Electrostatics and Its Hazards
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electrostatics Vs Magnetostatics Electrostatics Magnetostatics
Electrostatics vs Magnetostatics Electrostatics Magnetostatics Stationary charges ⇒ Constant Electric Field Steady currents ⇒ Constant Magnetic Field Coulomb’s Law Biot-Savart’s Law 1 ̂ ̂ 4 4 (Inverse Square Law) (Inverse Square Law) Electric field is the negative gradient of the Magnetic field is the curl of magnetic vector electric scalar potential. potential. 1 ′ ′ ′ ′ 4 |′| 4 |′| Electric Scalar Potential Magnetic Vector Potential Three Poisson’s equations for solving Poisson’s equation for solving electric scalar magnetic vector potential potential. Discrete 2 Physical Dipole ′′′ Continuous Magnetic Dipole Moment Electric Dipole Moment 1 1 1 3 ∙̂̂ 3 ∙̂̂ 4 4 Electric field cause by an electric dipole Magnetic field cause by a magnetic dipole Torque on an electric dipole Torque on a magnetic dipole ∙ ∙ Electric force on an electric dipole Magnetic force on a magnetic dipole ∙ ∙ Electric Potential Energy Magnetic Potential Energy of an electric dipole of a magnetic dipole Electric Dipole Moment per unit volume Magnetic Dipole Moment per unit volume (Polarisation) (Magnetisation) ∙ Volume Bound Charge Density Volume Bound Current Density ∙ Surface Bound Charge Density Surface Bound Current Density Volume Charge Density Volume Current Density Net , Free , Bound Net , Free , Bound Volume Charge Volume Current Net , Free , Bound Net ,Free , Bound 1 = Electric field = Magnetic field = Electric Displacement = Auxiliary -
Review of Electrostatics and Magenetostatics
Review of electrostatics and magenetostatics January 12, 2016 1 Electrostatics 1.1 Coulomb’s law and the electric field Starting from Coulomb’s law for the force produced by a charge Q at the origin on a charge q at x, qQ F (x) = 2 x^ 4π0 jxj where x^ is a unit vector pointing from Q toward q. We may generalize this to let the source charge Q be at an arbitrary postion x0 by writing the distance between the charges as jx − x0j and the unit vector from Qto q as x − x0 jx − x0j Then Coulomb’s law becomes qQ x − x0 x − x0 F (x) = 2 0 4π0 jx − xij jx − x j Define the electric field as the force per unit charge at any given position, F (x) E (x) ≡ q Q x − x0 = 3 4π0 jx − x0j We think of the electric field as existing at each point in space, so that any charge q placed at x experiences a force qE (x). Since Coulomb’s law is linear in the charges, the electric field for multiple charges is just the sum of the fields from each, n X qi x − xi E (x) = 4π 3 i=1 0 jx − xij Knowing the electric field is equivalent to knowing Coulomb’s law. To formulate the equivalent of Coulomb’s law for a continuous distribution of charge, we introduce the charge density, ρ (x). We can define this as the total charge per unit volume for a volume centered at the position x, in the limit as the volume becomes “small”. -
Simple, Compact Source for Low-Temperature Air Plasmas
University of South Carolina Scholar Commons Faculty Publications Biological Sciences, Department of 7-25-2002 Simple, Compact Source for Low-Temperature Air Plasmas D. P. Sheehan University of San Diego J. Lawson University of San Diego M. Sosa University of San Diego Richard A. Long University of South Carolina - Columbia, [email protected] Follow this and additional works at: https://scholarcommons.sc.edu/biol_facpub Part of the Biology Commons Publication Info Review of Scientific Instruments, Volume 73, Issue 8, 2002, pages 3128-3130. © Review of Scientific Instruments 2002, The American Institute of Physics. This Article is brought to you by the Biological Sciences, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 73, NUMBER 8 AUGUST 2002 Simple, compact source for low-temperature air plasmas D. P. Sheehan,a) J. Lawson, and M. Sosa Physics Department, University of San Diego, San Diego, California 92110 R. A. Long Scripps Institute of Oceanography, UCSD, La Jolla, California ͑Received 14 August 2001; accepted for publication 8 May 2002͒ A simple, compact source of low-temperature, spatially and temporally uniform air plasma using a Telsa induction coil driver is described. The low-power ionization discharge plasma is localized (2 cmϫ0.5 cmϫ0.1 cm) and essentially free of arc channels. A Teflon coated rolling cylindrical electrode and dielectric coated ground plate are essential to the source’s operation and allow flat test samples to be readily exposed to the plasma. -
Feasibility Study on the Use of Fast Camera and Recording in Time-Domain to Characterize ESD
