Tinamous and Agriculture: Lessons Learned from the Galliformes

Total Page:16

File Type:pdf, Size:1020Kb

Tinamous and Agriculture: Lessons Learned from the Galliformes ORNITOLOGIA NEOTROPICAL 15 (Suppl.): 301–307, 2004 © The Neotropical Ornithological Society TINAMOUS AND AGRICULTURE: LESSONS LEARNED FROM THE GALLIFORMES Jeffrey J. Thompson Daniel B. Warnell School of Forest Resources, University of Georgia, Athens, Georgia 30602-2152, USA. E-mail: [email protected] Resumen. – Tinámidos y agricultura: lecciones aprendidas de los Galliformes. – El 32% de las 47 especies del orden Tinamiformes viven en pastizales. Estas especies están distribuidas en las regiones tro- picales y templadas, pero la mayoría se encuentran en las regiones australes de América del Sur. Las pobla- ciones de estas especies son susceptibles a la conversión de la tierra para agricultura y la intensificación del uso de la tierra después de la conversión. Existe poca información sobre los efectos de la conversión y uso de la tierra en las poblaciones de tinamúes, pero hay mucha investigación sobre sus efectos en los Galliformes. Al considerar los tinamúes que viven en pastizales como los equivalentes ecológicos de los Galliformes, se pueden hacer inferencias generales sobre los posibles efectos de la conversión y inten- sificación del uso de la tierra en estas especies. Es más eficiente ver los impactos potenciales del uso de la tierra como una función de la interacción de múltiples gradientes: el área de la vegetación natural, la estructura de la vegetación, la intensidad de la agricultura y ganadería, y el uso de herbicidas y pesticidas. Este modelo permite una cuantificación de la conveniencia de un lugar para cada especie, flexibilidad potencial de las especies a los cambios de hábitat, la comparación entre lugares y funciona como una herramienta para determinar rápidamente el valor de conservación de los lugares en el paisaje. Abstract. – Species inhabiting grassland and steppes represent 32% of the 47 species of the order Tinami- formes. These species are both tropical and temperate in their distribution but the majority is confined to austral South America. Populations of these species are susceptible to land conversion for agriculture, as well as intensification of land use after conversion. Although little information exists on the effects of land conversion and use on tinamou populations, there is an extensive amount of research on these effects on gallinaceous birds. By viewing the grassland and steppe dwelling tinamous as ecological equivalents to the Galliformes, general inferences can be made about the projected impacts of land conversion and the inten- sity of use on these species. It is most efficient to view the potential impacts of land use as a function of the interaction of several gradients: area of natural vegetation, vegetation structure, intensity of cropping and grazing, and herbicide and pesticide use. This model allows for a quantification of site suitability by species, potential resilience of species, comparison among sites, and serves as a tool to rapidly assess the conservation value of sites within the landscape. Accepted 29 December 2003. Key words: Tinamiformes, Galliformes, agriculture, grazing, agro-ecosystems, grasslands, gamebirds. INTRODUCTION grazing and row crops (from here on agricul- ture) (White et al. 2000). Consequently, much Temperate and tropical grassland habitats of the biodiversity from these natural ecosys- (grasslands, steppes, savannas) have been, and tems is now associated with a landscape continue to be, extensively converted for matrix of varying complexity, consisting of 301 THOMPSON natural and man modified habitats. Increas- resent 32% of the 47 species and, in most of ingly, these agro-ecosystems have become less South America, occupy the majority of niches diversified in content and complexity in grassland habitats associated with the galli- (McNeely et al. 1995). forms in other regions (Davies 2002, del During the post-World War II era, grass- Hoyo 1992 et al.). Despite their diversity and land conversion and/or agricultural intensifi- importance in sport, commercial, and subsis- cation have increased in intensity and extent tence harvest, little research has focused on (Fuller 2000). Although Europe and North these birds. Furthermore, as in the rest of the America have been placed under high-input world, the grassland habitats that these birds agriculture over the last half-century, other occupy have been, and continue to be, under areas such as South Africa and Argentina intensive agricultural pressure. For example, have lagged behind until recently (Pero & the pampas of Argentina and Uruguay have Crowe 1996, Viglizzo & Roberto 1998). This been nearly completely converted to row process of land conversion and agricultural crops and grazing over the last 150 years (Hall intensification has been attributed to the glo- et al. 1992), and for the past decade have been bal declines of grassland and shrubland birds subjected to rapidly increasing intensification (Aebischer et al. 1999, Vickery & Herkert (Viglizzo & Roberto 1998). 