Penalty Element Separation from Copper Concetrates Utilizing Froth Flotation

Total Page:16

File Type:pdf, Size:1020Kb

Penalty Element Separation from Copper Concetrates Utilizing Froth Flotation PENALTY ELEMENT SEPARATION FROM COPPER CONCETRATES UTILIZING FROTH FLOTATION by Zachery Zanetell A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Metallurgical and Materials Engineering). Golden, CO Date: Signed: Zachery A. Zanetell Signed: Dr. Patrick R. Taylor Thesis Advisor Golden, CO Date: Signed: Dr. Michael Kaufman Professor and Head Department of Metallurgical and Materials Engineering ii ABSTRACT The copper ores that are currently being considered for development and processing are lower in grade and contain higher amounts of deleterious elements, which create difficulty in achieving a final copper concentrate that meets current restrictions. This presents increasing challenges to the process metallurgists during project development as well as to presently operating mines and mills. This thesis will focus on the separation of the deleterious elements, also known as penalty elements, mainly bismuth and arsenic from a copper concentrate using froth flotation techniques. The ability to separate penalty elements from copper concentrates will directly benefit mining companies by creating a final copper concentrate that will result in fewer financial penalties from smelter refineries. iii Table of Contents Abstract ......................................................................................................................................................... iii List of Figures ............................................................................................................................................... vii List of tables ................................................................................................................................................ viii List of Equations ........................................................................................................................................... xi Acknowledgements ...................................................................................................................................... xii Chapter 1 Introduction ................................................................................................................................. 1 Chapter 2 Literature Review ........................................................................................................................ 3 2.1. Fundamentals of Froth Flotation ..................................................................................................... 3 2.2. Selective Oxidation of Arsenic Minerals during Flotation ............................................................... 6 2.3. Depression of Arsenic Minerals in Flotation by Controlled Potentials ............................................ 7 2.4. Depression/Flotation of Arsenic Minerals ....................................................................................... 8 2.5. Bismuth Flotation ............................................................................................................................ 9 2.6. Characterization of Ores and Flotation Products ......................................................................... 11 Chapter 3 Experimental Procedures .......................................................................................................... 13 3.1. Testwork Samples ........................................................................................................................ 13 3.2. Blending, Splitting and Storage of Testwork Samples ................................................................. 13 3.3. Mineralogical Sample Preparation ................................................................................................ 14 3.3.1. Preparation of Epoxy Mounts ................................................................................................ 15 3.3.2. Surface Preparation of Epoxy Mounts .................................................................................. 16 3.3.3. Carbon Coating ..................................................................................................................... 17 3.3.4. Mineral Liberation Analysis by Scanning Electron Microscopy ............................................. 17 3.4. Analytical Methods ........................................................................................................................ 19 3.4.1. Four Acid Digestion ICP-260-X to determine Ag, Bi, Cd, Cu, Fe, Pb and Zn ....................... 19 3.5. Analysis of Bismuth by Bi-ICP-MS ............................................................................................... 20 iv 3.5.1. Standard Operating Procedure- Perkin Elmer NexION ICPMS 300D .................................. 20 3.5.2. Perkin Elmer NexION ICP-MS 300D Method ........................................................................ 21 3.6. Chemicals ..................................................................................................................................... 21 3.7. Metallurgical Methods ................................................................................................................... 22 3.7.1. Flotation Procedure ............................................................................................................... 22 3.7.2. Particle Size Characterization – Screen Analysis ................................................................. 23 3.7.3. Particle Size Analysis – Cyclosizer Analysis ......................................................................... 