Destrin Contributes to Lung Adenocarcinoma Progression By

Total Page:16

File Type:pdf, Size:1020Kb

Destrin Contributes to Lung Adenocarcinoma Progression By Published OnlineFirst September 2, 2020; DOI: 10.1158/1541-7786.MCR-20-0187 MOLECULAR CANCER RESEARCH | CANCER GENES AND NETWORKS Destrin Contributes to Lung Adenocarcinoma Progression by Activating Wnt/b-Catenin Signaling Pathway A C Hui-Juan Zhang1, Wen-Jing Chang1, Cai-Yun Jia1, Ling Qiao1, Jing Zhou1, Qing Chen1, Xiao-Wei Zheng1,4, Jian-Hua Zhang4, Hong-Chao Li5, Zheng-Yan Yang1, Zhong-Hua Liu3, Guang-Chao Liu1, Shao-Ping Ji2, and Feng Lu1 ABSTRACT ◥ Lung cancer, especially lung adenocarcinoma, is one of the with the poor prognosis of lung adenocarcinoma patients. Fur- most common neoplasms worldwide. However, the mechanisms thermore, we also found that DSTN promotes cell proliferation, underlying its initiation, development, and metastasis are still invasion, and migration in vitro, and facilitates subcutaneous poorly understood. Destrin (DSTN) is a member of ADF/cofilin tumor formation and lung metastasis via intravenous injection family. Its detailed biological function remains unknown, in vivo. Mechanically, DSTN associates with and facilitates although it is reported that DSTN is involved in cytoskeleton nuclear translocation of b-catenin, which promotes epithelial- remodeling and regulation of actin filament turnover. Recent to-mesenchymal transition (EMT). Taken together, our results evidence has shown that high expression of cofilin-1 is associated indicated that DSTN enhances lung cancer malignancy through with invasion and poor prognosis of several types of human facilitating b-catenin nuclear translocation and inducing EMT. tumors, but the detailed mechanism is still entirely unclear, Combined with multivariate analyses, DSTN might potentially particularly in lung cancer tumorigenesis and malignancy. Here, serve as a therapeutic target and an independent prognostic we report that DSTN was highly expressed in a mouse lung marker of lung adenocarcinoma. cancer model induced by urethane and in clinical lung adeno- carcinoma tissue samples. Its expression level was positively Implications: This finding indicates that DSTN facilitates correlated with cancer development, as well as metastasis to the b-catenin nuclear translocation and promotes malignancy in lung liver and lymph nodes. Consistently, it was directly associated adenocarcinoma. Introduction which results in the loss of opportunity for curative surgical resection and a poor prognosis (3). Lung adenocarcinoma is the most prevalent Lung cancer is the leading cause of cancer-related deaths in China histologic type of lung cancer, which accounts for approximately 40% and worldwide. Despite a great progress in cancer research and of all lung cancers. During the last few years, lung adenocarcinoma has therapeutic strategies over the last decades, the prognosis of lung an increasing frequency, and its prognosis has not been obviously cancer remains poor with a 5-year survival rate of less than 15% (1, 2). improved (4). The prognosis of lung adenocarcinoma is highly asso- Therefore, both understanding the mechanism of cancer development ciated with lymph node and distant metastasis. Therefore, it is of great and progression and early diagnosis are critical to lung cancer treat- interest to identify novel biomarkers that serve for early diagnosis and ment. Unfortunately, because of the lack of early and reliable diag- accurate prognosis prediction, which allow improving the prognosis. nostic biomarkers together with the limited understanding of its Proteomic technologies have been widely used in the global analysis carcinogenic mechanisms, more than 70% of the patients are found for lung cancer biomarker discovery (5). Although many proteomic in advanced stages accompanied by extensive invasion and metastasis, studies on lung adenocarcinoma have been reported (6, 7), to our knowledge, little is known about the changes in protein expressional profiles at the early-stage of human lung adenocarcinoma, neither any 1 Joint National Laboratory for Antibody Drug Engineering, Henan University, clinically established biomarkers available for early detection of lung 2 Kaifeng, P.R. China. Department of Biochemistry and Molecular Biology, adenocarcinoma. Comparative proteomics analysis of successive Medical School, Henan University, Kaifeng, P.R. China. 3Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, stages of human lung adenocarcinoma is the most direct and persua- Kaifeng, P.R. China. 4Department of Clinical Laboratory, Puyang Hospital of sive way to identify biomarkers for early diagnosis of lung adenocar- Traditional Chinese Medicine, Puyang, P.R. China. 5Department of Pathology, cinoma. However, a major obstacle in the analysis of tissue specimens Puyang Oilfeld General Hospital, Puyang, P.R. China. is tissue heterogeneity, in which different cells are collected. Further- Note: Supplementary data for this article are available at Molecular Cancer more, it is difficult to obtain a large amount of early-stage clinical lung Research Online (http://mcr.aacrjournals.org/). adenocarcinoma tissue. H.-J. Zhang and W. -J. Chang contributed equally to this article. To search for the early biomarkers and explore the underlying mechanisms of initiation and metastasis of lung adenocarcinoma, in Corresponding Authors: Feng Lu, Henan University, Kaifeng 475004, P.R. China. Phone/Fax: 8637-1238-80398; E-mail: [email protected]; and this study, we developed a urethane-induced mouse lung adenocar- Shao-Ping Ji, [email protected] cinoma model, which exhibits similar histologic appearance and molecular changes to human lung adenocarcinoma (8, 9). We used Mol Cancer Res 2020;XX:XX–XX a laser capture microdissection (LCM) approach to purify the target doi: 10.1158/1541-7786.MCR-20-0187 cells from lung tissues of a mouse model with early carcinogenesis Ó2020 American Association for Cancer Research. lesion, then investigated the differential proteins in tumor and control AACRJournals.org | OF1 Downloaded from mcr.aacrjournals.org on September 28, 2021. © 2020 American Association for Cancer Research. Published OnlineFirst September 2, 2020; DOI: 10.1158/1541-7786.MCR-20-0187 Zhang et al. tissue using isobaric tagging for relative and absolute protein quan- lungs were prepared for histologic, iTRAQ, and Western blotting tification (iTRAQ) combined with two-dimensional 2D-LC/MS-MS analyses. Five mice in each group were examined at each time point. approach. Subsequently, we further validated our observations by IHC and Western blot analysis. Among the identified 191 potential pro- Sample preparation and LC-ESI-MS/MS analysis teins, destrin (DSTN) protein expression (Dstn, tr|Q4FK36|) displayed Lung tissue protein sample preparation, iTRAQ labeling, LC- a significant upregulation (3.67-fold to control) in early-stage mouse electrospray (ESI)-MS/MS analysis and protein identification were lung cancer tissues compared with the control group. performed as described previously (18, 19). Additional details are DSTN belongs to the ADF/cofilin family, consisting of DSTN, provided in the Supplementary Data. cofilin-1, and muscle-specificcofilin-2 (10). These proteins are abun- dant and essential in almost all eukaryotic cell types. They involve in Clinical lung adenocarcinoma and adjacent nontumor lung cytoskeleton remodeling and precise regulation of the actin filament tissues turnover and take part in numerous cellular processes such as cell A total of 30 paired samples of lung adenocarcinoma and adjacent cytokinesis, proliferation, and membrane trafficking (11, 12). Recent nontumor lung tissues were obtained from patients who underwent studies showed that actin dynamics and their regulation of target surgery between 2013 and 2015 and preserved in the Department of proteins are not only essential for the healthy development and Pathology, Puyang Oilfield General Hospital (Henan, P.R. China). All function of the cells, but also play a crucial role in human diseases, patients gave written informed consent before sample collection. including cancers. However, most research on ADF/cofilin family None of the lung adenocarcinoma patients received radio- or chemo- proteins in metastatic invasion has focused on cofilin-1 (13, 14). As a therapy before surgery. Lung adenocarcinoma tissue microarray member of the ADF/cofilin protein family, the DSTN with