MATEC Web of Conferences 247, 00028 (2018) https://doi.org/10.1051/matecconf/201824700028 FESE 2018 Feasibility study on the use of fast camera and recording in time-domain to characterize ESD Szymon Ptak1,*, Albert Smalcerz1, Piotr Ostrowski1 1Central Institute for Labour Protection – National Research Institute, 16 Czerniakowska St., 00-701 Warsaw, Poland Abstract. Fire and explosion protection in industrial conditions requires multidimensional approach. Usually the risk of hazardous zone creation is unavoidable, if the combustible material is processed. Therefore controlling of potential ignition sources is introduced. One of most popular sources of ignition is electrostatic discharge. Depending on the type of the discharge, as well as on exact discharge conditions, energy released might reach hundreds or even thousands of mJ, being able to ignite most of gaseous or dust-air hazardous mixtures. A dedicated methodology was created to record the discharge with fast camera with maximum speed of 1M fps and with the oscilloscope up to 25 GS/s. Dedicated test stand allows to obtain high voltage to create the conditions for electrostatic discharge. The aim of presented research was to analyze the course of electrostatic spark discharge in laboratory conditions and to place the outcomes in the context of explosion safety in the industrial conditions. The course of electrostatic discharge is dependent on various conditions: the polarity, distance between the electrodes, shape of electrodes, grounding conditions, etc. Understanding of the phenomenon is crucial from the point of view of explosion safety. 1 Introduction In every industrial process the safety of people, equipment and environment must be ensured. Despite the safety of the process itself, the risk of fire and/or explosion should be always taken into consideration. -
We Continue to Compare the Electrostatic and Magnetostatic Fields. the Electrostatic Field Is Conservative
We continue to compare the electrostatic and magnetostatic fields. The electrostatic field is conservative: This allows us to define the potential V: dl because a b is independent of the path. If a vector field has no curl (i.e., is conservative), it must be something's gradient. Gravity is conservative. Therefore you do see water flowing in such a loop without a pump in the physical world. For the magnetic field, If a vector field has no divergence (i.e., is solenoidal), it must be something's curl. In other words, the curl of a vector field has zero divergence. Let’s use another physical context to help you understand this math: Ampère’s law J ds 0 Kirchhoff's current law (KCL) S Since , we can define a vector field A such that Notice that for a given B, A is not unique. For example, if then , because Similarly, for the electrostatic field, the scalar potential V is not unique: If then You have the freedom to choose the reference (Ampère’s law) Going through the math, you will get Here is what means: Just notation. Notice that is a vector. Still remember what means for a scalar field? From a previous lecture: Recall that the choice for A is not unique. It turns out that we can always choose A such that (Ampère’s law) The choice for A is not unique. We choose A such that Here is what means: Notice that is a vector. Thus this is actually three equations: Recall the definition of for a scalar field from a previous lecture: Poisson’s equation for the magnetic field is actually three equations: Compare Poisson’s equation for the magnetic field with that for the electrostatic field: Given J, you can solve A, from which you get B by Given , you can solve V, from which you get E by Exams (Test 2 & Final) problems will not involve the vector potential. -
Explosive Safety with Regards to Electrostatic Discharge Francis Martinez
University of New Mexico UNM Digital Repository Electrical and Computer Engineering ETDs Engineering ETDs 7-12-2014 Explosive Safety with Regards to Electrostatic Discharge Francis Martinez Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds Recommended Citation Martinez, Francis. "Explosive Safety with Regards to Electrostatic Discharge." (2014). https://digitalrepository.unm.edu/ece_etds/ 172 This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Francis J. Martinez Candidate Electrical and Computer Engineering Department This thesis is approved, and it is acceptable in quality and form for publication: Approved by the Thesis Committee: Dr. Christos Christodoulou , Chairperson Dr. Mark Gilmore Dr. Youssef Tawk i EXPLOSIVE SAFETY WITH REGARDS TO ELECTROSTATIC DISCHARGE by FRANCIS J. MARTINEZ B.S. ELECTRICAL ENGINEERING NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY 2001 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science In Electrical Engineering The University of New Mexico Albuquerque, New Mexico May 2014 ii Dedication To my beautiful and amazing wife, Alicia, and our perfect daughter, Isabella Alessandra and to our unborn child who we are excited to meet and the one that we never got to meet. This was done out of love for all of you. iii Acknowledgements Approximately 6 years ago, I met Dr. Christos Christodoulou on a collaborative project we were working on. He invited me to explore getting my Master’s in EE and he told me to call him whenever I decided to do it. -
Roadmap on Transformation Optics 5 Martin Mccall 1,*, John B Pendry 1, Vincenzo Galdi 2, Yun Lai 3, S
