Electrostatics

Total Page:16

File Type:pdf, Size:1020Kb

Electrostatics Section 1: Electrostatics Charge density The most fundamental quantity of electrostatics is electric charge. Charge comes in two varieties, which are called “positive” and “negative”, because their effects tend to cancel. For example if we have +q and –q at the same point, electrically it is the same as no charge at all. Charge is conserved: it cannot be created or destroyed. The total charge of a closed system does not change. This is called global conservation of charge. It may happen, however, that charge disappear in one point in space and instantly appear in the other point due to the motion of the charge. There should be then continuous path between the points. This is called local conservation of charge which has its manifestation in the continuity equation. Charge is quantized. The fact is that electric charges come only in discrete lumps – integers multiples of the basic unit charge e. For example electron carries charge –e and proton carries charge +e. The fundamental unit of charge is so tiny that in macroscopic applications this charge quantization can be ignored. We will therefore be dealing with continuous distributions of charge treating it as a continuous fluid. The fundamental quantity which describes this charge distribution is the charge density. The charge density is the local charge per unit volume, i.e. ()r limq / V dq / dV , (1.1) V 0 where V is the volume centered at point r . The total charge in volume V is therefore Qdq()rr dV () dr3 , (1.2) VV V Since the SI unit of charge is Coulomb, the unit of charge density is C/m3. V d3r (r) r Fig.1.1 O If charge Q is localized in a point of space, say r0, this charge is called a point charge. A point charge produces an infinite charge density at the point r0. Indeed, if we take volume V centered at point r0 and tend this volume to zero, the ratio qV/ will diverge due to the constant charge qQ located in this volume independent of the magnitude of the volume. Therefore, the charge density ()r0 . At any other points rr 0 the charge density is zero, (r ) 0 . Despite the divergence of the charge density at rr 0 the integral over any volume V which contains point rr 0 is finite and is equal to the total charge in this volume: (r )dV Q . In this case the charge density is given in terms of the delta V function: 3 ()rrrQ (0 ). (1.3) In one dimension, the delta function, written (x a ) , is a mathematically improper function having the 1 properties: ()0xa , if x a (1.4) and ()1xadx . (1.5) The delta function can be given an intuitive meaning as the limit of a peaked curve such as a Lorentzian that becomes narrower and narrower, but higher and higher, in such a way that the area under the curve is always constant. 1 ()x lim . (1.6) 0 2/4 x22 From the definitions above it is evident that, for an arbitrary function f(x), f ()(xxadxfa ) (). (1.7) In three dimensions, with Cartesian coordinates, 3 ()()()()rr0000x xyyzz (1.8) is a function that vanishes everywhere except at rr 0 , and is such that 1, ifr V 33()rrdr 0 (1.9) 0 V 0, ifr0 V Note that a delta function has the dimensions of an inverse volume. For N point charges qi located at positions ri (i = 1…N) the charge density is given by N 3 ()rrrqii ( ). (1.10) i1 In addition to volume charge density we will also be dealing with surface and line charge densities. The surface charge density (r ) is given the local surface charge per unit surface, such that the charge in a small surface area da at point r is then dq (r ) da . Similarly, the line charge density (r ) is given by the local line charge per unit length dl, such that the charge in a small element of length dl at point r is then dq (r ) dl . Coulomb’s law All of electrostatics originates from the quantitative statement of Coulomb’s law concerning the force acting between charged bodies at rest with respect to each other. Coulomb, in a series of experiments, showed experimentally that the force between two small charged bodies separated in air a distance large compared to their dimensions varies directly as the magnitude of each charge, varies inversely as the square of the distance between them, is directed along the line joining the charges, and is attractive if the bodies are oppositely charged and repulsive if the bodies have the same type of charge. If the two charges located at positions r1 and r2 the force on the charge at r2 is equal to 2 qq rr F 12 21. (1.11) 4 3 0 rr21 -12 2 -1 -2 * Here we use the SI system, in which 0 is the permittivity of free space 0 = 8.85 10 C N m . Experiments show that the electrostatic force is additive so that the force on a point charge q placed at position r due to other charges qi located at positions ri (i = 1…N) is given by q N rr F q i (1.12) 4 i 3 0 i1 rr i This relation is called the superposition principle. Although the thing that eventually gets measured is a force, it is useful to introduce a concept of an electric field. The electric field is defined as the force exerted on a unit charge located at position vector r. It is a vector function of position, denoted by E. F = qE, (1.13) where F is the force, E the electric field, and q the charge. According to Coulomb the electric field at the point r due to point charges qi located at positions ri (i=1…N) is given by 1 N rr Er() q i , (1.14) 4 i 3 0 i1 rr i which is superposition of field produced by the individual point charges. In the SI system, the electric field is measured in volts per meter (V/m). Fig.1.2 The electric field can be visualized using field lines as is shown schematically in Fig.1.2 for two charges, positive and negative. Positive charges can be thought as a source of an electric field and negative charges can be though as sinks of an electric field. The magnitude of the electric field is determined by the density of the field lines. 