24 Chapter 4 Characterization of Copper Ore and Testwork Feed Samples ................................................. 25 4.1. Analytical Characterization of Head Samples .............................................................................. 25 4.2. Mineralogical Characterization by XRD ........................................................................................ 28 4.3. Mineralogical Characterization by MLA ........................................................................................ 28 4.3.1. MLA Calculated Assay vs. Chemical Analysis ...................................................................... 29 4.3.2. Distribution of Penalty Element Minerals – Final and Rougher Concentrates ...................... 30 4.3.3. Modal Mineralogy .................................................................................................................. 30 4.3.4. Mineral Liberation by Free Surface – Bismuth Minerals ....................................................... 35 4.3.5. Mineral Association – Bismuth Minerals ............................................................................... 41 4.3.6. Penalty Element Transport – Flowsheet Distribution ............................................................ 42 Chapter 5 Metallurgical Testwork Results ................................................................................................. 44 5.1. Metallurgical Testwork Approach ................................................................................................. 44 5.2. Baseline Metallurgical Testwork Results- Final Concentrate ....................................................... 45 5.3. Depression of Copper Minerals – Final Concentrate ................................................................... 50 5.4. Depression of Bismuth Minerals – Final Concentrate .................................................................. 52 5.5. Baseline Metallurgical Testwork Results- Rougher Concentrate ................................................. 58 5.6. Depression of Bismuth Minerals – Rougher Concentrate ............................................................ 61 5.7. Pre-aeration Screening Tests – Rougher Concentrates .............................................................. 70 5.8. Summary of Successful Separation Tests – Final and Rougher Concentrates ........................... 70 5.9. Confirmation Test – Rougher Concentrate ................................................................................... 70 Chapter 6 Conclusions and Recommendations ........................................................................................ 74 References Cited ........................................................................................................................................ 77 v Appendix A .................................................................................................................................................. 80 Appendix B .................................................................................................................................................. 86 Appendix C .................................................................................................................................................. 90 Appendix D .................................................................................................................................................. 93 vi LIST OF FIGURES Figure 2.1: Classical flotation cell schematic (Zhengzhou ZY Machinery CO.,LTD n.d.) ............................. 4 Figure 2.2: General flotation diagram ........................................................................................................... 5 Figure 3.1: Grinding and polishing sequence for Struers TegraPol-35 ...................................................... 17 Figure 3.2: Carbon coating brass stub color with corresponding
Recommended publications
  • A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite)
    minerals Review A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite) Darius G. Wonyen 1,†, Varney Kromah 1,†, Borbor Gibson 1,† ID , Solomon Nah 1,† and Saeed Chehreh Chelgani 1,2,* ID 1 Department of Geology and Mining Engineering, Faculty of Engineering, University of Liberia, P.O. Box 9020 Monrovia, Liberia; [email protected] (D.G.W.); [email protected] (Y.K.); [email protected] (B.G.); [email protected] (S.N.) 2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA * Correspondence: [email protected]; Tel.: +1-41-6830-9356 † These authors contributed equally to the study. Received: 24 July 2018; Accepted: 13 August 2018; Published: 15 August 2018 Abstract: It is well documented that flotation has high economic viability for the beneficiation of valuable minerals when their main ore bodies contain magnesium (Mg) carbonates such as dolomite and magnesite. Flotation separation of Mg carbonates from their associated valuable minerals (AVMs) presents several challenges, and Mg carbonates have high levels of adverse effects on separation efficiency. These complexities can be attributed to various reasons: Mg carbonates are naturally hydrophilic, soluble, and exhibit similar surface characteristics as their AVMs. This study presents a compilation of various parameters, including zeta potential, pH, particle size, reagents (collectors, depressant, and modifiers), and bio-flotation, which were examined in several investigations into separating Mg carbonates from their AVMs by froth flotation. Keywords: dolomite; magnesite; flotation; bio-flotation 1. Introduction Magnesium (Mg) carbonates (salt-type minerals) are typical gangue phases associated with several valuable minerals, and have complicated processing [1,2].