1999, Murphy 2003, Peterjohn 2003). Despite this continuing land conversion, Among the grassland dependent birds, the and increasingly intense utilization, there is a population declines of the gallinaceous game- conspicuous lack of research into their effects birds were some of the first to draw the atten- on biodiversity in grassland ecosystems within tion of researchers and the public. The first, South America. For tinamous however, it is and one of the most thorough studies into the possible to make inferences based upon the effects of farmland composition and manage- extensive body of research into the impacts of ment on galliform populations was on the land conversion and agriculture on galliforms. declines of the Grey Partridge (Perdix perdix) Here I draw from examples on the effects of in England (Potts 1980, 1986). This research agricultural land conversion and intensifica- highlighted the importance of the composi- tion on grassland bird species in general, and tion and configuration of the agricultural galliforms in particular, highlighting the major landscape and how it is managed, particularly environmental gradients that impact these the use of herbicides and pesticides. These birds, for the purpose of assessing the quality have become major themes in the research of of grasslands and their associated agro-eco- grassland birds (Vickery & Herkert 1999, systems for tinamous, as well as to direct Aebischer et al. 2000, Murphy 2003, Peterjohn future research. 2003) and have been key topics of research for many gamebirds (Rands et al. 1988), CASES IN THE GALLIFORMES including Northern Bobwhite (Colinus virgi- nianus; Brennan 1999), prairie chickens (Tym- Due to their importance as gamebirds, the panuchus spp.; Fuhlendorf et al. 2002, Geisen Galliformes are a well-studied order and sub- 1998, Ryan et al. 1998), Helmeted Guineafowl sequently population dynamics are well docu- (Numida meleagris; Pero & Crowe 1996, Malan mented for many species (e.g., Fuller et al. & Benn 1999, Ratcliffe & Crowe 2001) and 2000). Over the last half-century however, as francolins (Francolinus spp.; Little & Crowe with many grassland species, galliforms asso- 1998; Jansen et al. 1999, 2000). ciated with grasslands and agro-ecosystems Grassland tinamous (Tinamiformes) rep- have exhibited significant population declines 302 TINAMOUS AND AGRICULTURE across several continents. Important examples has led to the management of pastures for are the Northern Bobwhite (Brennan 1999) silage rather than for hay. The increase in and prairie chickens (Johnsgard 1983, Hous- management for silage allows for higher ton 2002) in North America, the Helmeted stocking levels of livestock since forage can be Guineafowl (Pero & Crowe 1996, Malan & subsidized with high quality fodder. High live- Benn 1999, Ratcliffe & Crowe 2001) and the stock densities have been contributing to francolins (Little et al. 1995; Jansen et al. 1999, decreases in populations of several galliform 2000) in South Africa, and the Gray Partridge species (Jansen et al. 1999, Robbins et al. in Europe (Potts 1980, 1986). 2002). Furthermore, mechanization has The decline of populations of these spe- allowed for more frequent cutting of these cies is mostly attributed to changes in the pastures for silage, leading to increased loss of extent, intensity, and type of land use. Inter- nests and young. estingly, several of these species initially The use of petrochemicals, associated increased their ranges and/or populations as a with the decrease in landscape complexity and function of anthropogenic changes to the diversity, had major implications for popula- landscape. These changes, however, eventu- tions of birds in agro-ecosystems due to ally passed a threshold where populations impacts on brood survival (Palmer 1995, began to decline. The key to making infer- Fuller 2000). In particular, the indirect effects ences to the tinamous and applying them for of herbicides and the direct effects of insecti- research and management is to understand cides greatly decrease the quality of agricul- the major factors associated with land use that tural land as brood habitat, and subsequently have both positively and negatively impacted brood survival (sensu Potts 1986). Further- galliform populations in grasslands and agro- more, the use of fertilizers on silage pastures ecosystems (Johnsgard & Wood 1968, Johns- leads to a decrease in floral diversity and gard 1983, Johnson & Knue 1989, Pero & structure, and is associated with a decrease in Crowe 1996, Brennan 1999, Malan & Benn invertebrate diversity (Fuller 2000).