3 d r' r- r' E(r) (r') r' r Fig.1.3 O * 2 In SI, the permittivity is defined using 00 1/c , where 0 is the permeability of free space. This constant, relevant for magnetic phenomena, will be discussed in Sec. 5. In SI it is defined to have the exact value 72 00410/ NA. 3 If there is continuous distribution of the charge it can be described by a charge density (r ) as is shown schematically in Fig.1.3. In this case the sum in Eq.(1.14) is replaced by an integral: 11rr rr Er()dq ( r ) d3 r . (1.15) 33 4400VVrr rr Similarly we can write expressions for the field produced by surface and line charge densities. For the surface charge density we find 1 rr Er() ( r ) da , (1.16) 3 4 0 S rr where the integral is taken over surface S. For the line charge density we have 1 rr Er() ( r ) dl , (1.17) 3 4 0 C rr where the integral is taken over line C. Gauss’s law The integral above is not always the most suitable form for the evaluation of electric fields. There is an important integral expression, called Gauss’s law, which is sometimes more useful and furthermore leads to a differential equation for E(r). First, we define the flux of electric field through a surface S by the integral of the normal component of the electric field over the surface, En da , where n is the normal to this surface. The flux is the measure S of the “number of field lines” passing through S. This quantity depends on the field strength and therefore controlled by the charge producing the electric field. The flux over any closed surface is a measure of the total charge inside. Indeed for charges inside the closed surface the field lines starting on positive charges should terminate on negative charges inside or pass through the surface. On the other hand, charges outside the surface will contribute nothing to the total flux, since its field lines pass in one side and out the other. This is the essence of Gauss’s law. Now we will make it quantitative. Consider a point charge q and a closed surface S, as shown in Fig. 1.4. Fig.1.4 4 Let r be the distance from the charge to a point on the surface, n be the outwardly directed unit normal to the surface at that point, da be an element of surface area. If the electric field E at the point on the surface due to the charge q makes an angle with the unit normal, then the normal component of E times the area element is: q cos Enda2 da . (1.18) 4 0 r Since E is directed along the line from the charge q to the surface element, cosda r2 d , where d is the element of solid angle subtended by da at the position of the charge. Therefore q En da d . (1.19) 4 0 If we now integrate the normal component of E over the whole surface, we find that qq/ , if is inside S Enda 0 (1.20) S 0, ifqS is outside The result for the charge outside the volume follows from the fact that the incoming flux of the electric field qqcos1 En11da2 da 1 d (1.21) 4401r 0 is canceled out by the outcoming flux of the electric field through the opposite surface qqcos2 En22da2 da 2 d , (1.22) 4402r 0 as is seen from Fig.1.5.
Recommended publications
  • Analysis on Electric Field Based on Three Dimensional Atmospheric Electric Field Apparatus
    J Electr Eng Technol.2018; 13(4): 1697-1704 ISSN(Print) 1975-0102 http://doi.org/10.5370/JEET.2018.13.4.1697 ISSN(Online) 2093-7423 Analysis on Electric Field Based on Three Dimensional Atmospheric Electric Field Apparatus Hong-yan Xing†, Gui-xian He* and Xin-yuan Ji** Abstract – As a key component of lighting location system (LLS) for lightning warning, the atmospheric electric field measuring is required to have high accuracy. The Conventional methods of the existent electric field measurement meter can only detect the vertical component of the atmospheric electric field, which cannot acquire the realistic electric field in the thunderstorm. This paper proposed a three dimensional (3D) electric field system for atmospheric electric field measurement, which is capable of three orthogonal directions in X, Y, Z, measuring. By analyzing the relationship between the electric field and the relative permittivity of ground surface, the permittivity is calculated, and an efficiency 3D measurement model is derived. On this basis, a three-dimensional electric field sensor and a permittivity sensor are adopted to detect the spatial electric field. Moreover, the elevation and azimuth of the detected target are calculated, which reveal the location information of the target. Experimental results show that the proposed 3D electric field meter has satisfactory sensitivity to the three components of electric field. Additionally, several observation results in the fair and thunderstorm weather have been presented. Keywords: Three dimension electric field, Permittivity sensor, Lightning, Electric field analysis. 1. Introduction cloud, which changes with the clouds changes [8]. So, there will be an existence of horizontal components of Monitoring of the atmosphere electric field is an the electric field other than the vertical component.