the least (HLugA180Su02) purchased from Shanghai Outdo Biotech Co., Ltd. study, and is only found to regulate the migration and invasion of colon included 86 lung adenocarcinoma patients undergoing surgery cancer through regulating action dynamics (15). Its high expression between 2004 and 2009. This study was approved by the Ethic was the association with growth and perineural invasion of pancreatic Committee of the Medical School, Henan University (Kaifeng, P.R. cancer (16). However, its precise roles in human cancers, particularly China) and all methods in this study were carried out in accordance in lung adenocarcinoma, and its downstream signaling pathway in with the recommended guidelines. these processes, remain largely unclear. Here, we have found that overexpressed DSTN seems to be a Cell culture, expression plasmids, and stable transfection of functional oncogenic molecule at lung adenocarcinoma both shRNA in vitro and in vivo. For the first time, we have demonstrated that The human NSCLC cell lines, A549, HCI-H1299, HCI-H460, HCI- DSTN expression is associated with progression of lung cancer H1373, HCI-H1573, and immortalized lung epithelial cell line BEAS- development and liver metastasis in urethane-induced lung adeno-
Recommended publications
  • Table 1 Gene Name Increased Or Decreased in LTD
    Table_1 gene_name increased or decreased in LTD protein_id description keep_supernatant keep_pellet comparison sample hit_annotation_methodpvalue fdr hit hit_annotation 2010300C02RIK increased E9Q3M9 Protein 2010300C02Rik OS=Mus musculus GN=2010300C02Rik PE=1 SV=1 TRUE TRUE NMDA - control pellet fdrtool 0,074667 0,584087 FALSE trend 2310035C23RIK|KIAA1468increased A0A087WSS1|E9QM90|Q148V7|Q148V7-2 Protein 2310035C23Rik OS=Mus musculus GN=2310035C23Rik PE=1 SV=1|Protein 2310035C23Rik OS=Mus musculusTRUE GN=2310035C23Rik PE=1 SV=2|LisH FALSE domain NMDAand HEAT - control repeat-containing protein KIAA1468 supernatant OS=Mus musculus GN=Kiaa1468 fdrtoolPE=1 SV=1|Isoform 0,080056 2 of 0,589077LisH domain FALSEand HEAT trend repeat-containing protein KIAA1468 OS=Mus musculus GN=Kiaa1468 ABR increased E9PUE7|Q5SSL4|Q5SSL4-2|Q5SSL4-3|Q5SSL4-4 Active breakpoint cluster region-related protein OS=Mus musculus GN=Abr PE=1 SV=1|Isoform 2 of Active breakpointTRUE cluster region-related protein TRUE OS=Mus musculus NMDA GN=Abr|Isoform - control 3 of Active breakpoint supernatant cluster region-related protein OS=Mus fdrtool musculus 0,08128 GN=Abr|Isoform 0,592743 4 of Active FALSE breakpoint trend cluster region-related protein OS=Mus musculus GN=Abr ADAM22 increased D3YUP9|Q9R1V6|Q9R1V6-10|Q9R1V6-11|Q9R1V6-12|Q9R1V6-13|Q9R1V6-14|Q9R1V6-15|Q9R1V6-17|Q9R1V6-4|Q9R1V6-5|Q9R1V6-6|Q9R1V6-7|Q9R1V6-8Disintegrin and metalloproteinase domain-containing protein 22 OS=Mus musculus GN=Adam22 PE=1 SV=1|DisintegrinFALSE and metalloproteinase domain-containing TRUE
    [Show full text]
  • An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Netwo
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: Functional, metabolic, and differential network analysis Sriram Devanathan Washington University School of Medicine in St. Louis Timothy Whitehead Washington University School of Medicine in St. Louis George G. Schweitzer Washington University School of Medicine in St. Louis Nicole Fettig Washington University School of Medicine in St. Louis Attila Kovacs Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Devanathan, Sriram; Whitehead, Timothy; Schweitzer, George G.; Fettig, Nicole; Kovacs, Attila; Korach, Kenneth S.; Finck, Brian N.; and Shoghi, Kooresh I., ,"An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: Functional, metabolic, and differential network analysis." PLoS One.9,7. e101900. (2014). https://digitalcommons.wustl.edu/open_access_pubs/3326 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Sriram Devanathan, Timothy Whitehead, George G. Schweitzer, Nicole Fettig, Attila Kovacs, Kenneth S. Korach, Brian N. Finck, and Kooresh I. Shoghi This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/3326 An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Network Analysis Sriram Devanathan1, Timothy Whitehead1, George G. Schweitzer2, Nicole Fettig1, Attila Kovacs3, Kenneth S.
