Chapter 2 Introduction to Electrostatics

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 2 Introduction to Electrostatics Chapter 2 Introduction to electrostatics 2.1 Coulomb and Gauss’ Laws We will restrict our discussion to the case of static electric and magnetic fields in a homogeneous, isotropic medium. In this case the electric field satisfies the two equations, Eq. 1.59a with a time independent charge density and Eq. 1.77 with a time independent magnetic flux density, D (r)= ρ (r) , (1.59a) ∇ · 0 E (r)=0. (1.77) ∇ × Because we are working with static fields in a homogeneous, isotropic medium the constituent equation is D (r)=εE (r) . (1.78) Note : D is sometimes written : (1.78b) D = ²oE + P .... SI units D = E +4πP in Gaussian units in these cases ε = [1+4πP/E] Gaussian The solution of Eq. 1.59 is 1 ρ0 (r0)(r r0) 3 D (r)= − d r0 + D0 (r) , SI units (1.79) 4π r r 3 ZZZ | − 0| with D0 (r)=0 ∇ · If we are seeking the contribution of the charge density, ρ0 (r) , to the electric displacement vector then D0 (r)=0. The given charge density generates the electric field 1 ρ0 (r0)(r r0) 3 E (r)= − d r0 SI units (1.80) 4πε r r 3 ZZZ | − 0| 18 Section 2.2 The electric or scalar potential 2.2 TheelectricorscalarpotentialFaraday’s law with static fields, Eq. 1.77, is automatically satisfied by any electric field E(r) which is given by E (r)= φ (r) (1.81) −∇ The function φ (r) is the scalar potential for the electric field. It is also possible to obtain the difference in the values of the scalar potential at two points by integrating the tangent component of the electric field along any path connecting the two points E (r) d` = φ (r) d` (1.82) − path · path ∇ · ra rb ra rb Z → Z → ∂φ(r) ∂φ(r) ∂φ(r) = dx + dy + dz path ∂x ∂y ∂z ra rb Z → · ¸ = dφ (r)=φ (rb) φ (ra) path − ra rb Z → The result obtained in Eq. 1.82 is independent of the path taken between the points ra and rb. It follows that the integral of the tangential component along a closed path is zero, E (r) d` = dφ (r)=0. (1.83) · I I This last result actually follows from the requirement that E (r)=0 and the application of Stoke’s theorem. ∇ × To obtain the scalar potential due to the charge density ρ0 (r) we note that 1 (1.84) ∇ (x x )2 +(y y )2 +(z z )2 − 0 − 0 − 0 q(x x0) i +(y y0) j+(z z0) k = − − − 3/2 − 2 2 2 (x x ) +(y y ) +(z z ) − 0 − 0 − 0 hr r0 i = − . − r r 3 | − 0| Comparing the expression on the right hand side of Eq. 1.84 to the integrand in Eq. 1.80 we find that can write that the scalar potential due to the charge density ρo (r) is 1 ρ (r ) φ (r)= o 0 d3r + φ , (1.85) 4πε r r 0 0 ZZZ | − 0| where φ0 is a constant which fixes the (arbitrary) location of the zero for the scalar potential. Since the observed quantity is the electric force and, therefore, the electric field, only the difference in the values of the scalar potential at any two different points is significant. (See Eq. 1.82) 19 Section 2.3 Surface charges and charge dipoles 2.3 Surface charges and charge dipoles A surface charge is a charge density which is ‘restricted to lie on a surface’. It is characterized by the equation defining the surface, say F (r)=0, (or F (x, y, z)=0)and a surface charge density, σ (r) , with dimensions of Coulombs/m2 in SI units and statcoulombs per square centimeter in gaussian units. Restricting a volume integral to a surface with a delta function in the integrand The charge density associated with a surface charge will be the product of two terms. One term will contain a delta function which restricts the density to the surface, δ (F (r)) f (r). This term should have dimensions of inverse length, 1 ∗ m− in our units. and the other will be the surface charge density, σ (r) . The function f (r) should be determined such that H (r) δ (F (r)) f (r) d3r = H (r) dS (r) (1.86) ∗ ZZZ ZZ F (r)=0 where H (r) is any ‘smooth’ function and the surface integral