Lecture 9 Notes, Electromagnetic Theory I Dr
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mass Spectrometry: Quadrupole Mass Filter
Advanced Lab, Jan. 2008 Mass Spectrometry: Quadrupole Mass Filter The mass spectrometer is essentially an instrument which can be used to measure the mass, or more correctly the mass/charge ratio, of ionized atoms or other electrically charged particles. Mass spectrometers are now used in physics, geology, chemistry, biology and medicine to determine compositions, to measure isotopic ratios, for detecting leaks in vacuum systems, and in homeland security. Mass Spectrometer Designs The first mass spectrographs were invented almost 100 years ago, by A.J. Dempster, F.W. Aston and others, and have therefore been in continuous development over a very long period. However the principle of using electric and magnetic fields to accelerate and establish the trajectories of ions inside the spectrometer according to their mass/charge ratio is common to all the different designs. The following description of Dempster’s original mass spectrograph is a simple illustration of these physical principles: The magnetic sector spectrograph PUMP F DD S S3 1 r S2 Fig. 1: Dempster’s Mass Spectrograph (1918). Atoms/molecules are first ionized by electrons emitted from the hot filament (F) and then accelerated towards the entrance slit (S1). The ions then follow a semicircular trajectory established by the Lorentz force in a uniform magnetic field. The radius of the trajectory, r, is defined by three slits (S1, S2, and S3). Ions with this selected trajectory are then detected by the detector D. How the magnetic sector mass spectrograph works: Equating the Lorentz force with the centripetal force gives: qvB = mv2/r (1) where q is the charge on the ion (usually +e), B the magnetic field, m is the mass of the ion and r the radius of the ion trajectory. -
Chapter 2 Introduction to Electrostatics
Chapter 2 Introduction to electrostatics 2.1 Coulomb and Gauss’ Laws We will restrict our discussion to the case of static electric and magnetic fields in a homogeneous, isotropic medium. In this case the electric field satisfies the two equations, Eq. 1.59a with a time independent charge density and Eq. 1.77 with a time independent magnetic flux density, D (r)= ρ (r) , (1.59a) ∇ · 0 E (r)=0. (1.77) ∇ × Because we are working with static fields in a homogeneous, isotropic medium the constituent equation is D (r)=εE (r) . (1.78) Note : D is sometimes written : (1.78b) D = ²oE + P .... SI units D = E +4πP in Gaussian units in these cases ε = [1+4πP/E] Gaussian The solution of Eq. 1.59 is 1 ρ0 (r0)(r r0) 3 D (r)= − d r0 + D0 (r) , SI units (1.79) 4π r r 3 ZZZ | − 0| with D0 (r)=0 ∇ · If we are seeking the contribution of the charge density, ρ0 (r) , to the electric displacement vector then D0 (r)=0. The given charge density generates the electric field 1 ρ0 (r0)(r r0) 3 E (r)= − d r0 SI units (1.80) 4πε r r 3 ZZZ | − 0| 18 Section 2.2 The electric or scalar potential 2.2 TheelectricorscalarpotentialFaraday’s law with static fields, Eq. 1.77, is automatically satisfied by any electric field E(r) which is given by E (r)= φ (r) (1.81) −∇ The function φ (r) is the scalar potential for the electric field. It is also possible to obtain the difference in the values of the scalar potential at two points by integrating the tangent component of the electric field along any path connecting the two points E (r) d` = φ (r) d` (1.82) − path · path ∇ · ra rb ra rb Z → Z → ∂φ(r) ∂φ(r) ∂φ(r) = dx + dy + dz path ∂x ∂y ∂z ra rb Z → · ¸ = dφ (r)=φ (rb) φ (ra) path − ra rb Z → The result obtained in Eq. -
Ph501 Electrodynamics Problem Set 8 Kirk T
Princeton University Ph501 Electrodynamics Problem Set 8 Kirk T. McDonald (2001) [email protected] http://physics.princeton.edu/~mcdonald/examples/ Princeton University 2001 Ph501 Set 8, Problem 1 1 1. Wire with a Linearly Rising Current A neutral wire along the z-axis carries current I that varies with time t according to ⎧ ⎪ ⎨ 0(t ≤ 0), I t ( )=⎪ (1) ⎩ αt (t>0),αis a constant. Deduce the time-dependence of the electric and magnetic fields, E and B,observedat apoint(r, θ =0,z = 0) in a cylindrical coordinate system about the wire. Use your expressions to discuss the fields in the two limiting cases that ct r and ct = r + , where c is the speed of light and r. The related, but more intricate case of a solenoid with a linearly rising current is considered in http://physics.princeton.edu/~mcdonald/examples/solenoid.pdf Princeton University 2001 Ph501 Set 8, Problem 2 2 2. Harmonic Multipole Expansion A common alternative to the multipole expansion of electromagnetic radiation given in the Notes assumes from the beginning that the motion of the charges is oscillatory with angular frequency ω. However, we still use the essence of the Hertz method wherein the current density is related to the time derivative of a polarization:1 J = p˙ . (2) The radiation fields will be deduced from the retarded vector potential, 1 [J] d 1 [p˙ ] d , A = c r Vol = c r Vol (3) which is a solution of the (Lorenz gauge) wave equation 1 ∂2A 4π ∇2A − = − J. (4) c2 ∂t2 c Suppose that the Hertz polarization vector p has oscillatory time dependence, −iωt p(x,t)=pω(x)e . -
Dielectric Permittivity Model for Polymer–Filler Composite Materials by the Example of Ni- and Graphite-Filled Composites for High-Frequency Absorbing Coatings