    [Show full text]
  • Serum Albumin OS=Homo Sapiens
    Protein Name Cluster of Glial fibrillary acidic protein OS=Homo sapiens GN=GFAP PE=1 SV=1 (P14136) Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 Cluster of Isoform 3 of Plectin OS=Homo sapiens GN=PLEC (Q15149-3) Cluster of Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2 (P68871) Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 Cluster of Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2 (Q13509) Cluster of Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 (P60709) Cluster of Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 (P68363) Cluster of Isoform 2 of Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTAN1 (Q13813-2) Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2 Cluster of Spectrin beta chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTBN1 PE=1 SV=2 (Q01082) Cluster of Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM PE=1 SV=4 (P14618) Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens GN=DYNC1H1 PE=1 SV=5 Cluster of ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide OS=Homo sapiens GN=ATP1A2 PE=3 SV=1 (B1AKY9) Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens GN=DPYSL2 PE=1 SV=1 Cluster of Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 (P12814) 60 kDa heat shock protein, mitochondrial OS=Homo
    [Show full text]
  • The Role of the Actin Cytoskeleton During Muscle Development In
    THE ROLE OF THE ACTIN CYTOSKELETON DURING MUSCLE DEVELOPMENT IN DROSOPHILA AND MOUSE by Shannon Faye Yu A Dissertation Presented to the Faculty of the Louis V. Gerstner, Jr. Graduate School of the Biomedical Sciences in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy New York, NY Oct, 2013 Mary K. Baylies, PhD! Date Dissertation Mentor Copyright by Shannon F. Yu 2013 ABSTRACT The actin cytoskeleton is essential for many processes within a developing organism. Unsurprisingly, actin and its regulators underpin many of the critical steps in the formation and function of muscle tissue. These include cell division during the specification of muscle progenitors, myoblast fusion, muscle elongation and attachment, and muscle maturation, including sarcomere assembly. Analysis in Drosophila has focused on regulators of actin polymerization particularly during myoblast fusion, and the conservation of many of the actin regulators required for muscle development has not yet been tested. In addition, dynamic actin processes also require the depolymerization of existing actin fibers to replenish the pool of actin monomers available for polymerization. Despite this, the role of actin depolymerization has not been described in depth in Drosophila or mammalian muscle development. ! Here, we first examine the role of the actin depolymerization factor Twinstar (Tsr) in muscle development in Drosophila. We show that Twinstar, the sole Drosophila member of the ADF/cofilin family of actin depolymerization proteins, is expressed in muscle where it is essential for development. tsr mutant embryos displayed a number of muscle defects, including muscle loss and muscle misattachment. Further, regulators of Tsr, including a Tsr-inactivating kinase, Center divider, a Tsr-activating phosphatase, Slingshot and a synergistic partner in depolymerization, Flare, are also required for embryonic muscle development.
    [Show full text]
  • Arole of Cofilin/Destrin in Reorganization of Actin
    CELL STRUCTURE AND FUNCTION 21: 421-424 (1996) © 1996 by Japan Society for Cell Biology A Role of Cofilin/Destrin in Reorganization of Actin Cytoskeleton in Response to Stresses and Cell Stimuli Ichiro Yahara1, Hiroyuki Aizawa1, Kenji Moriyama1, Kazuko Iida1, Naoto Yonezawa3, Eisuke Nishida4, Hideki Hatanaka2, and Fuyuhiko Inagaki2 department of Cell Biology, ^Department of Molecular Physiology, The Tokyo Metropolitan Institute ofMedi- cal Science, Tokyo 113, *Department of Chemistry, Faculty of Science, Chiba University, Chiba 263, and insti- tute for Virus Research, Kyoto University, Kyoto 606-01 Key words: cofilin/actin/stress response/heat shock/nuclear translocation Various cellular events such as cell motility and divi- tyostelium discoideum (K.I. and H.A. , unpublished ob- sion are directed by the actin cytoskeleton under the con- servations). As will be seen below, phosphorylated cofi- trol of its regulatory system. Cofilin is a low molecular lin is inactive in the interaction with actin (3, 23, 24). weight actin-modulating protein that was originally iso- Thus it would be possible that growing cells of lower eu- lated from porcine brain (26) and is ubiquitously distri- caryotes might not need to inactivate cofilin whereas a buted in eucaryotes from the budding yeast to mam- portion of cofilin is always inactivated in resting cells of mals (4, 14, 21). Cofilin binds to actin in both monomer- higher eucaryotes. ic and polymerized forms in a 1:1 molar ratio and depo- In this review, we briefly summarize current progress lymerizes F-actin in a pH-dependent manner (26, 32). on research on structure and function of cofilin and dis- In vitro experiments indicated that cofilin binds and cuss a role(s) of cofilin in cellular responses.