on the right hand side is restricted to the surface F (r)=0. Before attacking this problem we should note that, in one dimension, ∞ a (x) δ (b (x)) b0 (x) dx = a (x) δ (b (x)) db (x) (1.87) | | Z−∞ Z = a (x0) , with b (x0)=0 Since the delta function will restrict the integral to the surface we need only consider the region close to the surface. In this region let the coordinates system consist of a coordinate axis perpendicular to the surface at each point and two orthogonal axes which are tangent to the surface at each point. The unit vector which is perpendicular to the surface at each point is either n =+ F (r) / F (r) or n = F (r) / F (r) . ∇ |∇ | −∇ |∇ | 3 Ifb we let ξn be the displacementb of a point from the surface at r0 then d r =[dS (r0) n] dξn. In addition if r0 is a point on the surface then · b b b ∂F (r0 + ξn) F (r0)= . (1.88) ∇ ∂ξ · ¸ξ=0 b When performing the volume integration we carry out the integration perpendicular to the surface at each point r0 and then multiply the result by the differential surface element at r0,dS(r0) . We have in this way reduced our problem to a set of one dimensional problems, one for each point r0 on the surface. Viewing the problem in this way suggests that the appropriate expression for the function f (r) is f (r0 + ξn)=n 0F (r0 + ξn) (1.89) · ∇ = 0F (r0 + ξn) ∇ b b b It follows then that the volume charge density associated with¯ a surface charge¯ density, σ (r) , on the surface defined by ¯ b ¯ F (r)=0is ρ (r)=σ (r) δ (F (r)) F (r) (1.90) |∇ | 20 Section 2.3 Surface charges and charge dipoles Note: A simpler way to obtain this result is as follows, where δ(F (r))dF =1: R σ (r) dS (r)= σ (r) 0 δ(F(r))dF dS (r) (1.90b) ZZ F (r)=0 ZZ F (r)=0 ·Z ¸ 0 = σ (r) δ(F(r))dr0 F dS (r) ·∇ ZZ F (r)=0 ·Z ¸ 0 F = σ (r) δ(F(r))dr0 ∇ F dS (r) · F |∇ | ZZ F (r)=0 ·Z |∇ | ¸ 0 = σ (r) δ(F (r)) F dr0 nˆs dS (r) |∇ | · ZZ F (r)=0 Z 0 = σ (r) δ(F (r)) F dr0 dS (r) |∇ | · ZZ F (r)=0 Z where the primed integration symbol indicates that the integration must be taken along a direction, dr0 which is along the normal to the surface. 0 = σ (r) δ(F (r)) F dV 0 (1.90c) |∇ | ZZ F (r)=0 Z σ (r) dS (r)= σ (r) δ(F (r)) F dV (1.90d) |∇ | ZZ F (r)=0 ZZZ V contains F (r)=0 Note that the final volume integral must be over a volume which contains all of the surface, Using this form for the charge density allows one to manipulate the variables of integration more freely . 2.3.1 Example: uniformly charged ellipsoidal surface 2 2 2 The system is a uniformly charged ellipsoidal surface (Fig. ??)defined by x +y + z 1=0. The surface charge a2 b2 − density is σ0. Find the potential on the z axis. Solution: From the class notes, Eq. 1.90, the volume charge density is given by x2 + y2 z2 x2 + y2 z2 ρ (r)=σ0δ + 1 ( + 1) (1.91) a2 b2 − |∇ a2 b2 − | µ 2 2 2 ¶ 2 2 2 x + y z x + y z 1/2 = σ0δ + 1 2( + ) a2 b2 − a4 b4 µ ¶ Because of the cylindrical symmetry of the charge distribution it is convenient to work in cylindrical coordinates, x = ξ cos ϕ and y = ξ sin ϕ. In these coordinate the charge density is 21 Section 2.3 Surface charges and charge dipoles .Fig. 3 ξ2 z2 ξ2 z2 ρ (r)=2σ0δ + 1 + a2 b2 − sa4 b4 µ ¶ Taking the zero of potential at infinity, the potential on the z axis due to the surface charge is ξ2 z2 ξ2 z2 δ 2 + 2 1 4 + 4 2σ0 a b a b 3 φ (zˆz)= − d r0 SI units (1.92) 4πε ³ 2 ´ q 2 ZZZ ξ0 +(z z0) − 3 q with d r0 = ξ0dξ0 dϕ0 dz0. The integrand is independent of ϕ0 and the angle integration can be performed giving 2π. The 2 2 2 2 integrand is also only a function of ξ0 . This suggests that we define an η = a− ξ0 . In this case ξ0 dξ0 =0.5 a dη. With these changes the potential is given by 2 2 2 2 4 2 2πσ0a ∞ ∞ δ η + b− z0 1 a− η + b− z0 φ (zˆz)= − dη dz0 (1.93) 4πε 0 2 2 Z−∞ Z ¡ a η +(¢zp z0) − q The delta function allows the η integration to be carried out yielding 1/2 b 2 2 2 2 2 σ0a a− + b− z0 b− a− φ (zˆz)= − dz0 (1.94) 2ε 2 2 2 2 b "(1 b− z0 )+a− (z z0) # Z− − ¡ − ¢ 2 It is convenient to express the z coordinates in units of b, z = bξ0 and z0 = bξ0, then, with β =(b/a) , 1/2 1 2 σ0a β + ξ0 (1 β) φ (ξ bˆz)= dξ0 (1.95) 0 2 − 2 2ε 1 " 1 ξ0 + β ξ ξ0 # Z− − 0 − ¡ 22 ¢ ¡ ¢ Section 2.3 Surface charges and charge dipoles .Fig.