Recommended publications
  • Nogth AMERICAN BIRDS
    CHECK-LIST OF NOgTH AMERICAN BIRDS The Speciesof Birds of North America from the Arctic through Panama, Including the West Indies and Hawaiian Islands PREPARED BY THE COMMITTEE ON CLASSIFICATION AND NOMENCLATURE OF THE AMERICAN ORNITHOLOGISTS' UNION SEVENTH EDITION 1998 Zo61ogical nomenclature is a means, not an end, to Zo61ogical Science PUBLISHED BY THE AMERICAN ORNITHOLOGISTS' UNION 1998 Copyright 1998 by The American Ornithologists' Union All rights reserved, except that pages or sections may be quoted for research purposes. ISBN Number: 1-891276-00-X Preferred citation: American Ornithologists' Union. 1983. Check-list of North American Birds. 7th edition. American Ornithologists' Union, Washington, D.C. Printed by Allen Press, Inc. Lawrence, Kansas, U.S.A. CONTENTS DEDICATION ...................................................... viii PREFACE ......................................................... ix LIST OF SPECIES ................................................... xvii THE CHECK-LIST ................................................... 1 I. Tinamiformes ............................................. 1 1. Tinamidae: Tinamous .................................. 1 II. Gaviiformes .............................................. 3 1. Gaviidae: Loons ....................................... 3 III. Podicipediformes.......................................... 5 1. Podicipedidae:Grebes .................................. 5 IV. Procellariiformes .......................................... 9 1. Diomedeidae: Albatrosses .............................
    [Show full text]
  • Telecrex Restudied: a Small Eocene Guineafowl
    TELECREX RESTUDIED: A SMALL EOCENE GUINEAFOWL STORRS L. OLSON In reviewing a number of the fossil species presently placed in the Rallidae, I have had occasion to examine the unique type-an incomplete femur-of Telecrex grangeri Wetmore (1934)) described from the Upper Eocene (Irdin Manha Formation) at Chimney Butte, Shara Murun region, Inner Mongolia. Although Wetmore assigned this fossil to the Rallidae, he felt that the species was distinct enough to be placed in a separate subfamily (Telecrecinae) ; this he considered to be ancestral to the modern Rallinae. After apparently ex- amining the type, Cracraft (1973b:17) assessed it as “decidedly raillike in the shape of the bone but distinct in the antero-posterior flattening of the head and shaft.” However, he suggested that Wetmores’ conclusions about its relationships to the Rallinae would have to be re-evaluated. Actually, Tele- crex bears very little resemblance to rails, and the distinctive proximal flat- tening of the shaft (but not of the head, contra Cracraft) is a feature peculiar to certain of the Galliformes. Further, my comparisons show Telecrex to be closest to the guineafowls (Numididae), a family hitherto known only from Africa and Europe. DISCUSSION The type specimen of Telecrex grangeri (AMNH 2942) is a right femur, lacking the distal end and part of the trochanter (Fig. 1). Its measurements are: proximal width 11.6 mm, depth of head 4.2, width of shaft at midpoint 4.6, depth of shaft at midpoint 4.1, overall length (as preserved ) 46.1. Telecrex differs from all rails
    [Show full text]
  • Tinamiformes – Falconiformes
    LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma
    [Show full text]
  • Bird Checklists of the World Country Or Region: Ghana
    Avibase Page 1of 24 Col Location Date Start time Duration Distance Avibase - Bird Checklists of the World 1 Country or region: Ghana 2 Number of species: 773 3 Number of endemics: 0 4 Number of breeding endemics: 0 5 Number of globally threatened species: 26 6 Number of extinct species: 0 7 Number of introduced species: 1 8 Date last reviewed: 2019-11-10 9 10 Recommended citation: Lepage, D. 2021. Checklist of the birds of Ghana. Avibase, the world bird database. Retrieved from .https://avibase.bsc-eoc.org/checklist.jsp?lang=EN&region=gh [26/09/2021]. Make your observations count! Submit your data to ebird.