    [Show full text]
  • The Interaction Between Actin Filaments and the Cytoskeleton-Membrane Attachment Site Protein Talin Jinwen Zhang Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1995 The interaction between actin filaments and the cytoskeleton-membrane attachment site protein talin Jinwen Zhang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, and the Cell Biology Commons Recommended Citation Zhang, Jinwen, "The interaction between actin filaments and the cytoskeleton-membrane attachment site protein talin " (1995). Retrospective Theses and Dissertations. 11104. https://lib.dr.iastate.edu/rtd/11104 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS T^ manuscript has been reproduced from ±e microfilm master. UMI films the text directly fi'om the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from aiqr ^pe of computer printer. The quality of this reprodaction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversefy affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted Also, if unauthorized copyright material had to be removed, a note win indicate the deletion. • Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • The Role of the Cytoskeleton in the Structure and Function of the Golgi Apparatus Gustavo Egea and Rosa M
    The role of the cytoskeleton in the structure and function of GA * 1 The role of the cytoskeleton in the structure and function of the Golgi apparatus Gustavo Egea and Rosa M. Ríos Introduction Cellular organelles in mammalian cells are individualized membrane entities that often become spherical. The endoplasmic reticulum (ER) and the Golgi apparatus (GA) are exceptions to this rule, as they are respectively made up of a continuous tubular network and a pile of flat disks. Their unique shapes are regulated by molecular elements (Kepes et al. 2005; Levine and Rabouille 2005), including the cytoskeleton. All cytoskeletal elements, together with cytoskeleton-associated motors and non-motor proteins, have a role in the subcellular positioning, biogenesis and function of most organelles, being particularly relevant in the GA. The GA is the central organelle of the eukaryotic secretory pathway. While its basic function is highly conserved, the GA varies greatly in shape and number from one organism to another. In the simplest organisms like budding yeast Saccharomyces cerevisiae, the organelle takes the form of dispersed cisternae or isolated tubular networks (Preuss et al. 1992; Ram- bourg et al. 2001). Unicellular green alga (Henderson et al. 2007) and many protozoa like Toxoplasma gondii (Pelletier et al. 2002) and Trypanosoma brucei (He 2007; He et al. 2004) contain a single pile of flattened cisternae aligned in parallel. The organization of the GA in this manner is referred to as a Golgi stack, which usually contains two regions: one central and poorly fenestrated (compact) and other lateral and highly fenestrated (non-com- pact) (Kepes et al.
