High Frequency-High Voltage Corona Discharge

Total Page:16

File Type:pdf, Size:1020Kb

High Frequency-High Voltage Corona Discharge 71 MINIM SK99K0382 HIGH FREQUENCY - HIGH VOLTAGE CORONA DISCHARGE Vujo I. Miljevic VinCa Institute of Nuclear Sciences, Atomic Physics Laboratory P.O.Box 522, 11000 Belgrade, Yugoslavia INTRODUCTION Corona discharge is formed around small radius electrodes in, for example, point to plane, a wire and a point, paralel wires, a wire in a cylinder, coaxial cylinder geometries and transmitting lines. Corona discharge has long been studied and is relatively wel-kno- wn /1/. The application of corona iz also well-known, for example, in electrostatic filters, and in ozonizators used for ozone pro- duction. In recent years corona is used in simultaneous removal of SO,, and NO from flue gases 12/. In the mentioned corona discharges direct-current(DC), alternating-current (AC) and superposed DC and AC high voltage power supplies are usuallu used. In this paper results of a new type corona discharge are shown where specilly constructed "3rush-Shaped" electrodes are used - Corona Brush Discharge (CBD). Tesla Coil (TC) is used as a power supply /3/ EXPERIMENTAL SETUP The experimental setup is schematically shown in Fig 1. It consists of electrodes (BE) connected to Tesla Coil (TC). There is a great number of pins on the electrodes - "Brush-shaped" Electrodes (BE). Distance between the elctrodes is 15 cm and the inner radius of the electrodes (where the pins are located) is 8 cm. Rings on the elec- trodes are used for electrostatic protection because they prevent breakdown from the edge of the electrodes. When Tesla Coil is energized, corona discharge is established and it completely occupies the space between the electrodes - Corona Brush Discharge (CBD). It can be seen that uniform bluish light is emitted between the electrodes which reminds on a negative glow discharge. Only the corona on the Drush-shape-d electrodes, have appearance of uniform bluish-white sheath over the entire surface of the brush-ele- crtodes. Schematic view of the CBD iz presented in Fig.2. CBD is accompanied by a strong smell of ozone and a smell of an 72 BE • o TC CBO- y/, ..il'ii'iH Minimi o BE IE unknown origin. Therefore, above the discharge gap, at a distance about 10 cm downstream of air, there is a moistened pH indicator strip. After ashort period of time, because pH indicator quickly gets dry, we obtain pH^5. Ozone and probably oxides of nitrogen and, in presence of moisture from air, nitric acid are formed in CBD, The CBD is different from the common AC corona between, for example, two wires, a point and a plane,... The CBD characteristics, at a =tmospheric pressure, are more similar to some characteristics of = negative glow, but in the whole space between electrodes. rONCLUSION Torona brush discharge enables high-efficiency c: excitation, ioni- zatior. and dissociation of the operating gas in Isge volume. It may :e used, for example, plasma chemistry and in tY.~ flue gas cleaning from SCv and NO . Further work is in progress. REFERENCES: V L.B. Loeb, Electrical Coronas, University of California Press, Berkeley and Los Angeles (1965)- 2/ Z. Dinnely, Civitano and M. Rea, IEEE - Industry applications Society Anual Meeting, Pitsburg (1988). 3/' V. I. Miljevic, 12th ESCAMPIG, Noordwijkerhout (1994) p.236..