    [Show full text]
  • (Aves: Phasianidae) from the Late Eocene of France
    ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 90 A 63-66 Wien, Jänner 1989 A new guineafowl (Aves: Phasianidae) from the late Eocene of France By JIRI MÜKOVSKY1) (With 1 plate) Manuscript submitted on November, 10lh 1986 Summary A new guineafowl, Telecrex peregrinus sp. n., is described from the late Eocene (Phosphorites du Quercy) of France. It represents the first record of the genus Telecrex outside of China and the second Tertiary record of the subfamily Numidinae. Zusammenfassung Aus dem Ober-Eozän Frankreichs (Phosphorites du Quercy) wird eine neue Perlhuhnart, Telecrex peregrinus sp. n., beschrieben. Es ist der erste Fund der Gattung Telecrex außerhalb von China und zugleich der zweite Fund der Unterfamilie Numidinae im Tertiär. The pheasants and their allies (Phasianidae sensu lato) are at present a widespread, highly diversified, and presumably rather ancestral group of birds. The group includes approximately 200-205 extant species, belonging to approxi- mately 70 genera (WOLTERS 1976). Rather much effort has been devoted to the study of the ecology and behavior of phasianids, because they belong to commer- cially important birds, but their comparative morphology, systematics and evolu- tion are still remarkably less understood. The comparative osteology has been studied in greater detail only in two phasianid groups so far, particularly in the tribe Odontophorini of the subfamily Phasianinae (HOLMAN 1961) and in the subfamily Meleagrinae (STEADMAN 1980), both of which seem to belong among the relatively young groups of the Phasianidae. The guineafowl (Numidinae) belong probably among the most ancestral groups of the Phasianidae. At present, they are confined, with one exception, to the subsaharan Africa, i.
    [Show full text]
  • Ratite Molecular Evolution, Phylogeny and Biogeography Inferred from Complete Mitochondrial Genomes
    RATITE MOLECULAR EVOLUTION, PHYLOGENY AND BIOGEOGRAPHY INFERRED FROM COMPLETE MITOCHONDRIAL GENOMES by Oliver Haddrath A thesis submitted in confonnity with the requirements for the Degree of Masters of Science Graduate Department of Zoology University of Toronto O Copyright by Oliver Haddrath 2000 National Library Biblioth&que nationale 191 .,,da du Canada uisitions and Acquisitions et Services services bibliographiques 395 Welington Street 395. rue WdKngton Ottawa ON KIA ON4 Otîâwâ ON K1A ûN4 Canada Canada The author has granted a non- L'auteur a accordé une iicence non exclusive licence allowing the exclusive permettant A la National Library of Canada to Bihliotheque nationale du Canada de reproduce, loan, distribute or sell reproduire, @ter, distribuer ou copies of diis thesis in microfonn, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/fïîm, de reproduction sur papier ou sur format 61ectronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette tbése. thesis nor substantial exûacts fiom it Ni la thèse ni des extraits substantiels may be priated or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract Ratite Molecular Evolution, Phylogeny and Biogeography Inferred fiom Complete Mitochoncîrial Genomes. Masters of Science. 2000. Oliver Haddrath Department of Zoology, University of Toronto. The relationships within the ratite birds and their biogeographic history has been debated for over a century. While the monophyly of the ratites has been established, consensus on the branching pattern within the ratite tree has not yet been reached.
    [Show full text]
  • Bontebok Birds
    Birds recorded in the Bontebok National Park 8 Little Grebe 446 European Roller 55 White-breasted Cormorant 451 African Hoopoe 58 Reed Cormorant 465 Acacia Pied Barbet 60 African Darter 469 Red-fronted Tinkerbird * 62 Grey Heron 474 Greater Honeyguide 63 Black-headed Heron 476 Lesser Honeyguide 65 Purple Heron 480 Ground Woodpecker 66 Great Egret 486 Cardinal Woodpecker 68 Yellow-billed Egret 488 Olive Woodpecker 71 Cattle Egret 494 Rufous-naped Lark * 81 Hamerkop 495 Cape Clapper Lark 83 White Stork n/a Agulhas Longbilled Lark 84 Black Stork 502 Karoo Lark 91 African Sacred Ibis 504 Red Lark * 94 Hadeda Ibis 506 Spike-heeled Lark 95 