    [Show full text]
  • Supplemental Table 1
    Symbol Gene name MIN6.EXO MIN6.M1 MIN6.M2 MIN6.M3 MIN6.M4 A2m alpha-2-macroglobulin A2m Acat1 acetyl-Coenzyme A acetyltransferase 1 Acat1 Acly ATP citrate lyase Acly Acly Acly Act Actin Act Act Act Act Aga aspartylglucosaminidase Aga Ahcy S-adenosylhomocysteine hydrolase Ahcy Alb Albumin Alb Alb Alb Aldoa aldolase A, fructose-bisphosphate Aldoa Anxa5 Annexin A5 Anxa5 AP1 Adaptor-related protein complex AP1 AP2 Adaptor protein complex AP2 Arf1 ADP-ribosylation factor 1 Arf1 Atp1a1 ATPase Na/K transpoting Atp1a1 ATP1b1 Na/K ATPase beta subunit ATP1b1 ATP6V1 ATPase, H+ transporting.. ATP6V1 ATP6v1 ATP6v1 Banf1 Barrier to autointegration factor Banf1 Basp1 brain abundant, memrane signal protein 1 Basp1 C3 complement C3 C3 C3 C3 C4 Complement C4 C4 C4 C4 Calm2 calmodulin 2 (phosphorylase kinase, delta) Calm2 Capn5 Calpain 5 Capn5 Capn5 Cct5 chaperonin subunit 5 Cct5 Cct8 chaperonin subunit 8 Cct8 CD147 basigin CD147 CD63 CD63 CD63 CD81 CD81 CD81 CD81 CD81 CD81 CD81 CD82 CD82 CD82 CD82 CD90.2 thy1.2 CD90.2 CD98 Slc3a2 CD98 CD98 Cdc42 Cell division cycle 42 Cdc42 Cfl1 Cofilin 1 Cfl1 Cfl1 Chmp4b chromatin modifying protein 4B Chmp4b Chmp5 chromatin modifying protein 5 Chmp5 Clta clathrin, light polypeptide A Clta Cltc Clathrin Hc Cltc Cltc Cltc Cltc Clu clusterin Clu Col16a1 collagen 16a1 Col16a1 Col2 Collagen type II Col2a1 Col2 Col6 Collagen type VI alpha 3 Col6a3 Col6 CpE carboxypeptidase E CpE CpE CpE, CpH CpE CpE Cspg4 Chondroitin sulfate proteoglycan 4 Cspg4 CyCAP Cyclophilin C-associated protein CyCAP CyCAP Dnpep aspartyl aminopeptidase Dnpep Dstn destrin Dstn EDIL3 EGF-like repeat discoidin.
    [Show full text]
  • The Caenorhabditis Elegans Unc-60 Gene Encodes Proteins Homologous to a Family of Actin-Binding Proteins
    Mol Gen Genet (1994) 242:346-357 © Springer-Verlag 1994 The Caenorhabditis elegans unc-60 gene encodes proteins homologous to a family of actin-binding proteins Kim S. McKim*, Camela Matheson, Marco A. Marra, Marcia F. Wakarchuk, David L. Baillie Institute of Molecular Biology and Biochemistry, Department of Biological Sciences, Simon Fraser University, Burnaby, B.C. Canada V5A 1S6 Received: 10 May 1993/Accepted: 28 July 1993 Abstract. Mutations in the uric-60 gene of the nematode vertebrate Z lines, and interdigitate with the thick fila- Caenorhabditis eIegans result in paralysis. The thin fila- ments which are centrally stacked in the sarcomere. An ments of the muscle cells are severely disorganized and electron-dense material analogous to the vertebrate M not bundled with myosin into functional contractile line is also present. While there are also significant dif- units. Here we report the cloning and sequence of unc-60. ferences, the similarities to vertebrate muscle make Two unc-60 transcripts, 1.3 and 0.7 kb in size, were de- C. eleoans an attractive model system for the study of tected. The transcripts share a single exon encoding only muscle structure and function. the initial methionine, yet encode proteins with ho- Genetic analysis has identified more than 30 genes mologous sequences. The predicted protein products are involved in muscle development and function (Waterston 165 and 152 amino acids in length and their sequences 1988). Most of these genes were identified through the are 38% identical. Both proteins are homologous to a isolation of mutants exhibiting impaired movement due family of actin depolymerizing proteins identified in ver- to the dysfunction of muscle contraction (Brenner 1974).