Recommended publications
  • 6.007 Lecture 5: Electrostatics (Gauss's Law and Boundary
    Electrostatics (Free Space With Charges & Conductors) Reading - Shen and Kong – Ch. 9 Outline Maxwell’s Equations (In Free Space) Gauss’ Law & Faraday’s Law Applications of Gauss’ Law Electrostatic Boundary Conditions Electrostatic Energy Storage 1 Maxwell’s Equations (in Free Space with Electric Charges present) DIFFERENTIAL FORM INTEGRAL FORM E-Gauss: Faraday: H-Gauss: Ampere: Static arise when , and Maxwell’s Equations split into decoupled electrostatic and magnetostatic eqns. Electro-quasistatic and magneto-quasitatic systems arise when one (but not both) time derivative becomes important. Note that the Differential and Integral forms of Maxwell’s Equations are related through ’ ’ Stoke s Theorem and2 Gauss Theorem Charges and Currents Charge conservation and KCL for ideal nodes There can be a nonzero charge density in the absence of a current density . There can be a nonzero current density in the absence of a charge density . 3 Gauss’ Law Flux of through closed surface S = net charge inside V 4 Point Charge Example Apply Gauss’ Law in integral form making use of symmetry to find • Assume that the image charge is uniformly distributed at . Why is this important ? • Symmetry 5 Gauss’ Law Tells Us … … the electric charge can reside only on the surface of the conductor. [If charge was present inside a conductor, we can draw a Gaussian surface around that charge and the electric field in vicinity of that charge would be non-zero ! A non-zero field implies current flow through the conductor, which will transport the charge to the surface.] … there is no charge at all on the inner surface of a hollow conductor.
    [Show full text]
  • A Problem-Solving Approach – Chapter 2: the Electric Field
    chapter 2 the electric field 50 The Ekelric Field The ancient Greeks observed that when the fossil resin amber was rubbed, small light-weight objects were attracted. Yet, upon contact with the amber, they were then repelled. No further significant advances in the understanding of this mysterious phenomenon were made until the eighteenth century when more quantitative electrification experiments showed that these effects were due to electric charges, the source of all effects we will study in this text. 2·1 ELECTRIC CHARGE 2·1·1 Charginl by Contact We now know that all matter is held together by the aurae· tive force between equal numbers of negatively charged elec· trons and positively charged protons. The early researchers in the 1700s discovered the existence of these two species of charges by performing experiments like those in Figures 2·1 to 2·4. When a glass rod is rubbed by a dry doth, as in Figure 2-1, some of the electrons in the glass are rubbed off onto the doth. The doth then becomes negatively charged because it now has more electrons than protons. The glass rod becomes • • • • • • • • • • • • • • • • • • • • • , • • , ~ ,., ,» Figure 2·1 A glass rod rubbed with a dry doth loses some of iu electrons to the doth. The glau rod then has a net positive charge while the doth has acquired an equal amount of negative charge. The total charge in the system remains zero. £kctric Charge 51 positively charged as it has lost electrons leaving behind a surplus number of protons. If the positively charged glass rod is brought near a metal ball that is free to move as in Figure 2-2a, the electrons in the ball nt~ar the rod are attracted to the surface leaving uncovered positive charge on the other side of the ball.
