 April 2009; accepted in revised form 19 July 2009 Abstract: We describe well-preserved remains of the Pelag- deidae (albatrosses) in overall morphology, but because ornithidae (bony-toothed birds) from the middle Eocene of bony-toothed birds lack apomorphies of the Procellariifor- Belgium, including a sternum, pectoral girdle bones and mes, the similarities are almost certainly owing to conver- humeri of a single individual. The specimens are tentatively gence. Bony-toothed birds were often compared with the assigned to Macrodontopteryx oweni Harrison and Walker, ‘Pelecaniformes’ by previous authors, who especially made 1976, which has so far only been known from the holotype comparisons with the Sulidae (gannets and boobies). How- skull and a referred proximal ulna. Another species, about ever, the coracoid distinctly differs from that of extant ‘pelec- two times larger, is represented by an incomplete humerus aniform’ birds, and the plesiomorphic presence of a foramen and tentatively identified as Dasornis emuinus (Bowerbank, nervi supracoracoidei as well as the absence of a well- 1854). The fossils provide critical new data on the osteology delimited articulation facet for the furcula supports a of the pectoral girdle of bony-toothed birds. For the first position outside the Suloidea, the clade to which the Sulidae time, the sternum of one of the smaller species is preserved, belong.
    [Show full text]
  • Eudromia Formosa)
    ISSN 0326-1778 y ISSN 1853-6581 HISTORIA NATURAL Tercera Serie Volumen 6 (1) 2016/25-39 NOTAS ECOLÓGICAS SOBRE LA MARTINETA CHAQUEÑA (Eudromia formosa) Ecological notes on the Quebracho crested tinamou (Eudromia formosa) Rebeca Lobo Allende1 y Patricia Capllonch2 1Universidad Nacional de Chilecito, Campus Los Sarmientos, Ruta Los Peregrinos s/n (F5360CKB) Los Sarmientos, Chilecito, La Rioja, Argentina. [email protected] 2Cátedra de Biornitología Argentina y Centro Nacional de Anillado de Aves (CENAA), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205 (4000) Tucumán, Argentina. [email protected] HISTORIA NATURAL Tercera Serie Volumen 6 (1) 2016/13-24 25 LOBO ALLENDE R. Y CAPLLONCH P. Resumen. Estudiamos el uso del hábitat de la Martineta Chaqueña (Eudromia formosa) en el oeste de la provincia de Santiago del Estero, Argentina. Realizamos 202 censos (34 otoño e invierno 2002, 36 primavera 2002, 71 verano 2002-2003, 33 otoño e invierno 2003, 10 verano 2004 y 18 otoño e invierno 2004). El éxito de muestreo (al menos un individuo por muestra) fue del 72%. Encontramos 12 individuos en 1000 hectáreas durante la época no reproductiva distribuidos en 5 grupos y 22 individuos a fines de enero (época reproductiva). A diferencia deE. elegans, los grupos eran de no más de 4 individuos, generalmente de 3. Cada grupo en sus aproximadas 200 ha de territorio recorren las sendas lentamente mientras buscan alimento. Prefieren el bosque de quebrachos y algarrobos pero usan también otros ambientes, además penetran en los campos cultivados en busca de insectos. A fines de la primavera y comienzos del verano, en concordancia con la llegada de las lluvias, aumentó un 80% el número de individuos y se observó que a los residentes se unieron individuos de áreas vecinas.