    [Show full text]
  • Effects of Varied Process Parameters on Froth Flotation Efficiency: a Case Study of Itakpe Iron Ore
    Nigerian Journal of Technology (NIJOTECH) Vol. 39, No. 3, July 2020, pp. 807 – 815 Copyright© Faculty of Engineering, University of Nigeria, Nsukka, Print ISSN: 0331-8443, Electronic ISSN: 2467-8821 www.nijotech.com http://dx.doi.org/10.4314/njt.v39i3.21 EFFECTS OF VARIED PROCESS PARAMETERS ON FROTH FLOTATION EFFICIENCY: A CASE STUDY OF ITAKPE IRON ORE S. Akande1, E. O. Ajaka2, O. O. Alabi3 and T. A. Olatunji4,* 1, 2, DEPARTMENT OF MINING ENGINEERING, FEDERAL UNIV. OF TECHNOLOGY, AKURE, ONDO STATE, NIGERIA 3, 4, DEPT. OF MET. & MATERIALS ENGINEERING, FEDERAL UNIV. OF TECHNOLOGY, AKURE, ONDO STATE, NIGERIA Email addresses: 1 [email protected], 2 [email protected], 3 [email protected], 4 [email protected] ABSTRACT The dire need for Itakpe iron ore concentrates of appreciable iron content meets for smelting operation necessitated this study. Core samples of the iron ore sourced from Itakpe, Kogi State, Nigeria were prepared for petrological analysis followed by chemical and particle size analyses. Froth flotation was done using different collectors at varying particle sizes and pH values. Characterization studies carried out revealed that Itakpe iron ore is a lean ore assaying 36.18% Fe2O3 and contains predominantly quartz, sillimanite, and haematite. Its liberation size lies favourably at 75 µm. Processing the ore by froth flotation yielded appreciable enrichment. Optimal recovery (~92%) was achieved using potassium amyl xanthate (PAX) at pH 11 for fine feed sizes (<125 µm) yielding iron concentrate assaying 67.66% Fe2O3. Thus, processing at this set-of- conditions is recommended for the industrial production of more enriched Itakpe iron ore concentrates.
    [Show full text]
  • Principles of Extractive Metallurgy Lectures Note
    PRINCIPLES OF EXTRACTIVE METALLURGY B.TECH, 3RD SEMESTER LECTURES NOTE BY SAGAR NAYAK DR. KALI CHARAN SABAT DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING PARALA MAHARAJA ENGINEERING COLLEGE, BERHAMPUR DISCLAIMER This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by the author for their respective teaching assignments as an additional tool for the teaching-learning process. Various sources as mentioned at the reference of the document as well as freely available material from internet were consulted for preparing this document. The ownership of the information lies with the respective author or institutions. Further, this document is not intended to be used for commercial purpose and the faculty is not accountable for any issues, legal or otherwise, arising out of use of this document. The committee faculty members make no representations or warranties with respect to the accuracy or completeness of the contents of this document and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. BPUT SYLLABUS PRINCIPLES OF EXTRACTIVE METALLURGY (3-1-0) MODULE I (14 HOURS) Unit processes in Pyro metallurgy: Calcination and roasting, sintering, smelting, converting, reduction, smelting-reduction, Metallothermic and hydrogen reduction; distillation and other physical and chemical refining methods: Fire refining, Zone refining, Liquation and Cupellation. Small problems related to pyro metallurgy. MODULE II (14 HOURS) Unit processes in Hydrometallurgy: Leaching practice: In situ leaching, Dump and heap leaching, Percolation leaching, Agitation leaching, Purification of leach liquor, Kinetics of Leaching; Bio- leaching: Recovery of metals from Leach liquor by Solvent Extraction, Ion exchange , Precipitation and Cementation process.
    [Show full text]
  • A Single-Crystal Epr Study of Radiation-Induced Defects
    A SINGLE-CRYSTAL EPR STUDY OF RADIATION-INDUCED DEFECTS IN SELECTED SILICATES A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Geological Sciences University of Saskatchewan Saskatoon By Mao Mao Copyright Mao Mao, October, 2012. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Doctor of Philosophy degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Geological Sciences 114 Science Place University of Saskatchewan Saskatoon, Saskatchewan S7N5E2, Canada i Abstract This thesis presents a series of single-crystal electron paramagnetic resonance (EPR) studies on radiation-induced defects in selected silicate minerals, including apophyllites, prehnite, and hemimorphite, not only providing new insights to mechanisms of radiation-induced damage in minerals but also having direct relevance to remediation of heavy metalloid contamination and nuclear waste disposal.