    [Show full text]
  • Chapter 2 Introduction to Electrostatics
    Chapter 2 Introduction to electrostatics 2.1 Coulomb and Gauss’ Laws We will restrict our discussion to the case of static electric and magnetic fields in a homogeneous, isotropic medium. In this case the electric field satisfies the two equations, Eq. 1.59a with a time independent charge density and Eq. 1.77 with a time independent magnetic flux density, D (r)= ρ (r) , (1.59a) ∇ · 0 E (r)=0. (1.77) ∇ × Because we are working with static fields in a homogeneous, isotropic medium the constituent equation is D (r)=εE (r) . (1.78) Note : D is sometimes written : (1.78b) D = ²oE + P .... SI units D = E +4πP in Gaussian units in these cases ε = [1+4πP/E] Gaussian The solution of Eq. 1.59 is 1 ρ0 (r0)(r r0) 3 D (r)= − d r0 + D0 (r) , SI units (1.79) 4π r r 3 ZZZ | − 0| with D0 (r)=0 ∇ · If we are seeking the contribution of the charge density, ρ0 (r) , to the electric displacement vector then D0 (r)=0. The given charge density generates the electric field 1 ρ0 (r0)(r r0) 3 E (r)= − d r0 SI units (1.80) 4πε r r 3 ZZZ | − 0| 18 Section 2.2 The electric or scalar potential 2.2 TheelectricorscalarpotentialFaraday’s law with static fields, Eq. 1.77, is automatically satisfied by any electric field E(r) which is given by E (r)= φ (r) (1.81) −∇ The function φ (r) is the scalar potential for the electric field. It is also possible to obtain the difference in the values of the scalar potential at two points by integrating the tangent component of the electric field along any path connecting the two points E (r) d` = φ (r) d` (1.82) − path · path ∇ · ra rb ra rb Z → Z → ∂φ(r) ∂φ(r) ∂φ(r) = dx + dy + dz path ∂x ∂y ∂z ra rb Z → · ¸ = dφ (r)=φ (rb) φ (ra) path − ra rb Z → The result obtained in Eq.
    [Show full text]
  • High Performance Triboelectric Nanogenerator and Its Applications
    HIGH PERFORMANCE TRIBOELECTRIC NANOGENERATOR AND ITS APPLICATIONS A Dissertation Presented to The Academic Faculty by Changsheng Wu In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in the SCHOOL OF MATERIALS SCIENCE AND ENGINEERING Georgia Institute of Technology AUGUST 2019 COPYRIGHT © 2019 BY CHANGSHENG WU HIGH PERFORMANCE TRIBOELECTRIC NANOGENERATOR AND ITS APPLICATIONS Approved by: Dr. Zhong Lin Wang, Advisor Dr. C. P. Wong School of Materials Science and School of Materials Science and Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Meilin Liu Dr. Younan Xia School of Materials Science and Department of Biomedical Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. David L. McDowell School of Materials Science and Engineering Georgia Institute of Technology Date Approved: [April 25, 2019] To my family and friends ACKNOWLEDGEMENTS Firstly, I would like to express my sincere gratidue to my advisor Prof. Zhong Lin Wang for his continuous support and invaluable guidance in my research. As an exceptional researcher, he is my role model for his thorough knowledge in physics and nanotechnology, indefatigable diligence, and overwhelming passion for scientific innovation. It is my great fortune and honor in having him as my advisor and learning from him in the past four years. I would also like to thank the rest of my committee members, Prof. Liu, Prof. McDowell, Prof. Wong, and Prof. Xia for their insightful advice on my doctoral research and dissertation. My sincere thanks also go to my fellow lab mates for their strong support and help. In particular, I would not be able to start my research so smoothly without the mentorship of Dr.