African Spoonbill 507 Red-capped Lark 102 Egyptian Goose 512 Thick-billed Lark 103 South African Shelduck 518 Barn Swallow 104 Yellow-billed Duck 520 White-throated Swallow 105 African Black Duck 523 Pearl-breasted Swallow 106 Cape Teal 526 Greater Striped Swallow 108 Red-billed Teal 529 Rock Martin 112 Cape Shoveler 530 Common House-Martin 113 Southern Pochard 533 Brown-throated Martin 116 Spur-winged Goose 534 Banded Martin 118 Secretarybird 536 Black Sawwing 122 Cape Vulture 541 Fork-tailed Drongo 126 Black (Yellow-billed) Kite 547 Cape Crow 127 Black-shouldered Kite 548 Pied Crow 131 Verreauxs' Eagle 550 White-necked Raven 136 Booted Eagle 551 Grey Tit 140 Martial Eagle 557 Cape Penduline-Tit 148 African Fish-Eagle 566 Cape Bulbul 149 Steppe Buzzard 572 Sombre Greenbul 152 Jackal Buzzard 577 Olive Thrush 155 Rufous-chested Sparrowhawk 582 Sentinel Rock-Thrush 158 Black Sparrowhawk 587 Capped Wheatear
    [Show full text]
  • Modern Birds Classification System Tinamiformes
    6.1.2011 Classification system • Subclass: Neornites (modern birds) – Superorder: Paleognathae, Neognathae Modern Birds • Paleognathae – two orders, 49 species • Struthioniformes—ostriches, emus, kiwis, and allies • Tinamiformes—tinamous Ing. Jakub Hlava Department of Zoology and Fisheries CULS Tinamiformes • flightless • Dwarf Tinamou • consists of about 47 species in 9 genera • Dwarf Tinamou ‐ 43 g (1.5 oz) and 20 cm (7.9 in) • Gray Tinamou ‐ 2.3 kg (5.1 lb) 53 cm (21 in) • small fruits and seeds, leaves, larvae, worms, and mollusks • Gray Tinamou 1 6.1.2011 Struthioniformes Struthioniformes • large, flightless birds • Ostrich • most of them now extinct • Cassowary • chicks • Emu • adults more omnivorous or insectivorous • • adults are primarily vegetarian (digestive tracts) Kiwi • Emus have a more omnivorous diet, including insects and other small animals • kiwis eat earthworms, insects, and other similar creatures Neognathae Galloanserae • comprises 27 orders • Anseriformes ‐ waterfowl (150) • 10,000 species • Galliformes ‐ wildfowl/landfowl (250+) • Superorder Galloanserae (fowl) • Superorder Neoaves (higher neognaths) 2 6.1.2011 Anseriformes (screamers) Anatidae (dablling ducks) • includes ducks, geese and swans • South America • cosmopolitan distribution • Small group • domestication • Large, bulky • hunted animals‐ food and recreation • Small head, large feet • biggest genus (40‐50sp.) ‐ Anas Anas shoveler • mallards (wild ducks) • pintails • shlhovelers • wigeons • teals northern pintail wigeon male (Eurasian) 3 6.1.2011 Tadorninae‐
    [Show full text]
  • Bird) Species List
    Aves (Bird) Species List Higher Classification1 Kingdom: Animalia, Phyllum: Chordata, Class: Reptilia, Diapsida, Archosauria, Aves Order (O:) and Family (F:) English Name2 Scientific Name3 O: Tinamiformes (Tinamous) F: Tinamidae (Tinamous) Great Tinamou Tinamus major Highland Tinamou Nothocercus bonapartei O: Galliformes (Turkeys, Pheasants & Quail) F: Cracidae Black Guan Chamaepetes unicolor (Chachalacas, Guans & Curassows) Gray-headed Chachalaca Ortalis cinereiceps F: Odontophoridae (New World Quail) Black-breasted Wood-quail Odontophorus leucolaemus Buffy-crowned Wood-Partridge Dendrortyx leucophrys Marbled Wood-Quail Odontophorus gujanensis Spotted Wood-Quail Odontophorus guttatus O: Suliformes (Cormorants) F: Fregatidae (Frigatebirds) Magnificent Frigatebird Fregata magnificens O: Pelecaniformes (Pelicans, Tropicbirds & Allies) F: Ardeidae (Herons, Egrets & Bitterns) Cattle Egret Bubulcus ibis O: Charadriiformes (Sandpipers & Allies) F: Scolopacidae (Sandpipers) Spotted Sandpiper Actitis macularius O: Gruiformes (Cranes & Allies) F: Rallidae (Rails) Gray-Cowled Wood-Rail Aramides cajaneus O: Accipitriformes (Diurnal Birds of Prey) F: Cathartidae (Vultures & Condors) Black Vulture Coragyps atratus Turkey Vulture Cathartes aura F: Pandionidae (Osprey) Osprey Pandion haliaetus F: Accipitridae (Hawks, Eagles & Kites) Barred Hawk Morphnarchus princeps Broad-winged Hawk Buteo platypterus Double-toothed Kite Harpagus bidentatus Gray-headed Kite Leptodon cayanensis Northern Harrier Circus cyaneus Ornate Hawk-Eagle Spizaetus ornatus Red-tailed
    [Show full text]
  • Some Makueni Birds