    [Show full text]
  • Insular Vertebrate Evolution: the Palaeontological Approach': Monografies De La Societat D'història Natural De Les Balears, Lz: Z05-118
    19 DESCRIPTION OF THE SKULL OF THE GENUS SYLVIORNIS POPLIN, 1980 (AVES, GALLIFORMES, SYLVIORNITHIDAE NEW FAMILY), A GIANT EXTINCT BIRD FROM THE HOLOCENE OF NEW CALEDONIA Cécile MOURER-CHAUVIRÉ & Jean Christophe BALOUET MOUREH-CHAUVIRÉ, C. & BALOUET, l.C, zoos. Description of the skull of the genus Syluiornis Poplin, 1980 (Aves, Galliformes, Sylviornithidae new family), a giant extinct bird from the Holocene of New Caledonia. In ALCOVER, J.A. & BaVER, P. (eds.): Proceedings of the International Symposium "Insular Vertebrate Evolution: the Palaeontological Approach': Monografies de la Societat d'Història Natural de les Balears, lZ: Z05-118. Resum El crani de Sylviornismostra una articulació craniarostral completament mòbil, amb dos còndils articulars situats sobre el rostrum, el qual s'insereix al crani en dues superfícies articulars allargades. La presència de dos procesos rostropterigoideus sobre el basisfenoide del rostrum i la forma dels palatins permet confirmar que aquest gènere pertany als Galliformes, però les característiques altament derivades del crani justifiquen el seu emplaçament a una nova família, extingida, Sylviornithidae. El crani de Syluiornis està extremadament eixamplat i dorsoventralment aplanat, mentre que el rostrum és massís, lateralment comprimit, dorsoventralment aixecat i mostra unes cristae tomiales molt fondes. El rostrum exhibeix un ornament ossi gran. La mandíbula mostra una símfisi molt allargada, les branques laterals també presenten unes cristae tomiales fondes, i la part posterior de la mandíbula és molt gruixada. Es discuteix el possible origen i l'alimentació de Syluiornis. Paraules clau: Aves, Galliformes, Extinció, Holocè, Nova Caledònia. Abstract The skull of Syluiornis shows a completely mobile craniorostral articulation, with two articular condyles situated on the rostrum, which insert into two elongated articular surfaces on the cranium.
    [Show full text]
  • Dieter Thomas Tietze Editor How They Arise, Modify and Vanish
    Fascinating Life Sciences Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthusiasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Editor Dieter Thomas Tietze Natural History Museum Basel Basel, Switzerland ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-319-91688-0 ISBN 978-3-319-91689-7 (eBook) https://doi.org/10.1007/978-3-319-91689-7 Library of Congress Control Number: 2018948152 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • Flamingos, Stilts and Whales
    Nature Vol. 289 29 January 1981 347 Flamingos, stilts and whales from Andrew Milner THE phylogenetic position of the flamingos (family Phoenicopteridae) has long been the subject of controversy among avian systematists with some workers supporting relationship with the Anseriformes (ducks and geese) whilst others favour association with the Ciconiiformes (storks, herons and ibis). The evidence has been reviewed recently by Olson and Feduccia (Relationships and Evolulion oj Flamingos (A ves: Phoenicopteridae) Smithsonian Contributions to Zoology 316, Smithsonian Institution Press; 1980) who have developed an earlier proposal by Feduccia that the flamingos fall within the Charadriiformes (waders, gulls and auks). Characteristics of the musculature, the skeleton, the natal down and the endoparasitic cestodes all lead to the conclusion that the closest living relatives of the flamingos are the Recurvirostridae (stilts and avocets) and, more specifically, the Australian Banded Stilt (Cladorhynchus). This remarkable bird lives in colonies frequenting temporary salt lakes in southern Australia and its behaviour, pattern of breeding and life history all bear specific similarities to those of flamingos. The B earliest certain fossil flamingo from the Eocene of Wyoming is described by Head of a Lesser Flamingo, Phoeniconaias minor (A), compared with that of a Black Right Olson and Feduccia and supports their Whale, Eubalaena glacialis (B), to show the hypothesis by being morphologically convergent similarities in the filter·feeding intermediate
    [Show full text]
  • Ratite Molecular Evolution, Phylogeny and Biogeography Inferred from Complete Mitochondrial Genomes
    RATITE MOLECULAR EVOLUTION, PHYLOGENY AND BIOGEOGRAPHY INFERRED FROM COMPLETE MITOCHONDRIAL GENOMES by Oliver Haddrath A thesis submitted in confonnity with the requirements for the Degree of Masters of Science Graduate Department of Zoology University of Toronto O Copyright by Oliver Haddrath 2000 National Library Biblioth&que nationale 191 .,,da du Canada uisitions and Acquisitions et Services services bibliographiques 395 Welington Street 395. rue WdKngton Ottawa ON KIA ON4 Otîâwâ ON K1A ûN4 Canada Canada The author has granted a non- L'auteur a accordé une iicence non exclusive licence allowing the exclusive permettant A la National Library of Canada to Bihliotheque nationale du Canada de reproduce, loan, distribute or sell reproduire, @ter, distribuer ou copies of diis thesis in microfonn, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/fïîm, de reproduction sur papier ou sur format 61ectronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette tbése. thesis nor substantial exûacts fiom it Ni la thèse ni des extraits substantiels may be priated or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract Ratite Molecular Evolution, Phylogeny and Biogeography Inferred fiom Complete Mitochoncîrial Genomes. Masters of Science. 2000. Oliver Haddrath Department of Zoology, University of Toronto. The relationships within the ratite birds and their biogeographic history has been debated for over a century. While the monophyly of the ratites has been established, consensus on the branching pattern within the ratite tree has not yet been reached.