    [Show full text]
  • Origin of Probability in Quantum Mechanics and the Physical Interpretation of the Wave Function
    Origin of Probability in Quantum Mechanics and the Physical Interpretation of the Wave Function Shuming Wen ( [email protected] ) Faculty of Land and Resources Engineering, Kunming University of Science and Technology. Research Article Keywords: probability origin, wave-function collapse, uncertainty principle, quantum tunnelling, double-slit and single-slit experiments Posted Date: November 16th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-95171/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Origin of Probability in Quantum Mechanics and the Physical Interpretation of the Wave Function Shuming Wen Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093 Abstract The theoretical calculation of quantum mechanics has been accurately verified by experiments, but Copenhagen interpretation with probability is still controversial. To find the source of the probability, we revised the definition of the energy quantum and reconstructed the wave function of the physical particle. Here, we found that the energy quantum ê is 6.62606896 ×10-34J instead of hν as proposed by Planck. Additionally, the value of the quality quantum ô is 7.372496 × 10-51 kg. This discontinuity of energy leads to a periodic non-uniform spatial distribution of the particles that transmit energy. A quantum objective system (QOS) consists of many physical particles whose wave function is the superposition of the wave functions of all physical particles. The probability of quantum mechanics originates from the distribution rate of the particles in the QOS per unit volume at time t and near position r. Based on the revision of the energy quantum assumption and the origin of the probability, we proposed new certainty and uncertainty relationships, explained the physical mechanism of wave-function collapse and the quantum tunnelling effect, derived the quantum theoretical expression of double-slit and single-slit experiments.
    [Show full text]
  • 6.007 Lecture 5: Electrostatics (Gauss's Law and Boundary
    Electrostatics (Free Space With Charges & Conductors) Reading - Shen and Kong – Ch. 9 Outline Maxwell’s Equations (In Free Space) Gauss’ Law & Faraday’s Law Applications of Gauss’ Law Electrostatic Boundary Conditions Electrostatic Energy Storage 1 Maxwell’s Equations (in Free Space with Electric Charges present) DIFFERENTIAL FORM INTEGRAL FORM E-Gauss: Faraday: H-Gauss: Ampere: Static arise when , and Maxwell’s Equations split into decoupled electrostatic and magnetostatic eqns. Electro-quasistatic and magneto-quasitatic systems arise when one (but not both) time derivative becomes important. Note that the Differential and Integral forms of Maxwell’s Equations are related through ’ ’ Stoke s Theorem and2 Gauss Theorem Charges and Currents Charge conservation and KCL for ideal nodes There can be a nonzero charge density in the absence of a current density . There can be a nonzero current density in the absence of a charge density . 3 Gauss’ Law Flux of through closed surface S = net charge inside V 4 Point Charge Example Apply Gauss’ Law in integral form making use of symmetry to find • Assume that the image charge is uniformly distributed at . Why is this important ? • Symmetry 5 Gauss’ Law Tells Us … … the electric charge can reside only on the surface of the conductor. [If charge was present inside a conductor, we can draw a Gaussian surface around that charge and the electric field in vicinity of that charge would be non-zero ! A non-zero field implies current flow through the conductor, which will transport the charge to the surface.] … there is no charge at all on the inner surface of a hollow conductor.
    [Show full text]
  • Engineering Viscoelasticity
    ENGINEERING VISCOELASTICITY David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 October 24, 2001 1 Introduction This document is intended to outline an important aspect of the mechanical response of polymers and polymer-matrix composites: the field of linear viscoelasticity. The topics included here are aimed at providing an instructional introduction to this large and elegant subject, and should not be taken as a thorough or comprehensive treatment. The references appearing either as footnotes to the text or listed separately at the end of the notes should be consulted for more thorough coverage. Viscoelastic response is often used as a probe in polymer science, since it is sensitive to the material’s chemistry and microstructure. The concepts and techniques presented here are important for this purpose, but the principal objective of this document is to demonstrate how linear viscoelasticity can be incorporated into the general theory of mechanics of materials, so that structures containing viscoelastic components can be designed and analyzed. While not all polymers are viscoelastic to any important practical extent, and even fewer are linearly viscoelastic1, this theory provides a usable engineering approximation for many applications in polymer and composites engineering. Even in instances requiring more elaborate treatments, the linear viscoelastic theory is a useful starting point. 2 Molecular Mechanisms When subjected to an applied stress, polymers may deform by either or both of two fundamen- tally different atomistic mechanisms. The lengths and angles of the chemical bonds connecting the atoms may distort, moving the atoms to new positions of greater internal energy.