    [Show full text]
  • Chapter 5 Capacitance and Dielectrics
    Chapter 5 Capacitance and Dielectrics 5.1 Introduction...........................................................................................................5-3 5.2 Calculation of Capacitance ...................................................................................5-4 Example 5.1: Parallel-Plate Capacitor ....................................................................5-4 Interactive Simulation 5.1: Parallel-Plate Capacitor ...........................................5-6 Example 5.2: Cylindrical Capacitor........................................................................5-6 Example 5.3: Spherical Capacitor...........................................................................5-8 5.3 Capacitors in Electric Circuits ..............................................................................5-9 5.3.1 Parallel Connection......................................................................................5-10 5.3.2 Series Connection ........................................................................................5-11 Example 5.4: Equivalent Capacitance ..................................................................5-12 5.4 Storing Energy in a Capacitor.............................................................................5-13 5.4.1 Energy Density of the Electric Field............................................................5-14 Interactive Simulation 5.2: Charge Placed between Capacitor Plates..............5-14 Example 5.5: Electric Energy Density of Dry Air................................................5-15
    [Show full text]
  • 2 Classical Field Theory
    2 Classical Field Theory In what follows we will consider rather general field theories. The only guiding principles that we will use in constructing these theories are (a) symmetries and (b) a generalized Least Action Principle. 2.1 Relativistic Invariance Before we saw three examples of relativistic wave equations. They are Maxwell’s equations for classical electromagnetism, the Klein-Gordon and Dirac equations. Maxwell’s equations govern the dynamics of a vector field, the vector potentials Aµ(x) = (A0, A~), whereas the Klein-Gordon equation describes excitations of a scalar field φ(x) and the Dirac equation governs the behavior of the four- component spinor field ψα(x)(α =0, 1, 2, 3). Each one of these fields transforms in a very definite way under the group of Lorentz transformations, the Lorentz group. The Lorentz group is defined as a group of linear transformations Λ of Minkowski space-time onto itself Λ : such that M M→M ′µ µ ν x =Λν x (1) The space-time components of Λ are the Lorentz boosts which relate inertial reference frames moving at relative velocity ~v. Thus, Lorentz boosts along the x1-axis have the familiar form x0 + vx1/c x0′ = 1 v2/c2 − x1 + vx0/c x1′ = p 1 v2/c2 − 2′ 2 x = xp x3′ = x3 (2) where x0 = ct, x1 = x, x2 = y and x3 = z (note: these are components, not powers!). If we use the notation γ = (1 v2/c2)−1/2 cosh α, we can write the Lorentz boost as a matrix: − ≡ x0′ cosh α sinh α 0 0 x0 x1′ sinh α cosh α 0 0 x1 = (3) x2′ 0 0 10 x2 x3′ 0 0 01 x3 The space components of Λ are conventional three-dimensional rotations R.
    [Show full text]
  • Electromagnetic Fields and Energy
    MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. Please use the following citation format: Haus, Hermann A., and James R. Melcher, Electromagnetic Fields and Energy. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed [Date]). License: Creative Commons Attribution-NonCommercial-Share Alike. Also available from Prentice-Hall: Englewood Cliffs, NJ, 1989. ISBN: 9780132490207. Note: Please use the actual date you accessed this material in your citation. For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms 8 MAGNETOQUASISTATIC FIELDS: SUPERPOSITION INTEGRAL AND BOUNDARY VALUE POINTS OF VIEW 8.0 INTRODUCTION MQS Fields: Superposition Integral and Boundary Value Views We now follow the study of electroquasistatics with that of magnetoquasistat­ ics. In terms of the flow of ideas summarized in Fig. 1.0.1, we have completed the EQS column to the left. Starting from the top of the MQS column on the right, recall from Chap. 3 that the laws of primary interest are Amp`ere’s law (with the displacement current density neglected) and the magnetic flux continuity law (Table 3.6.1). � × H = J (1) � · µoH = 0 (2) These laws have associated with them continuity conditions at interfaces. If the in­ terface carries a surface current density K, then the continuity condition associated with (1) is (1.4.16) n × (Ha − Hb) = K (3) and the continuity condition associated with (2) is (1.7.6). a b n · (µoH − µoH ) = 0 (4) In the absence of magnetizable materials, these laws determine the magnetic field intensity H given its source, the current density J.