Page 1 of 59 AUTHOR SUBMITTED MANUSCRIPT - draft 1 2 3 4 Roadmap on Transformation Optics 5 Martin McCall 1,*, John B Pendry 1, Vincenzo Galdi 2, Yun Lai 3, S. A. R. Horsley 4, Jensen Li 5, Jian 6 Zhu 5, Rhiannon C Mitchell-Thomas 4, Oscar Quevedo-Teruel 6, Philippe Tassin 7, Vincent Ginis 8, 7 9 9 9 6 10 8 Enrica Martini , Gabriele Minatti , Stefano Maci , Mahsa Ebrahimpouri , Yang Hao , Paul Kinsler 11 11,12 13 14 15 9 , Jonathan Gratus , Joseph M Lukens , Andrew M Weiner , Ulf Leonhardt , Igor I. 10 Smolyaninov 16, Vera N. Smolyaninova 17, Robert T. Thompson 18, Martin Wegener 18, Muamer Kadic 11 18 and Steven A. Cummer 19 12 13 14 Affiliations 15 1 16 Imperial College London, Blackett Laboratory, Department of Physics, Prince Consort Road, 17 London SW7 2AZ, United Kingdom 18 19 2 Field & Waves Lab, Department of Engineering, University of Sannio, I-82100 Benevento, Italy 20 21 3 College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano 22 Science and Technology, Soochow University, Suzhou 215006, China 23 24 4 University of Exeter, Department of Physics and Astronomy, Stocker Road, Exeter, EX4 4QL United 25 26 Kingdom 27 5 28 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, 29 United Kingdom 30 31 6 KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden 32 33 7 Department of Physics, Chalmers University , SE-412 96 Göteborg, Sweden 34 35 8 Vrije Universiteit Brussel Pleinlaan 2, 1050 Brussel, Belgium 36 37 9 Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, University of Siena, Via Roma, 38 39 56 53100 Siena, Italy 40 10 41 School of Electronic Engineering and Computer Science, Queen Mary University of London, 42 London E1 4FZ, United Kingdom 43 44 11 Physics Department, Lancaster University, Lancaster LA1 4 YB, United Kingdom 45 46 12 Cockcroft Institute, Sci-Tech Daresbury, Daresbury WA4 4AD, United Kingdom. -
Electrostatics
Ben Franklin, 1750 “Kite Experiment” – link between lightening and sparks Electrostatics “electrical” fire from the clouds Greeks noticed when they rubbed things against amber an invisible force of attraction occurred. Greek word for amber is elektron, which today represents the word “electrical” Electrostatics Study of electrical charges that can be collected and held in one place Energy at rest- nonmoving electric charge Involves: 1) electric charges, 2) forces between, & 3) their behavior in material An object that exhibits electrical interaction after rubbing is said to be charged Static electricity- electricity caused by friction Charged objects will eventually return to their neutral state Electric Charge “Charge” is a property of subatomic particles. Facts about charge: There are 2 types: positive (protons) and negative (electrons) Matter contains both types of charge ( + & -) occur in pairs, friction separates the two LIKE charges REPEL and OPPOSITE charges ATTRACT Charges are symbolic of fluids in that they can be in 2 states: STATIC or DYNAMIC. Microscopic View of Charge Electrical charges exist w/in atoms 1890, J.J. Thomson discovered the light, negatively charged particles of matter- Electrons 1909-1911 Ernest Rutherford, discovered atoms have a massive, positively charged center- Nucleus Positive nucleus balances out the negative electrons to make atom neutral Can remove electrons w/addition of energy, make atom positively charged or add to make them negatively charged ( called Ions) (+ cations) (- anions) Triboelectric Series Ranks materials according to their tendency to give up their electrons Material exchange electrons by the process of rubbing two objects Electric Charge – The specifics •The symbol for CHARGE is “q” •The SI unit is the COULOMB(C), named after Charles Coulomb •If we are talking about a SINGLE charged particle such as 1 electron or 1 proton we are referring to an ELEMENTARY charge and often use, Some important constants: e , to symbolize this. -
Lecture 6 Basics of Magnetostatics
Lecture 6 Basics of Magnetostatics Today’s topics 1. New topic – magnetostatics 2. Present a parallel development as we did for electrostatics 3. Derive basic relations from a fundamental force law 4. Derive the analogs of E and G 5. Derive the analog of Gauss’ theorem 6. Derive the integral formulation of magnetostatics 7. Derive the differential form of magnetostatics 8. A few simple problems General comments 1. What is magnetostatics? The study of DC magnetic fields that arise from the motion of charged particles. 2. Since charged particles are present, does this mean we also must have an electric field? No!! Electrons can flow through ions in such a way that current flows but there is still no net charge, and hence no electric field. This is the situation in magnetostatics 3. Magnetostatics is more complicated than electrostatics. 4. Single magnetic charges do not exist in nature. The simplest basic element in magnetostatics is the magnetic dipole, which is equivalent to two, closely paired equal and opposite charges in electrostatics. In magnetostatics the dipole forms from a small circular loop of current. 5. Magnetic geometries are also more complicated than in electrostatics. The vector nature of the magnetic field is less intuitive. 1 The basic force of magnetostatics 1. Recall electrostatics. qq rr = 12 1 2 F12 3 4QF0 rr12 2. In magnetostatics there is an equivalent empirical law which we take as a postulate qq vv×× ¯( rr ) = 12N 0 1212¢± F12 3 4Q rr12 3. The force is proportional to 1/r 2 . = 4. The force is perpendicular to v1 : Fv12¸ 1 0 . -