    [Show full text]
  • A Problem-Solving Approach – Chapter 2: the Electric Field
    chapter 2 the electric field 50 The Ekelric Field The ancient Greeks observed that when the fossil resin amber was rubbed, small light-weight objects were attracted. Yet, upon contact with the amber, they were then repelled. No further significant advances in the understanding of this mysterious phenomenon were made until the eighteenth century when more quantitative electrification experiments showed that these effects were due to electric charges, the source of all effects we will study in this text. 2·1 ELECTRIC CHARGE 2·1·1 Charginl by Contact We now know that all matter is held together by the aurae· tive force between equal numbers of negatively charged elec· trons and positively charged protons. The early researchers in the 1700s discovered the existence of these two species of charges by performing experiments like those in Figures 2·1 to 2·4. When a glass rod is rubbed by a dry doth, as in Figure 2-1, some of the electrons in the glass are rubbed off onto the doth. The doth then becomes negatively charged because it now has more electrons than protons. The glass rod becomes • • • • • • • • • • • • • • • • • • • • • , • • , ~ ,., ,» Figure 2·1 A glass rod rubbed with a dry doth loses some of iu electrons to the doth. The glau rod then has a net positive charge while the doth has acquired an equal amount of negative charge. The total charge in the system remains zero. £kctric Charge 51 positively charged as it has lost electrons leaving behind a surplus number of protons. If the positively charged glass rod is brought near a metal ball that is free to move as in Figure 2-2a, the electrons in the ball nt~ar the rod are attracted to the surface leaving uncovered positive charge on the other side of the ball.
    [Show full text]
  • Basic Electrical Engineering
    BASIC ELECTRICAL ENGINEERING V.HimaBindu V.V.S Madhuri Chandrashekar.D GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY (Autonomous) Index: 1. Syllabus……………………………………………….……….. .1 2. Ohm’s Law………………………………………….…………..3 3. KVL,KCL…………………………………………….……….. .4 4. Nodes,Branches& Loops…………………….……….………. 5 5. Series elements & Voltage Division………..………….……….6 6. Parallel elements & Current Division……………….………...7 7. Star-Delta transformation…………………………….………..8 8. Independent Sources …………………………………..……….9 9. Dependent sources……………………………………………12 10. Source Transformation:…………………………………….…13 11. Review of Complex Number…………………………………..16 12. Phasor Representation:………………….…………………….19 13. Phasor Relationship with a pure resistance……………..……23 14. Phasor Relationship with a pure inductance………………....24 15. Phasor Relationship with a pure capacitance………..……….25 16. Series and Parallel combinations of Inductors………….……30 17. Series and parallel connection of capacitors……………...…..32 18. Mesh Analysis…………………………………………………..34 19. Nodal Analysis……………………………………………….…37 20. Average, RMS values……………….……………………….....43 21. R-L Series Circuit……………………………………………...47 22. R-C Series circuit……………………………………………....50 23. R-L-C Series circuit…………………………………………....53 24. Real, reactive & Apparent Power…………………………….56 25. Power triangle……………………………………………….....61 26. Series Resonance……………………………………………….66 27. Parallel Resonance……………………………………………..69 28. Thevenin’s Theorem…………………………………………...72 29. Norton’s Theorem……………………………………………...75 30. Superposition Theorem………………………………………..79 31.
    [Show full text]
  • Synthesis and Modelling of an Electrostatic Induction Motor Jean-Frédéric Charpentier, Yvan Lefèvre, Emmanuel Sarraute, Bernard Trannoy
    Synthesis and modelling of an electrostatic induction motor Jean-Frédéric Charpentier, Yvan Lefèvre, Emmanuel Sarraute, Bernard Trannoy To cite this version: Jean-Frédéric Charpentier, Yvan Lefèvre, Emmanuel Sarraute, Bernard Trannoy. Synthesis and mod- elling of an electrostatic induction motor. IEEE Transactions on Magnetics, Institute of Electrical and Electronics Engineers, 1995, vol. 31 (n° 3), pp. 1404-1407. 10.1109/20.376290. hal-01792424 HAL Id: hal-01792424 https://hal.archives-ouvertes.fr/hal-01792424 Submitted on 15 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive TOULOUSE Archive Ouverte ( OATAO ) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 19944 To link to this article : DOI: 10.1109/20.376290 URL: http://dx.doi.org/10.1109/20.376290 To cite this version : Charpentier, Jean-Frédéric and Lefèvre, Yvan and Sarraute, Emmanuel and Trannoy, Bernard Synthesis and modelling of an electrostatic induction motor . (1995) IEEE Transactions on Magnetics, vol. 31 (n° 3). pp.