Recommended publications
  • Plasma Physics 1 APPH E6101x Columbia University Fall, 2015
    Lecture22: Atmospheric Plasma Plasma Physics 1 APPH E6101x Columbia University Fall, 2015 1 http://www.plasmatreat.com/company/about-us.html 2 http://www.tantec.com 3 http://www.tantec.com/atmospheric-plasma-improved-features.html 4 5 6 PHYSICS OF PLASMAS 22, 121901 (2015) Preface to Special Topic: Plasmas for Medical Applications Michael Keidar1,a) and Eric Robert2 1Mechanical and Aerospace Engineering, Department of Neurological Surgery, The George Washington University, Washington, DC 20052, USA 2GREMI, CNRS/Universite d’Orleans, 45067 Orleans Cedex 2, France (Received 30 June 2015; accepted 2 July 2015; published online 28 October 2015) Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4933406] There is convincing evidence that cold atmospheric topic section, there are several papers dedicated to plasma plasmas (CAP) interaction with tissue allows targeted cell re- diagnostics. moval without necrosis, i.e., cell disruption. In fact, it was Shashurin and Keidar presented a mini review of diag- determined that CAP affects cells via a programmable pro- nostic approaches for the low-frequency atmospheric plasma cess called apoptosis.1–3 Apoptosis is a multi-step process jets.
    [Show full text]
  • Download (PDF)
    Nanotechnology Education - Engineering a better future NNCI.net Teacher’s Guide To See or Not to See? Hydrophobic and Hydrophilic Surfaces Grade Level: Middle & high Summary: This activity can be school completed as a separate one or in conjunction with the lesson Subject area(s): Physical Superhydrophobicexpialidocious: science & Chemistry Learning about hydrophobic surfaces found at: Time required: (2) 50 https://www.nnci.net/node/5895. minutes classes The activity is a visual demonstration of the difference between hydrophobic and hydrophilic surfaces. Using a polystyrene Learning objectives: surface (petri dish) and a modified Tesla coil, you can chemically Through observation and alter the non-masked surface to become hydrophilic. Students experimentation, students will learn that we can chemically change the surface of a will understand how the material on the nano level from a hydrophobic to hydrophilic surface of a material can surface. The activity helps students learn that how a material be chemically altered. behaves on the macroscale is affected by its structure on the nanoscale. The activity is adapted from Kim et. al’s 2012 article in the Journal of Chemical Education (see references). Background Information: Teacher Background: Commercial products have frequently taken their inspiration from nature. For example, Velcro® resulted from a Swiss engineer, George Mestral, walking in the woods and wondering why burdock seeds stuck to his dog and his coat. Other bio-inspired products include adhesives, waterproof materials, and solar cells among many others. Scientists often look at nature to get ideas and designs for products that can help us. We call this study of nature biomimetics (see Resource section for further information).
    [Show full text]
  • Terminology for Electrostatic Precipitators
    PUBLICATION ICAC-EP-1 NOVEMBER 2000 _____________________________________________________ TERMINOLOGY FOR ELECTROSTATIC PRECIPITATORS TERMINOLOGY FOR ELECTROSTATIC PRECIPITATORS Publication ICAC-EP-1 Date Adopted: November 2000 ICAC The Institute of Clean Air Companies (ICAC), the nonprofit national association of companies that supply stationary source air pollution monitoring and control systems, equipment, and services, was formed in 1960 to promote the industry and encourage improvement of engineering and technical standards. The Institute's mission is to assure a strong and workable air quality policy that promotes public health, environmental quality, and industrial progress. As the representative of the air pollution control industry, the Institute seeks to evaluate and respond to regulatory initiatives and establish technical standards to the benefit of all. ICAC Copyright © ICAC, Inc., 2000. All rights reserved. 1660 L Street, NW Washington, DC 20036-5603 Telephone: 202.457.0911 Facsimile: 202.331.1388 Website: www.icac.com Summary: This document provides definitions of key common terms related to electrostatic precipitators and their operation in the U.S. marketplace, and includes illustrations of common precipitators. The terminology is arranged by major system component areas, and concludes with a section on general and miscellaneous electrostatic precipitator terms. This document is written by and for members of the air pollution control industry as well as for the regulatory community and others seeking to better understand this industry and this particular air pollution control technology. This document is part of an ICAC technical standards series that addresses electrostatic precipitators (see ICAC publications list). As appropriate, terminology specific to dry and wet electrostatic precipitators is listed and defined.