Electricity and Magnetism
Electricity and Magnetism Definition The Physical phenomena involving electric charges, their motions, and their effects. The motion of a charge is affected by its interaction with the electric field and, for a moving charge, the magnetic field. The electric field acting on a charge arises from the presence of other charges and from a time-varying magnetic field. The magnetic field acting on a moving charge arises from the motion of other charges and from a time-varying electric field. Thus electricity and magnetism are ultimately inextricably linked. In many cases, however, one aspect may dominate, and the separation is meaningful. See also Electric charge; Electric field; Magnetism. History of Electricity From the writings of Thales of Miletus it appears that Westerners knew as long ago as 600 B.C. that amber becomes charged by rubbing. There was little real progress until the English scientist William Gilbert in 1600 described the electrification of many substances and coined the term electricity from the Greek word for amber. As a result, Gilbert is called the father of modern electricity. In 1660 Otto von Guericke invented a crude machine for producing static electricity. It was a ball of sulfur, rotated by a crank with one hand and rubbed with the other. Successors, such as Francis Hauksbee, made improvements that provided experimenters with a ready source of static electricity. Today's highly developed descendant of these early machines is the Van de Graaf generator, which is sometimes used as a particle accelerator. Robert Boyle realized that attraction and repulsion were mutual and that electric force was transmitted through a vacuum (c.1675). -
Chapter 2. Electrostatics
Chapter 2. Electrostatics 2.1. The Electrostatic Field To calculate the force exerted by some electric charges, q1, q2, q3, ... (the source charges) on another charge Q (the test charge) we can use the principle of superposition. This principle states that the interaction between any two charges is completely unaffected by the presence of other charges. The force exerted on Q by q1, q2, and q3 (see Figure 2.1) is therefore equal to the vector sum of the force F1 exerted by q1 on Q, the force F2 exerted by q2 on Q, and the force F3 exerted by q3 on Q. Ftot F1 q3 F3 Q F2 q2 q1 Figure 2.1. Superposition of forces. The force exerted by a charged particle on another charged particle depends on their separation distance, on their velocities and on their accelerations. In this Chapter we will consider the special case in which the source charges are stationary. The electric field produced by stationary source charges is called and electrostatic field. The electric field at a particular point is a vector whose magnitude is proportional to the total force acting on a test charge located at that point, and whose direction is equal to the direction of - 1 - the force acting on a positive test charge. The electric field E , generated by a collection of source charges, is defined as F E = Q where F is the total electric force exerted by the source charges on the test charge Q. It is assumed that the test charge Q is small and therefore does not change the distribution of the source charges. -
Electrostatics in Material
Electrostatics in material Bound charges Laplacean methods and dielectrics θ q zˆ ˆ z ˆ η zˆ Z ηˆ PPz= 0 ε 0 σ R E zˆ R s b ε 0 α ε Image methods Separation of variables ε I D top σ Displacement f Q σb < 0 field V r Stored E ε d energy in a dielectric Dbottom σb > 0 −σ above f E ε 0 Dielectric below E ε ε 0 F Forces d ε H Dielectric boundary F conditions 1 x − x xˆ From Physics 212, one might get the impression that going from electrostatics in vacuum to electrostatics in a material is equivalent to replacing epsilon_0 to epsilon > epsilon_0. This is more-or-less true for some dielectric materials such as Class A dielectrics but other types of materials exist. For example, there are permanent electrets which are analogous to permanent magnets. Here the electric field is produced by “bound” charges created by a permanently “frozen-in” polarizability. The polarizability is the electric dipole moment per unit volume that is often induced in the material by an external electric field. We will introduce the displacement field (or D-field) which obeys a Gauss’s Law that only depends on free charges. Free charges are the charges controllable by batteries, currents and the like. To a large extent one cannot totally control bound charges. We discuss the boundary conditions that E-fields and D-fields obey across a dielectric boundary. We turn next to a discussion of Laplace’s Equation in the presence of dielectrics.