    [Show full text]
  • Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field
    Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field June 12, 2007 ABSTRACT This is compilation of a technical analysis of existing paleontological data and a limited, selective paleontological field survey of the geologic bedrock formations that will be impacted on Federal lands by construction associated with energy development in the Jonah Field, Sublette County, Wyoming. The field survey was done on approximately 20% of the field, primarily where good bedrock was exposed or where there were existing, debris piles from recent construction. Some potentially rich areas were inaccessible due to biological restrictions. Heavily vegetated areas were not examined. All locality data are compiled in the separate confidential appendix D. Uinta Paleontological Associates Inc. was contracted to do this work through EnCana Oil & Gas Inc. In addition BP and Ultra Resources are partners in this project as they also have holdings in the Jonah Field. For this project, we reviewed a variety of geologic maps for the area (approximately 47 sections); none of maps have a scale better than 1:100,000. The Wyoming 1:500,000 geology map (Love and Christiansen, 1985) reveals two Eocene geologic formations with four members mapped within or near the Jonah Field (Wasatch – Alkali Creek and Main Body; Green River – Laney and Wilkins Peak members). In addition, Winterfeld’s 1997 paleontology report for the proposed Jonah Field II Project was reviewed carefully. After considerable review of the literature and museum data, it became obvious that the portion of the mapped Alkali Creek Member in the Jonah Field is probably misinterpreted.
    [Show full text]
  • Modern Birds Classification System Tinamiformes
    6.1.2011 Classification system • Subclass: Neornites (modern birds) – Superorder: Paleognathae, Neognathae Modern Birds • Paleognathae – two orders, 49 species • Struthioniformes—ostriches, emus, kiwis, and allies • Tinamiformes—tinamous Ing. Jakub Hlava Department of Zoology and Fisheries CULS Tinamiformes • flightless • Dwarf Tinamou • consists of about 47 species in 9 genera • Dwarf Tinamou ‐ 43 g (1.5 oz) and 20 cm (7.9 in) • Gray Tinamou ‐ 2.3 kg (5.1 lb) 53 cm (21 in) • small fruits and seeds, leaves, larvae, worms, and mollusks • Gray Tinamou 1 6.1.2011 Struthioniformes Struthioniformes • large, flightless birds • Ostrich • most of them now extinct • Cassowary • chicks • Emu • adults more omnivorous or insectivorous • • adults are primarily vegetarian (digestive tracts) Kiwi • Emus have a more omnivorous diet, including insects and other small animals • kiwis eat earthworms, insects, and other similar creatures Neognathae Galloanserae • comprises 27 orders • Anseriformes ‐ waterfowl (150) • 10,000 species • Galliformes ‐ wildfowl/landfowl (250+) • Superorder Galloanserae (fowl) • Superorder Neoaves (higher neognaths) 2 6.1.2011 Anseriformes (screamers) Anatidae (dablling ducks) • includes ducks, geese and swans • South America • cosmopolitan distribution • Small group • domestication • Large, bulky • hunted animals‐ food and recreation • Small head, large feet • biggest genus (40‐50sp.) ‐ Anas Anas shoveler • mallards (wild ducks) • pintails • shlhovelers • wigeons • teals northern pintail wigeon male (Eurasian) 3 6.1.2011 Tadorninae‐
    [Show full text]