    [Show full text]
  • Downregulation of Talin-1 Expression Associates with Increased Proliferation and Migration of Vascular Smooth Muscle Cells in Ao
    Wei et al. BMC Cardiovascular Disorders (2017) 17:162 DOI 10.1186/s12872-017-0588-0 RESEARCH ARTICLE Open Access Downregulation of Talin-1 expression associates with increased proliferation and migration of vascular smooth muscle cells in aortic dissection Xiaolong Wei1†, Yudong Sun1†, Yani Wu1†, Jiang Zhu1, Bin Gao1, Han Yan2, Zhiqing Zhao1*, Jian Zhou1* and Zaiping Jing1* Abstract Background: This study aimed to assessed whether Talin-1 is involved in the pathogenesis of aortic dissection via regulating vascular smooth muscle cell (VSMC) biological function. Methods: Human aortic samples were obtained from organ donors who died from nonvascular diseases as normal controls and from patients undergoing surgical repair of thoracic aortic dissection. The expression level and distribution of Talin-1 were detected using westernblot analysis and immunohistochemistry in each sample. We inhibited the expression of Talin-1 via RNA interference in VSMCs. VSMC proliferation was detected by Cell-counting Kit-8 analyses. Scratch test and flow cytometry were used to identify the migration and apoptosis ability. Antibody microarray analysis and qRT-PCR were used to detect some protein and mRNA changes which were induced by Talin-1 downregulation. Results: Talin-1 was significantly downregulated in the media of aortic dissection samples compared with controls (P < 0.05). Talin-1 knockdown significantly induced VSMC proliferation and migration in vitro. Proteins which involved in cell cycle can be regulated by downregulating Talin-1. Down regulation of Talin-1 can significanly increased the expression of anaphase-promoting complex subunit 2 (APC2) and decreased p19 alternative reading frame (p19ARF), Cullin-3, and beta actin’sexpression.
    [Show full text]
  • Cytoskeletal Proteins in Neurological Disorders
    cells Review Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders Diana C. Muñoz-Lasso 1 , Carlos Romá-Mateo 2,3,4, Federico V. Pallardó 2,3,4 and Pilar Gonzalez-Cabo 2,3,4,* 1 Department of Oncogenomics, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; [email protected] 2 Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, 46010 Valencia, Spain; [email protected] (C.R.-M.); [email protected] (F.V.P.) 3 CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain 4 Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain * Correspondence: [email protected]; Tel.: +34-963-395-036 Received: 10 December 2019; Accepted: 29 January 2020; Published: 4 February 2020 Abstract: Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures within neurons (cell bodies and axons), which allow their proper development and function through life. Here, we will provide an overview of both the basic and novel concepts related to those cytoskeletal proteins, which are emerging as potential targets in the study of the pathophysiological mechanisms underlying neurological disorders.
    [Show full text]
  • Indoxyl Sulfate and P-Cresyl Sulfate Promote Vascular Calcification and Associate with Glucose Intolerance
    BASIC RESEARCH www.jasn.org Indoxyl Sulfate and p-Cresyl Sulfate Promote Vascular Calcification and Associate with Glucose Intolerance Britt Opdebeeck ,1 Stuart Maudsley,2,3 Abdelkrim Azmi,3 Annelies De Maré,1 Wout De Leger,4 Bjorn Meijers,5,6 Anja Verhulst,1 Pieter Evenepoel,5,6 Patrick C. D’Haese,1 and Ellen Neven1 1Laboratory of Pathophysiology, Department of Biomedical Sciences, 2Receptor Biology Lab, Department of Biomedical Sciences, and 3Translational Neurobiology Group, Flanders Institute of Biotechnology Center for Molecular Neurology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; 4Division of Molecular Design and Synthesis, Department of Chemistry and 6Laboratory of Nephrology, Department of Immunology and Microbiology, Catholic University of Leuven, Leuven, Belgium; and 5Division of Internal Medicine, Nephrology, University Hospitals Leuven, Leuven, Belgium ABSTRACT Background Protein-bound uremic toxins indoxyl sulfate (IS) and p-cresyl sulfate (PCS) have been associ- ated with cardiovascular morbidity and mortality in patients with CKD. However, direct evidence for a role of these toxins in CKD-related vascular calcification has not been reported. Methods To study early and late vascular alterations by toxin exposure, we exposed CKD rats to vehicle, IS (150 mg/kg per day), or PCS (150 mg/kg per day) for either 4 days (short-term exposure) or 7 weeks (long-term exposure). We also performed unbiased proteomic analyses of arterial samples coupled to functional bioinformatic annotation analyses to investigate molecular signaling events associated with toxin-mediated arterial calcification. Results Long-term exposure to either toxin at serum levels similar to those experienced by patients with CKD significantly increased calcification in the aorta and peripheral arteries.
    [Show full text]