    [Show full text]
  • Study of the Corona Discharge Pheno- Menon for Application in Pathogen and Narcotic Detection in Aerosol
    Study of the corona discharge pheno- menon for application in pathogen and narcotic detection in aerosol GLEB LOBOV Degree project in Microsystem Technology Second level, 30 HEC Stockholm, Sweden 2012 XR-EE-MST 2012-001 Study of the corona discharge phenomenon for application in pathogen and narcotic detection in aerosol Master Thesis by Gleb Lobov Supervisors: Gaspard Pardon, Niklas Sandström Examiner: Wouter van der Wijngaart Microsystem Technology KTH Royal Institute of Technology Stockholm, Sweden January 2012 3 4 Abstract Within this master thesis work, a novel application of a corona discharge is presented. The phenomenon of an electro-hydro-dynamic (EHD) flow is used for the precipitation of airborne particles onto a restricted surface of a non-coronizing electrode. The non-coronizing electrode surface can be replaced by a liquid interface, by which aerosol particles can be transferred from the airflow into a liquid solution, allowing for further analysis. Due to a small volume of the liquid container, the increased concentration of trapped particles will potentially enhance the resolution of the detection system. Aerosol droplets can originate from a human breath, which opens the possibility to utilize the system for narcotics or viruses detection. In this work, effort was laid on adapting a simulation model and an experimental set-up to the concept of the airborne particle trapping. Electrical measurements were conducted to characterize the set-up, through which the main limitations of the input parameters of the system could be extracted. Moreover, an approach for the determination of the upper limit of the applicable voltage was introduced. The data collected was used to build general conclusions and recommendations, relevant to the further research on this topic.
    [Show full text]
  • Simple, Compact Source for Low-Temperature Air Plasmas
    University of South Carolina Scholar Commons Faculty Publications Biological Sciences, Department of 7-25-2002 Simple, Compact Source for Low-Temperature Air Plasmas D. P. Sheehan University of San Diego J. Lawson University of San Diego M. Sosa University of San Diego Richard A. Long University of South Carolina - Columbia, [email protected] Follow this and additional works at: https://scholarcommons.sc.edu/biol_facpub Part of the Biology Commons Publication Info Review of Scientific Instruments, Volume 73, Issue 8, 2002, pages 3128-3130. © Review of Scientific Instruments 2002, The American Institute of Physics. This Article is brought to you by the Biological Sciences, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 73, NUMBER 8 AUGUST 2002 Simple, compact source for low-temperature air plasmas D. P. Sheehan,a) J. Lawson, and M. Sosa Physics Department, University of San Diego, San Diego, California 92110 R. A. Long Scripps Institute of Oceanography, UCSD, La Jolla, California ͑Received 14 August 2001; accepted for publication 8 May 2002͒ A simple, compact source of low-temperature, spatially and temporally uniform air plasma using a Telsa induction coil driver is described. The low-power ionization discharge plasma is localized (2 cmϫ0.5 cmϫ0.1 cm) and essentially free of arc channels. A Teflon coated rolling cylindrical electrode and dielectric coated ground plate are essential to the source’s operation and allow flat test samples to be readily exposed to the plasma.
    [Show full text]
  • Feasibility Study on the Use of Fast Camera and Recording in Time-Domain to Characterize ESD
    MATEC Web of Conferences 247, 00028 (2018) https://doi.org/10.1051/matecconf/201824700028 FESE 2018 Feasibility study on the use of fast camera and recording in time-domain to characterize ESD Szymon Ptak1,*, Albert Smalcerz1, Piotr Ostrowski1 1Central Institute for Labour Protection – National Research Institute, 16 Czerniakowska St., 00-701 Warsaw, Poland Abstract. Fire and explosion protection in industrial conditions requires multidimensional approach. Usually the risk of hazardous zone creation is unavoidable, if the combustible material is processed. Therefore controlling of potential ignition sources is introduced. One of most popular sources of ignition is electrostatic discharge. Depending on the type of the discharge, as well as on exact discharge conditions, energy released might reach hundreds or even thousands of mJ, being able to ignite most of gaseous or dust-air hazardous mixtures. A dedicated methodology was created to record the discharge with fast camera with maximum speed of 1M fps and with the oscilloscope up to 25 GS/s. Dedicated test stand allows to obtain high voltage to create the conditions for electrostatic discharge. The aim of presented research was to analyze the course of electrostatic spark discharge in laboratory conditions and to place the outcomes in the context of explosion safety in the industrial conditions. The course of electrostatic discharge is dependent on various conditions: the polarity, distance between the electrodes, shape of electrodes, grounding conditions, etc. Understanding of the phenomenon is crucial from the point of view of explosion safety. 1 Introduction In every industrial process the safety of people, equipment and environment must be ensured. Despite the safety of the process itself, the risk of fire and/or explosion should be always taken into consideration.
