Altitudinal Variation of Antioxidant Components and Capability in Indocalamus Latifolius (Keng) Mcclure Leaf
J Nutr Sci Vitaminol, 59, 336–342, 2013 Altitudinal Variation of Antioxidant Components and Capability in Indocalamus latifolius (Keng) McClure Leaf Qinxue NI1, Zhiqiang WANG1, Guangzhi XU1, Qianxin GAO1, Dongdong YANG1, Fumiki MORIMATSU2 and Youzuo ZHANG1,* 1 The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang Agriculture and Forestry University, Lin’an 311300, China 2 R & D Center, Nippon Meat Packers Inc., Tsukuba, Ibaraki 300–2646, Japan (Received February 7, 2013) Summary Indocalamus latifolius (Keng) McClure leaf is a popular food material in East Asia due to its antioxidant and anticorrosive activities. To utilize it more effectively, we inves- tigated the discrepancy of antioxidant activities and active compound content in Indocala- mus latifolius leaf along with the altitude change. Total flavonoids, phenolics, titerpenoids and eight characteristic active constituents, i.e, orientin, isoorientin, vitexin, homovitexin, p-coumaric acid, chlorogenic acid, caffeic acid, and ferulic acid, were determined by UV- spectrophotometer and synchronous RP-HPLC, respectively. Antioxidant activity was mea- sured using DPPH and FRAP methods. Our data showed that the content of TP and TF, DPPH radical scavenging ability and ferric reduction power of Indocalamus latifolius leaf changed as altitude altered, with the trends of decreasing gradually when lower than 700 m and then increasing to 1,000 m. Chlorogenic acid and orientin were the main characteristic compounds in Indocalamus latifolius leaf and were also affected by altitude. Our result indi- cated that higher altitude with an adverse environment is conducive to secondary metabo- lite accumulation for Indocalamus latifolius. It would provide a theoretical basis to regulate the leaf collection conditions in the industrial use of Indocalamus latifolius leaf.
[Show full text]