    [Show full text]
  • Evaluation of Scale-Up Model for Flotation with Kristineberg Ore
    Evaluation of Scale-up Model for Flotation with Kristineberg Ore Adam Isaksson Chemical Engineering, master's level 2018 Luleå University of Technology Department of Civil, Environmental and Natural Resources Engineering Evaluation of Scale-up Model for Flotation with Kristineberg Ore Adam Isaksson 2018 For degree of MASTER OF SCIENCE Luleå University of Technology Department of Civil, Environmental and Natural Resources Engineering Division of Minerals and Metallurgical Engineering Printed by Luleå University of Technology, Graphic Production 2018 Luleå 2018 www.ltu.se Preface As you may have figured out by now, this thesis is all about mineral processing and the extraction of metals. It was written as part of my studies at Luleå University of Technology, for a master’s degree in Chemical Engineering with specialisation Mineral and Metal Winning. There are many people I would like to thank for helping me out during all these years. First of all, my thanks go to supervisors Bertil Pålsson and Lisa Malm for the guidance in this project. Iris Wunderlich had a paramount role during sampling and has kindly delivered me data to this report, which would not have been finished without her support. I would also like to thank Boliden Mineral AB as a company. Partly for giving me the chance to write this thesis in the first place, but also for supporting us students during our years at LTU. Speaking of which, thanks to Olle Bertilsson for reading the report and giving me feedback. The people at the TMP laboratory deserves another mention. I am also very grateful for the financial support and generous scholarships from Jernkontoret these five years.
    [Show full text]
  • Flotation of Copper Sulphide from Copper Smelter Slag Using Multiple Collectors and Their Mixtures
    International Journal of Mineral Processing 143 (2015) 43–49 Contents lists available at ScienceDirect International Journal of Mineral Processing journal homepage: www.elsevier.com/locate/ijminpro Flotation of copper sulphide from copper smelter slag using multiple collectors and their mixtures Subrata Roy a,⁎, Amlan Datta b, Sandeep Rehani c a Aditya Birla Science and Technology Company Ltd., Taloja, Maharashtra, India b Formerly with Aditya Birla Science and Technology Company Ltd., Taloja, Maharashtra, India. c Birla Copper, Dahej, Gujarat, India article info abstract Article history: Present work focuses on the differences in the performances obtained in the froth flotation of copper smelter Received 14 August 2014 slag with multiple collector viz. sodium iso-propyl xanthate (SIPX), sodium di-ethyl dithiophosphate (DTP) Received in revised form 11 February 2015 and alkyl hydroxamate at various dosages. Flotation tests were carried out using single collectors as well as var- Accepted 20 August 2015 ious mixtures of the two collectors at different but constant total molar concentrations. Flotation performances Available online 28 August 2015 were increased effectively by the combination of collectors. The findings show that a higher copper recovery (84.82%) was obtained when using a 40:160 g/t mixture of sodium iso-propyl xanthate (SIPX) with di-ethyl Keywords: Flotation dithiophosphate compared to 78.11% with the best single collector. Similar recovery improvement (83.07%) Copper slag was also observed by using a 160:40 g/t mixture of sodium iso-propyl xanthate (SIPX) with alkyl hydroxamate. Sodium isobutyl xanthate The results indicate that in both cases DTP and alkyl hydroxamate played important role as co-collector with SIPX Hydroxamate for the recovery of coarse interlocked copper bearing particles and has an important effect on the behaviour of Dithiophosphate the froth phase.
    [Show full text]
  • A Study on Reduction of Copper Smelting Slag by Carbon for Recycling Into Metal Values and Cement Raw Material
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 doi:10.20944/preprints202001.0177.v1 Peer-reviewed version available at Sustainability 2020, 12, 1421; doi:10.3390/su12041421 Article A Study on Reduction of Copper Smelting Slag by Carbon for Recycling into Metal Values and Cement Raw Material Urtnasan Erdenebold and Jei-Pil Wang* Department of Metallurgical Engineering, School of Engineering, Pukyong National University, Busan 608- 739, Korea * Correspondence: [email protected]; Tel,: +82-51-629-6341 Abstract: Copper smelting slag is a solution of molten oxides created during the copper smelting and refining process, and about 1.5 million tons of copper slag is generated annually in Korea. Oxides in copper smelting slag include ferrous (FeO), ferric oxide (Fe2O3), silica (SiO2 from flux), alumina (AI2O3), calcia (CaO) and magnesia (MgO). Main oxides in copper slag, which iron oxide and silica, exist in the form of fayalite (2FeO·SiO2). Since the copper smelting slag contains high content of iron, and copper and zinc. Common applications of copper smelting slag are the value added products such as abrasive tools, roofing granules, road-base construction, railroad ballast, fine aggregate in concrete, etc., as well as the some studies have attempted to recover metal values from copper slag. This research was intended to recovery Fe-Cu alloy, raw material of zinc and produce reformed slag like a blast furnace slag for blast furnace slag cement from copper slag. As a results, it was confirmed that reduction smelting by carbon at temperatures above 1400°С is possible to recover pig iron containing copper from copper smelting slag, and CaO additives in the reduction smelting assist to reduce iron oxide in the fayalite and change the chemical and mineralogical composition of the slag.