    [Show full text]
  • Explosive Safety with Regards to Electrostatic Discharge Francis Martinez
    University of New Mexico UNM Digital Repository Electrical and Computer Engineering ETDs Engineering ETDs 7-12-2014 Explosive Safety with Regards to Electrostatic Discharge Francis Martinez Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds Recommended Citation Martinez, Francis. "Explosive Safety with Regards to Electrostatic Discharge." (2014). https://digitalrepository.unm.edu/ece_etds/ 172 This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Francis J. Martinez Candidate Electrical and Computer Engineering Department This thesis is approved, and it is acceptable in quality and form for publication: Approved by the Thesis Committee: Dr. Christos Christodoulou , Chairperson Dr. Mark Gilmore Dr. Youssef Tawk i EXPLOSIVE SAFETY WITH REGARDS TO ELECTROSTATIC DISCHARGE by FRANCIS J. MARTINEZ B.S. ELECTRICAL ENGINEERING NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY 2001 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science In Electrical Engineering The University of New Mexico Albuquerque, New Mexico May 2014 ii Dedication To my beautiful and amazing wife, Alicia, and our perfect daughter, Isabella Alessandra and to our unborn child who we are excited to meet and the one that we never got to meet. This was done out of love for all of you. iii Acknowledgements Approximately 6 years ago, I met Dr. Christos Christodoulou on a collaborative project we were working on. He invited me to explore getting my Master’s in EE and he told me to call him whenever I decided to do it.
    [Show full text]
  • The Corona Discharge
    Numerical and analytical studies of critical radius in new geometries for corona discharge in air and CO2-rich environments Jacob A. Engle, Jeremy A. Riousset Department of Physical Sciences, Center for Space and Atmospheric Research (CSAR), Embry-Riddle Aeronautical University, Daytona Beach, FL CEDAR 2017 ([email protected]) Abstract II. Model Formulation In this work, we focus on plasma discharge produced between two electrodes with a high potential Objectives Geometry Cartesian Spherical Cylindrical difference, resulting in ionization of the neutral gas particles and creating a current in the gas • Apply Paschen theory to Cartesian, 푥2 푅2 푅2 medium. This process, when done at low current and low temperature can create corona and “glow” Analytical 훼eff푑푥 = ln(푄) 훼eff푑푟 = ln(푄) 훼eff푑푟 = ln(푄) 푥1 푅1 푅1 discharges, which can be observed as a luminescent, or “glow,” emission. The parallel plate geometry spherical, and cylindrical geometries; 푥1 = 0 R2 →c; V(R2) = 0 R2 →c; V(R2) = 0 −퐵푝 used in Paschen theory is particularly well suited to model experimental laboratory scenario. V(c) = 0; V(c) = 0 • Obtain analytical expressions for critical 훼eff(퐸) = 퐴푝푒 퐸 However, it is limited in its applicability to lightning rods and power lines (Moore et al., 2000). −퐵푝 −퐵푝 푑 = 푥 − 푥 훼 (퐸) = 퐴푝푒 퐸 훼 (퐸) = 퐴푝푒 퐸 Franklin’s sharp tip and Moore et al.’s rounded tip fundamentally differ in the radius of curvature of 2 1 eff eff radius and Stoletov’s point; 휕푉 = 0: Stoletov′s point 휕푉 ′ 휕푉 ′ the upper end of the rod. Hence, we propose to expand the classic Cartesian geometry into spherical 휕푑 = 0: Stoletov s point = 0: Stoletov s point • Develop numerical models for 휕푅1 휕푅1 geometries.