    [Show full text]
  • Chapter 4. Electric Fields in Matter 4.4 Linear Dielectrics 4.4.1 Susceptibility, Permittivity, Dielectric Constant
    Chapter 4. Electric Fields in Matter 4.4 Linear Dielectrics 4.4.1 Susceptibility, Permittivity, Dielectric Constant PE 0 e In linear dielectrics, P is proportional to E, provided E is not too strong. e : Electric susceptibility (It would be a tensor in general cases) Note that E is the total field from free charges and the polarization itself. If, for instance, we put a piece of dielectric into an external field E0, we cannot compute P directly from PE 0 e ; EE 0 E0 produces P, P will produce its own field, this in turn modifies P, which ... Breaking where? To calculate P, the simplest approach is to begin with the displacement D, at least in those cases where D can be deduced directly from the free charge distribution. DEP001 e E DE 0 1 e : Permittivity re1 : Relative permittivity 0 (Dielectric constant) Susceptibility, Permittivity, Dielectric Constant Problem 4.41 In a linear dielectric, the polarization is proportional to the field: P = 0e E. If the material consists of atoms (or nonpolar molecules), the induced dipole moment of each one is likewise proportional to the field p = E. What is the relation between atomic polarizability and susceptibility e? Note that, the atomic polarizability was defined for an isolated atom subject to an external field coming from somewhere else, Eelse p = Eelse For N atoms in unit volume, the polarization can be set There is another electric field, Eself , produced by the polarization P: Therefore, the total field is The total field E finally produce the polarization P: or Clausius-Mossotti formula Susceptibility, Permittivity, Dielectric Constant Example 4.5 A metal sphere of radius a carries a charge Q.
    [Show full text]
  • Chapter 2. Electrostatics
    Chapter 2. Electrostatics Introduction to Electrodynamics, 3rd or 4rd Edition, David J. Griffiths 2.3 Electric Potential 2.3.1 Introduction to Potential We're going to reduce a vector problem (finding E from E 0 ) down to a much simpler scalar problem. E 0 the line integral of E from point a to point b is the same for all paths (independent of path) Because the line integral of E is independent of path, we can define a function called the Electric Potential: : O is some standard reference point The potential difference between two points a and b is The fundamental theorem for gradients states that The electric field is the gradient of scalar potential 2.3.2 Comments on Potential (i) The name. “Potential" and “Potential Energy" are completely different terms and should, by all rights, have different names. There is a connection between "potential" and "potential energy“: Ex: (ii) Advantage of the potential formulation. “If you know V, you can easily get E” by just taking the gradient: This is quite extraordinary: One can get a vector quantity E (three components) from a scalar V (one component)! How can one function possibly contain all the information that three independent functions carry? The answer is that the three components of E are not really independent. E 0 Therefore, E is a very special kind of vector: whose curl is always zero Comments on Potential (iii) The reference point O. The choice of reference point 0 was arbitrary “ambiguity in definition” Changing reference points amounts to adding a constant K to the potential: Adding a constant to V will not affect the potential difference: since the added constants cancel out.