    Page 164 Vol. XXIII. No.4 (101) SOME MAKUENI BIRDS By BASIL PARSONS A few notes on the birds of Makueni, a very rich area less than 90 miles from Nairobi, may be of interest. Most of this country is orchard bush in which species of Acacia, Commiphora, and Combretum predominate, with here and there dense thickets, especially on hillsides. Despite Kamba settlement there is ~till a wealth of bird life. The average height above sea level is about 3,500 feet, and the 'boma' where we live is at 4,000 feet. To the west and south-west are fine hills with some rocky precipices, the most notable being Nzani. Much of my bird-watching has been done from a small hide in the garden situated about six feet from the bird-bath, which is near a piece of uncleared bush, and in this way I have been able to see over 60 species at really close range, many of them of great beauty. Birds of prey are very numerous. The Martial Eagle rests nearby and is some• times seen passing over. The small Gabar Goshawk raids our Weaver colony when the young are fledging, I have seen both normal and melanistic forms. The Black• shouldered Kite is often seen hovering over the hill slopes, and the cry of the Lizard Buzzard is another familar sQund. Occasionally I have seen the delightful Pigmy Falcon near the house. Grant's Crested and Scaly Francolins both rouse us in the early morning. On one occasion a pair of the former walked within three feet of my hide.
    [Show full text]
  • Uganda: Shoebill, Albertine Rift Endemics, Green- Breasted Pitta, Gorillas and Chimpanzees Set Departure Trip Report
    UGANDA: SHOEBILL, ALBERTINE RIFT ENDEMICS, GREEN- BREASTED PITTA, GORILLAS AND CHIMPANZEES SET DEPARTURE TRIP REPORT 1-19 AUGUST 2019 By Jason Boyce Yes, I know, it’s incredible! Shoebill from Mabamba Swamp, Uganda www.birdingecotours.com [email protected] 2 | T R I P R E P O R T Uganda 2019 TOUR ITINERARY Overnight Day 1 – Introduction to Uganda’s birding, Entebbe Entebbe Day 2 – Mabamba Swamp and Lake Mburo National Park Lake Mburo Day 3 – Lake Mburo National Park Lake Mburo Day 4 – Mgahinga Gorilla National Park Kisoro Day 5 – Mgahinga Gorilla National Park Kisoro Day 6 – Transfer to Bwindi Impenetrable Forest National Park, Ruhija Ruhija Day 7 – Bwindi Impenetrable Forest National Park, Ruhija Ruhija Day 8 – Bwindi Impenetrable Forest National Park, Buhoma Buhoma Day 9 – Bwindi Impenetrable Forest National Park, Buhoma Buhoma Day 10 – Bwindi Impenetrable Forest National Park, Buhoma Buhoma Day 11 – Transfer to Queen Elizabeth National Park Mweya Day 12 – Queen Elizabeth National Park to Kibale National Park Kibale Day 13 – Kibale National Park Kibale Day 14 – Kibale to Masindi Masindi Day 15 – Masindi, Budongo Forest Masindi Day 16 – Masindi to Murchison Falls National Park Murchison Falls Day 17 – Murchison Falls National Park Murchison Falls Day 18 – Transfer to Entebbe Entebbe Day 19 – International Flights Overview Interestingly enough this was one of the “birdier” Uganda tours that I have been on. Birds were generally in good voice, and fair numbers of birds were seen at most of our hotspots. Cuckoos were a little less vocal, but widowbirds, bishops, and weavers were in full breeding plumage and displaying all over the place.
    [Show full text]
  • The Function and Evolution of Egg Colour in Birds
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2012 The function and evolution of egg colour in birds Daniel Hanley University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Hanley, Daniel, "The function and evolution of egg colour in birds" (2012). Electronic Theses and Dissertations. 382. https://scholar.uwindsor.ca/etd/382 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. THE FUNCTION AND EVOLUTION OF EGG COLOURATION IN BIRDS by Daniel Hanley A Dissertation Submitted to the Faculty of Graduate Studies through Biological Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Windsor Windsor, Ontario, Canada 2011 © Daniel Hanley THE FUNCTION AND EVOLUTION OF EGG COLOURATION IN BIRDS by Daniel Hanley APPROVED BY: __________________________________________________ Dr. D. Lahti, External Examiner Queens College __________________________________________________ Dr.
    [Show full text]