    [Show full text]
  • Evidence of a Corona Discharge Induced by Natural High Voltage Due to Vertical Potential Gradient Dunpin Hong, H
    Evidence of a corona discharge induced by natural high voltage due to vertical potential gradient Dunpin Hong, H. Rabat, M. Kirkpatrick, E. Odic, Nofel Merbahi, J Giacomoni, Olivier Eichwald To cite this version: Dunpin Hong, H. Rabat, M. Kirkpatrick, E. Odic, Nofel Merbahi, et al.. Evidence of a corona discharge induced by natural high voltage due to vertical potential gradient. Plasma Research Express, 2019, 1 (1), pp.015013. 10.1088/2516-1067/ab0563. hal-02100144 HAL Id: hal-02100144 https://hal.archives-ouvertes.fr/hal-02100144 Submitted on 15 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. EVIDENCE OF A CORONA DISCHARGE INDUCED BY NATURAL HIGH VOLTAGE DUE TO VERTICAL POTENTIAL GRADIENT D. HONG1*, H. RABAT1, M.J. KIRKPATRICK2, E. ODIC2, N. MERBAHI3, J. GIACOMONI4 AND O. EICHWALD3 ¹GREMI, UMR7344, Univ. of Orleans, CNRS, 45067 Orleans, France ²GeePs | Group of electrical engineering - Paris, CNRS, CentraleSupélec, Univ. Paris-Sud, Université Paris-Saclay, Sorbonne Université, 3 & 11 rue Joliot-Curie, Plateau de Moulon 91192 Gif- sur-Yvette CEDEX, France 3LAPLACE, Univ. of Toulouse, UMR5213, 31062, Toulouse, France 4AEROPHILE, 106 avenue Félix Faure, 75015 PARIS, France *corresponding author: [email protected] ABSTRACT This paper describes a study evidencing the creation of a corona discharge induced by natural high voltage found above the earth’s surface due to the vertical potential gradient at an altitude of 125 meters.
    [Show full text]
  • News and Notes
    Bulletin American Meteorological Society Miller, L. Jay, 1972: Dual-Doppler radar observations of Snider, J. B., 1972: Ground-based sensing of temperature circulation in snow conditions. Proc. 15th Radar Meteor. profiles from angular and multi-spectral emission measure- Conf., Amer. Meteor. Soc. ments. J. Appl. Meteor11, 958-967. Owens, J. C., 1969: Optical Doppler measurement of micro- scale wind velocity. Proc. IEEE, 57, 530-536. Strauch, R. G., V. E. Derr, and R. E. Cupp, 1971: Atmo- Richter, J. H., 1969: High resolution tropospheric radar spheric temperature measurement using Raman lidar. sounding. Radio Sci., 4, 1261-1268. Appl Opt., 10, 2665-1669. Salzman, J. A., W. J. Masica, and T. A. Coney, 1971: Deter- V. E. Derr, and R. E. Cupp, 1972: Atmospheric water mination of gas temperatures from laser-Raman scattering. vapor meaesurement using Raman lidar. Remote Sensing NASA TN D-6336. of Environment (in press). Schotland, R. M., 1969: Some aspects of remote atmospheric sensing by laser radar. Rept. of Remote Atrnos. Probing Wyngaard, J. E., Y. Izumi, and S. A. Collins, Jr., 1971: Be- Panel, Committee on Atrnos. Sci., Nat'l Acad, of Sci-Natl havior of the refractive-index-structure parameter near the Res. Council, 2, 179-200. ground. J. Opt. Soc. Amer., 61, 1646-1650. news and notes Lightning suppression by seeding with two chaff dispensers and field mills to measure electric field strength. Flying below cloud level, the NOAA scientists During a six-week long experiment, scientists from the waited until their instruments registered a field greater than National Oceanic and Atmospheric Administration attempted 30,000 volts per meter, a magnitude at which corona dis- to suppress lightning by seeding thunderstorms with fine charge will occur, When this happens the chaff dispensers aluminized fibers over a 200 mis area of northeastern Colo- are activated and the threadlike fibers are carried into the rado.