    [Show full text]
  • Physics 2102 Lecture 2
    Physics 2102 Jonathan Dowling PPhhyyssicicss 22110022 LLeeccttuurree 22 Charles-Augustin de Coulomb EElleeccttrriicc FFiieellddss (1736-1806) January 17, 07 Version: 1/17/07 WWhhaatt aarree wwee ggooiinngg ttoo lleeaarrnn?? AA rrooaadd mmaapp • Electric charge Electric force on other electric charges Electric field, and electric potential • Moving electric charges : current • Electronic circuit components: batteries, resistors, capacitors • Electric currents Magnetic field Magnetic force on moving charges • Time-varying magnetic field Electric Field • More circuit components: inductors. • Electromagnetic waves light waves • Geometrical Optics (light rays). • Physical optics (light waves) CoulombCoulomb’’ss lawlaw +q1 F12 F21 !q2 r12 For charges in a k | q || q | VACUUM | F | 1 2 12 = 2 2 N m r k = 8.99 !109 12 C 2 Often, we write k as: 2 1 !12 C k = with #0 = 8.85"10 2 4$#0 N m EEleleccttrricic FFieieldldss • Electric field E at some point in space is defined as the force experienced by an imaginary point charge of +1 C, divided by Electric field of a point charge 1 C. • Note that E is a VECTOR. +1 C • Since E is the force per unit q charge, it is measured in units of E N/C. • We measure the electric field R using very small “test charges”, and dividing the measured force k | q | by the magnitude of the charge. | E |= R2 SSuuppeerrppoossititioionn • Question: How do we figure out the field due to several point charges? • Answer: consider one charge at a time, calculate the field (a vector!) produced by each charge, and then add all the vectors! (“superposition”) • Useful to look out for SYMMETRY to simplify calculations! Example Total electric field +q -2q • 4 charges are placed at the corners of a square as shown.
    [Show full text]
  • Ee334lect37summaryelectroma
    EE334 Electromagnetic Theory I Todd Kaiser Maxwell’s Equations: Maxwell’s equations were developed on experimental evidence and have been found to govern all classical electromagnetic phenomena. They can be written in differential or integral form. r r r Gauss'sLaw ∇ ⋅ D = ρ D ⋅ dS = ρ dv = Q ∫∫ enclosed SV r r r Nomagneticmonopoles ∇ ⋅ B = 0 ∫ B ⋅ dS = 0 S r r ∂B r r ∂ r r Faraday'sLaw ∇× E = − E ⋅ dl = − B ⋅ dS ∫∫S ∂t C ∂t r r r ∂D r r r r ∂ r r Modified Ampere'sLaw ∇× H = J + H ⋅ dl = J ⋅ dS + D ⋅ dS ∫ ∫∫SS ∂t C ∂t where: E = Electric Field Intensity (V/m) D = Electric Flux Density (C/m2) H = Magnetic Field Intensity (A/m) B = Magnetic Flux Density (T) J = Electric Current Density (A/m2) ρ = Electric Charge Density (C/m3) The Continuity Equation for current is consistent with Maxwell’s Equations and the conservation of charge. It can be used to derive Kirchhoff’s Current Law: r ∂ρ ∂ρ r ∇ ⋅ J + = 0 if = 0 ∇ ⋅ J = 0 implies KCL ∂t ∂t Constitutive Relationships: The field intensities and flux densities are related by using the constitutive equations. In general, the permittivity (ε) and the permeability (µ) are tensors (different values in different directions) and are functions of the material. In simple materials they are scalars. r r r r D = ε E ⇒ D = ε rε 0 E r r r r B = µ H ⇒ B = µ r µ0 H where: εr = Relative permittivity ε0 = Vacuum permittivity µr = Relative permeability µ0 = Vacuum permeability Boundary Conditions: At abrupt interfaces between different materials the following conditions hold: r r r r nˆ × (E1 − E2 )= 0 nˆ ⋅(D1 − D2 )= ρ S r r r r r nˆ × ()H1 − H 2 = J S nˆ ⋅ ()B1 − B2 = 0 where: n is the normal vector from region-2 to region-1 Js is the surface current density (A/m) 2 ρs is the surface charge density (C/m ) 1 Electrostatic Fields: When there are no time dependent fields, electric and magnetic fields can exist as independent fields.