    [Show full text]
  • Chapter 5 Capacitance and Dielectrics
    Chapter 5 Capacitance and Dielectrics 5.1 Introduction...........................................................................................................5-3 5.2 Calculation of Capacitance ...................................................................................5-4 Example 5.1: Parallel-Plate Capacitor ....................................................................5-4 Interactive Simulation 5.1: Parallel-Plate Capacitor ...........................................5-6 Example 5.2: Cylindrical Capacitor........................................................................5-6 Example 5.3: Spherical Capacitor...........................................................................5-8 5.3 Capacitors in Electric Circuits ..............................................................................5-9 5.3.1 Parallel Connection......................................................................................5-10 5.3.2 Series Connection ........................................................................................5-11 Example 5.4: Equivalent Capacitance ..................................................................5-12 5.4 Storing Energy in a Capacitor.............................................................................5-13 5.4.1 Energy Density of the Electric Field............................................................5-14 Interactive Simulation 5.2: Charge Placed between Capacitor Plates..............5-14 Example 5.5: Electric Energy Density of Dry Air................................................5-15
    [Show full text]
  • Chapter 4. Electric Fields in Matter 4.4 Linear Dielectrics 4.4.1 Susceptibility, Permittivity, Dielectric Constant
    Chapter 4. Electric Fields in Matter 4.4 Linear Dielectrics 4.4.1 Susceptibility, Permittivity, Dielectric Constant PE 0 e In linear dielectrics, P is proportional to E, provided E is not too strong. e : Electric susceptibility (It would be a tensor in general cases) Note that E is the total field from free charges and the polarization itself. If, for instance, we put a piece of dielectric into an external field E0, we cannot compute P directly from PE 0 e ; EE 0 E0 produces P, P will produce its own field, this in turn modifies P, which ... Breaking where? To calculate P, the simplest approach is to begin with the displacement D, at least in those cases where D can be deduced directly from the free charge distribution. DEP001 e E DE 0 1 e : Permittivity re1 : Relative permittivity 0 (Dielectric constant) Susceptibility, Permittivity, Dielectric Constant Problem 4.41 In a linear dielectric, the polarization is proportional to the field: P = 0e E. If the material consists of atoms (or nonpolar molecules), the induced dipole moment of each one is likewise proportional to the field p = E. What is the relation between atomic polarizability and susceptibility e? Note that, the atomic polarizability was defined for an isolated atom subject to an external field coming from somewhere else, Eelse p = Eelse For N atoms in unit volume, the polarization can be set There is another electric field, Eself , produced by the polarization P: Therefore, the total field is The total field E finally produce the polarization P: or Clausius-Mossotti formula Susceptibility, Permittivity, Dielectric Constant Example 4.5 A metal sphere of radius a carries a charge Q.
    [Show full text]
  • Defects and Correction Theories of Electromagnetics
    Applied Physics Research; Vol. 8, No. 4; 2016 ISSN 1916-9639 E-ISSN 1916-9647 Published by Canadian Center of Science and Education Defects and Correction Theories of Electromagnetics Kexin Yao1 1 Instiute of Mechanical Engineering of Shaanxi Province, Xian Metering Institution, Xian, P.R.China Correspondence: Kexin Yao, Instiute of Mechanical Engineering of Shaanxi Province, Xian Metering Institution, Xian, P.R.China. Tel: 86-134-8462-6424. E-mail: [email protected] Received: April 27, 2016 Accepted: May 15, 2016 Online Published: July 29, 2016 doi:10.5539/apr.v8n3p154 URL: http://dx.doi.org/10.5539/apr.v8n3p154 Abstract Experiments show that, there is the electrostatic field around the permanent magnet; since the electromagnetics can not explain this phenomenon, it can be concluded that there are some defects in electromagnetics. This paper makes an analysis of the defects of electromagnetics from fourteen aspects. It is noted that, the basic defect of electromagnetics is that there is no explanation of any inherent causes and physical processes of electromagnetic induction, displacement current, Lorentz force and other surface phenomena. Moreover, it may also lead us to make incorrect inferences in the theoretical analysis of electromagnetics, e.g. the same direction of action and reaction, infinitely high kinematic velocity of magnetic field, etc. It can be seen from analysis of all electromagnetic phenomena that, all the electromagnetic phenomena will be inevitably accompanied by an electron motion; and the electron motion is bound to take effect through an electric field; therefore, the analysis of motion in an electric field is the basis for analysis of all electromagnetic phenomena.
    [Show full text]