    [Show full text]
  • Glow Corona Discharges and Their Effect on Lightning Attachment: Revisited
    2012 International Conference on Lightning Protection (ICLP), Vienna, Austria Glow Corona Discharges and Their Effect on Lightning Attachment: revisited Marley Becerra School of Engineering, Royal Institute of Technology –KTH– Stockholm, Sweden Power Technology Department, ABB Corporate Research Västerås, Sweden [email protected] Abstract— Previous studies in the literature have suggested that has been recently suggested that air terminals can shield glow corona discharges could be potentially used to control the themselves due to the generated glow corona [10]. frequency of lightning flashes to grounded objects. Such studies use simplified one-dimensional corona drift models or basic Based on these studies, different non-conventional lightning empirical equations derived from high voltage experiments to protection systems based on the generation or suppression of assess the effect of glow corona on the initiation of both streamers glow corona have been released into the market. Thus, it is and upward connecting leaders under the influence of a claimed that multi-point corona configurations (better known descending lightning leader. In order to revisit the theoretical as a dissipation array system) can prevent lighting strikes to basis of these studies, a two-dimensional glow corona drift model objects “protected” with such a system. In addition, lightning has been implemented together with a self-consistent upward rods specially designed to avoid glow corona generation are leader inception and propagation model –SLIM–. A 60 m tall claimed to be more efficient than conventional sharp or blunt lightning rod is used as a study case. It is found that the shielding lightning rods. However, there is an ongoing debate in the effect of the glow corona space charge has been strongly lightning protection community about the validity of these overestimated in the literature.
    [Show full text]
  • Evaluation of Ozone Generation in Volume Spiral-Tubular Dielectric Barrier Discharge Source
    energies Article Evaluation of Ozone Generation in Volume Spiral-Tubular Dielectric Barrier Discharge Source Pawel Zylka Department of Electrical Engineering Fundamentals, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland; [email protected] Received: 13 January 2020; Accepted: 3 March 2020; Published: 5 March 2020 Abstract: Ozone, due to its high reactivity cannot be stockpiled, and thus requires to be generated on-demand. The paper reports on laboratory studies of O3 generation in a volume dielectric barrier discharge (DBD) tubular flow-through system with a coaxial-spiral electrode arrangement. Its performance is experimentally verified and compared to a commercial surface DBD O3 source fitted with a three-electrode floating supply arrangement. The presented volume DBD design is capable of steadily producing up to 4180 ppmv O3 at 1 Nl/min unprocessed atmospheric air intake and 10 kV 1.6 kHz sinusoidal high voltage supply corresponding to 67 g/kWh O3 production yield increasing to 93 g/kWh at 100 Nl/min air intake. The effects of high voltage supply tuning are also investigated and discussed together with finite element method simulation results. Keywords: ozone; temperature; destruction; dielectric barrier discharge; surface discharge 1. Introduction Ozone has been recently extensively applied as a potent oxidizing agent in many fields of science, technology and everyday life including chemical synthesis, semiconductor surface treatment, water disinfection, destruction of pollutants and odor removal, purification of products, decolorization (bleaching), vermin and insects control, automotive fuel afterburning, skin treatment and dental care, just to name a few [1–4]. However, at the same time, ozone is considered a highly toxic gas—its PEL (Permissible Exposure Limit) and REL (Recommended EL) health limits are as low as 0.1 ppm (0.2 mg/m3) while IDLH (Immediate Danger Lethal Dose) is set at 5 ppm [5].
    [Show full text]