    [Show full text]
  • Electron Charge Density: a Clue from Quantum Chemistry for Quantum Foundations
    Electron Charge Density: A Clue from Quantum Chemistry for Quantum Foundations Charles T. Sebens California Institute of Technology arXiv v.2 June 24, 2021 Forthcoming in Foundations of Physics Abstract Within quantum chemistry, the electron clouds that surround nuclei in atoms and molecules are sometimes treated as clouds of probability and sometimes as clouds of charge. These two roles, tracing back to Schr¨odingerand Born, are in tension with one another but are not incompatible. Schr¨odinger'sidea that the nucleus of an atom is surrounded by a spread-out electron charge density is supported by a variety of evidence from quantum chemistry, including two methods that are used to determine atomic and molecular structure: the Hartree-Fock method and density functional theory. Taking this evidence as a clue to the foundations of quantum physics, Schr¨odinger'selectron charge density can be incorporated into many different interpretations of quantum mechanics (and extensions of such interpretations to quantum field theory). Contents 1 Introduction2 2 Probability Density and Charge Density3 3 Charge Density in Quantum Chemistry9 3.1 The Hartree-Fock Method . 10 arXiv:2105.11988v2 [quant-ph] 24 Jun 2021 3.2 Density Functional Theory . 20 3.3 Further Evidence . 25 4 Charge Density in Quantum Foundations 26 4.1 GRW Theory . 26 4.2 The Many-Worlds Interpretation . 29 4.3 Bohmian Mechanics and Other Particle Interpretations . 31 4.4 Quantum Field Theory . 33 5 Conclusion 35 1 1 Introduction Despite the massive progress that has been made in physics, the composition of the atom remains unsettled. J. J. Thomson [1] famously advocated a \plum pudding" model where electrons are seen as tiny negative charges inside a sphere of uniformly distributed positive charge (like the raisins|once called \plums"|suspended in a plum pudding).
    [Show full text]
  • Charge Density Empty 1/1
    9/30/2004 sec 3_2 charge density empty 1/1 3-2 Charge and Charge Density (pp.61-63) HO: Electric Charge Q: A: HO: Charge Density Q: A: HO: Total Charge Jim Stiles The Univ. of Kansas Dept. of EECS 9/30/2004 Electric Charge 1/2 Electric Charge Most of classical physics can be described in terms of three fundamental units, which define our physical “reality” 1. Mass (e.g., kg) 2. Distance (e.g., meters) 3. Time (e.g., seconds) From these fundamental units, we can define other important physical parameters. For example, energy can always be described in units of kg m2/s2. But, these three fundamental units alone are insufficient for describing all of classic physics—we require one more to completely describe physical reality! This fourth fundamental unit is Coulomb, the unit of electric charge. All electromagnetic phenomena can be attributed to electric charge! Jim Stiles The Univ. of Kansas Dept. of EECS 9/30/2004 Electric Charge 2/2 We shall find that electric charge is somewhat analogous to mass. However, one important difference between mass and charge is that charge can be either positive or negative! Essentially, charge (like mass) is a property of atomic particles. Specifically, we find that: The charge “on” a proton is +1.6 x 10-19 C The charge “on” a neutron is 0.0 C The charge “on” an electron is -1.6 x 10-19 C Charged particles (of all types) can be distributed (unevenly) across a volume, surface, or contour. Jim Stiles The Univ.
    [Show full text]
  • Ampere's Law Was Still Pretty Easy for Me
    Ampere’s Law Phys 122 Lecture 20 G. Rybka Some good questions from the Prelecture Electric fields do not exist inside conductors. Do magnetic fields exist? Could we spend more time talking about the properties of magnetic fields inside and outside hollow tubes? How does that differ from magnetic fields inside and outside solid cylinders? So, I can't go to your office hours because I have class right after Physics on Friday, what is the best source of getting down the right hand rule down in all of the different cases? This is still holding me back, even though this Ampere's Law was still pretty easy for me. We learned that charges are distributed on the surface of a conductor, and the current is the result of flowing charges. If the charges are all distributed on the surface of a wire, does that mean the current only flows on the surface of the wire? Right-Hand-Rules: Get ready to Click ! ! ! ! ! ! F = qv × B F = IL× B ! ! ! ! τ = r × F τ = µ × B ! ! µ I d s ×rˆ dB = 0 4π r 2 Clicker L1 rail A conducting rail of length L1 rests on the top of the circuit loop as L2 C S shown. It is free to move. A B uniform magnetic field exists in the box of dimension L by L . V 2 3 When switch s is closed, which way R does the rail move (if at all) ? L3 A) Left B) Right C) Rotates clockwise D) Rotates counterclockwise E) Does not move • Current through rail is down • B is pointed toward you • IL x B is to the LEFT Clicker L1 rail A conducting rail of length L1 rests on the top of the circuit loop as L2 C S shown.
    [Show full text]