    [Show full text]
  • Nickel Laterite Smelting Processes and Some Examples of Recent Possible Modifications to the Conventional Route
    metals Review Nickel Laterite Smelting Processes and Some Examples of Recent Possible Modifications to the Conventional Route Ender Keskinkilic Department of Metallurgical and Materials Engineering, Atilim University, 06830 Ankara, Turkey; [email protected]; Tel.: +90-533-302-9510 Received: 16 July 2019; Accepted: 1 September 2019; Published: 3 September 2019 Abstract: The treatment of laterites has been a research hotspot in extractive metallurgy over the past decades. Industrially, the pyrometallurgical treatment of laterites is mostly accomplished with a well-established method, namely, the rotary kiln–electric arc furnace (RKEF) process, which includes three main operations—calcination, prereduction, and smelting—followed by further refining for the removal of impurities from the raw ferro-nickel. As indicated in many studies of the RKEF process, the major downside of this method is its high energy consumption. Efforts have been made to lower this consumption. Furthermore, several new processes have been proposed. Among these, low-grade ferro-nickel production is regarded as the most widely and industrially used process after traditional RKEF operation. Although not widespread, other alternative processes of industrial scale have been generated since the start of the millennium. Recently, certain innovative processes have been tested either in the laboratory or at pilot-scale. In this paper, a literature review related to the smelting of laterites is made, and an emphasis on new processes and some examples of new developments in the RKEF process are presented. Keywords: laterite; smelting; RKEF process; low-grade ferro-nickel 1. Introduction According to a review published by Diaz et al., oxide-type nickel ores accounted for 64% of land-based nickel ores, but more than 60% of nickel production was based on the matte smelting of sulfide ores in 1988 [1].
    [Show full text]
  • Integral Management of Arsenical Sludge, Treatment and Recovery of By-Products of Acid Waters from Smelter Plants
    MILAF: INTEGRAL MANAGEMENT OF ARSENICAL SLUDGE, TREATMENT AND RECOVERY OF BY-PRODUCTS OF ACID WATERS FROM SMELTER PLANTS ULRIKE BROSCHEK, CECILIA VIDAL, LUIS BRAVO and GILDA ZUÑIGA Environmental Program, Fundación Chile Parque Antonio Rabat Sur 6165, Vitacura, Santiago, Chile; E-mail: [email protected] ABSTRACT Currently, the copper mining industry produces high amounts of sulfuric acid with low purity and high concentrations of arsenic and other metals. Most of these acid waters are neutralized in the copper smelting plants by using lime to raise the pH from 1 to 12 generating high amounts of arsenical sludge that has to be disposed on safety landfills because of its high toxicity. This has forced the mining companies to pay large sums of money for the disposal of significant volume of solid waste. Each copper smelting plant produces in average during this specific process more than 18,000 tons of arsenical sludge yearly, spending on the treatment and disposal stage more than US 2.8 million dollars per year where a 70 % of this cost corresponds to the disposal costs of the solid waste [1,2,3]. Different technologies for treating these acid wastewaters have been developed and patented worldwide. However, these treatments have focused on obtaining the separation of the arsenic from the effluent through physical-chemical precipitation using different basic components and cations that reacts with the contaminants and then precipitates in the solution [4]. These technologies have not been able to solve the problem because they are expensive, complex, not always efficient and still generates high amounts of arsenical sludge requiring high disposal costs; hence, mining companies have not implement them.
    [Show full text]
  • National Emissions Standards for Hazardous Air Pollutants from Secondary Lead Smelting; Final Rules
    Vol. 77 Thursday, No. 3 January 5, 2012 Part II Environmental Protection Agency 40 CFR Part 63 National Emissions Standards for Hazardous Air Pollutants From Secondary Lead Smelting; Final Rules VerDate Mar<15>2010 16:35 Jan 04, 2012 Jkt 226001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\05JAR2.SGM 05JAR2 mstockstill on DSK4VPTVN1PROD with RULES2 556 Federal Register / Vol. 77, No. 3 / Thursday, January 5, 2012 / Rules and Regulations ENVIRONMENTAL PROTECTION related to emissions during periods of the telephone number for the Air and AGENCY startup, shutdown, and malfunction. Radiation Docket and Information DATES: This final action is effective on Center is (202) 566–1742. 40 CFR Part 63 January 5, 2012. The incorporation by FOR FURTHER INFORMATION CONTACT: For [EPA–HQ–OAR–2011–0344; FRL–9610–9] reference of certain publications listed questions about this final action, contact in the rule is approved by the Director RIN 2060–AQ68 Mr. Nathan Topham, Office of Air of the Federal Register as of January 5, Quality Planning and Standards, Sector 2012. National Emissions Standards for Policies and Programs Division, U.S. ADDRESSES: Hazardous Air Pollutants From The EPA has established a Environmental Protection Agency, Secondary Lead Smelting docket for this action under Docket ID Research Triangle Park, NC 27711; No. EPA–HQ–OAR–2011–0344. All telephone number: (919) 541–0483; fax AGENCY: Environmental Protection documents in the docket are listed on number: (919) 541–3207; and email Agency (EPA). the http://www.regulations.gov Web address: [email protected]. For ACTION: Final rule. site.
    [Show full text]
  • Recovery of Phosphate Minerals from Plant Tailings Using Direct Froth Flotation
    minerals Article Recovery of Phosphate Minerals from Plant Tailings Using Direct Froth Flotation Ashraf Alsafasfeh and Lana Alagha * Department of Mining & Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA * Correspondence: [email protected]; Tel.: +1-573-341-6287; Fax: +1-573-341-6934 Received: 13 June 2017; Accepted: 9 August 2017; Published: 12 August 2017 Abstract: Wastes produced from the phosphate industry presents many challenges due to the high economic and environmental impacts involved with their disposal. However, the relative scarcity of high-grade phosphate ores has driven researchers to recover and recycle these valuable wastes (secondary sources). The goal of this study was to investigate the possibility of upgrading the P2O5 content in tailings produced from a phosphorous production plant using direct froth flotation. Characterization assays, including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and mineral liberation analysis (MLA), were first conducted to identify the mineralogical and morphological characteristics of tailings samples and grain properties to better understand the behavior of the flotation feed. Flotation experiments were conducted using Denver D-12 in a 1-L flotation cell in the presence of sodium silicate (dispersant) and sodium oleate (collector). Several parameters, such as the solids content of the flotation pulp, pulp pH and flotation time, were investigated to optimize the recovery and grade of the concentrate products. Results obtained from this study indicated that the P2O5 content in plant tailings could be upgraded from 21.57% to 28.4% at >73% recovery. Keywords: phosphate minerals; froth flotation; mineral liberation analysis; sodium silicate 1.
    [Show full text]
  • The Metallurgy of Antimony
    Chemie der Erde 72 (2012) S4, 3–8 Contents lists available at SciVerse ScienceDirect Chemie der Erde journal homepage: www.elsevier.de/chemer The metallurgy of antimony Corby G. Anderson ∗ Kroll Institute for Extractive Metallurgy, George S. Ansell Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, United States article info abstract Article history: Globally, the primary production of antimony is now isolated to a few countries and is dominated by Received 4 October 2011 China. As such it is currently deemed a critical and strategic material for modern society. The metallurgical Accepted 10 April 2012 principles utilized in antimony production are wide ranging. This paper will outline the mineral pro- cessing, pyrometallurgical, hydrometallurgical and electrometallurgical concepts used in the industrial Keywords: primary production of antimony. As well an overview of the occurrence, reserves, end uses, production, Antimony and quality will be provided. Stibnite © 2012 Elsevier GmbH. All rights reserved. Tetrahedrite Pyrometallurgy Hydrometallurgy Electrometallurgy Mineral processing Extractive metallurgy Production 1. Background bullets and armory. The start of mass production of automobiles gave a further boost to antimony, as it is a major constituent of Antimony is a silvery, white, brittle, crystalline solid that lead-acid batteries. The major use for antimony is now as a trioxide exhibits poor conductivity of electricity and heat. It has an atomic for flame-retardants. number of 51, an atomic weight of 122 and a density of 6.697 kg/m3 ◦ ◦ at 26 C. Antimony metal, also known as ‘regulus’, melts at 630 C 2. Occurrence and mineralogy and boils at 1380 ◦C.
    [Show full text]