coatings Article Dielectric Permittivity Model for Polymer–Filler Composite Materials by the Example of Ni- and Graphite-Filled Composites for High-Frequency Absorbing Coatings Artem Prokopchuk 1,*, Ivan Zozulia 1,*, Yurii Didenko 2 , Dmytro Tatarchuk 2 , Henning Heuer 1,3 and Yuriy Poplavko 2 1 Institute of Electronic Packaging Technology, Technische Universität Dresden, 01069 Dresden, Germany; [email protected] 2 Department of Microelectronics, National Technical University of Ukraine, 03056 Kiev, Ukraine; [email protected] (Y.D.); [email protected] (D.T.); [email protected] (Y.P.) 3 Department of Systems for Testing and Analysis, Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany * Correspondence: [email protected] (A.P.); [email protected] (I.Z.); Tel.: +49-3514-633-6426 (A.P. & I.Z.) Abstract: The suppression of unnecessary radio-electronic noise and the protection of electronic devices from electromagnetic interference by the use of pliable highly microwave radiation absorbing composite materials based on polymers or rubbers filled with conductive and magnetic fillers have been proposed. Since the working frequency bands of electronic devices and systems are rapidly expanding up to the millimeter wave range, the capabilities of absorbing and shielding composites should be evaluated for increasing operating frequency. The point is that the absorption capacity of conductive and magnetic fillers essentially decreases as the frequency increases. Therefore, this Citation: Prokopchuk, A.; Zozulia, I.; paper is devoted to the absorbing capabilities of composites filled with high-loss dielectric fillers, in Didenko, Y.; Tatarchuk, D.; Heuer, H.; which absorption significantly increases as frequency rises, and it is possible to achieve the maximum Poplavko, Y. -
Metamaterials and the Landau–Lifshitz Permeability Argument: Large Permittivity Begets High-Frequency Magnetism
Metamaterials and the Landau–Lifshitz permeability argument: Large permittivity begets high-frequency magnetism Roberto Merlin1 Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 Edited by Federico Capasso, Harvard University, Cambridge, MA, and approved December 4, 2008 (received for review August 26, 2008) Homogeneous composites, or metamaterials, made of dielectric or resonators, have led to a large body of literature devoted to metallic particles are known to show magnetic properties that con- metamaterials magnetism covering the range from microwave to tradict arguments by Landau and Lifshitz [Landau LD, Lifshitz EM optical frequencies (12–16). (1960) Electrodynamics of Continuous Media (Pergamon, Oxford, UK), Although the magnetic behavior of metamaterials undoubt- p 251], indicating that the magnetization and, thus, the permeability, edly conforms to Maxwell’s equations, the reason why artificial loses its meaning at relatively low frequencies. Here, we show that systems do better than nature is not well understood. Claims of these arguments do not apply to composites made of substances with ͌ ͌ strong magnetic activity are seemingly at odds with the fact that, Im S ϾϾ /ഞ or Re S ϳ /ഞ (S and ഞ are the complex permittivity ϾϾ ഞ other than magnetically ordered substances, magnetism in na- and the characteristic length of the particles, and is the ture is a rather weak phenomenon at ambient temperature.* vacuum wavelength). Our general analysis is supported by studies Moreover, high-frequency magnetism ostensibly contradicts of split rings, one of the most common constituents of electro- well-known arguments by Landau and Lifshitz that the magne- magnetic metamaterials, and spherical inclusions. -
6.007 Lecture 5: Electrostatics (Gauss's Law and Boundary
Electrostatics (Free Space With Charges & Conductors) Reading - Shen and Kong – Ch. 9 Outline Maxwell’s Equations (In Free Space) Gauss’ Law & Faraday’s Law Applications of Gauss’ Law Electrostatic Boundary Conditions Electrostatic Energy Storage 1 Maxwell’s Equations (in Free Space with Electric Charges present) DIFFERENTIAL FORM INTEGRAL FORM E-Gauss: Faraday: H-Gauss: Ampere: Static arise when , and Maxwell’s Equations split into decoupled electrostatic and magnetostatic eqns. Electro-quasistatic and magneto-quasitatic systems arise when one (but not both) time derivative becomes important. Note that the Differential and Integral forms of Maxwell’s Equations are related through ’ ’ Stoke s Theorem and2 Gauss Theorem Charges and Currents Charge conservation and KCL for ideal nodes There can be a nonzero charge density in the absence of a current density . There can be a nonzero current density in the absence of a charge density . 3 Gauss’ Law Flux of through closed surface S = net charge inside V 4 Point Charge Example Apply Gauss’ Law in integral form making use of symmetry to find • Assume that the image charge is uniformly distributed at . Why is this important ? • Symmetry 5 Gauss’ Law Tells Us … … the electric charge can reside only on the surface of the conductor. [If charge was present inside a conductor, we can draw a Gaussian surface around that charge and the electric field in vicinity of that charge would be non-zero ! A non-zero field implies current flow through the conductor, which will transport the charge to the surface.] … there is no charge at all on the inner surface of a hollow conductor. -
A Problem-Solving Approach – Chapter 2: the Electric Field
chapter 2 the electric field 50 The Ekelric Field The ancient Greeks observed that when the fossil resin amber was rubbed, small light-weight objects were attracted. Yet, upon contact with the amber, they were then repelled. No further significant advances in the understanding of this mysterious phenomenon were made until the eighteenth century when more quantitative electrification experiments showed that these effects were due to electric charges, the source of all effects we will study in this text. 2·1 ELECTRIC CHARGE 2·1·1 Charginl by Contact We now know that all matter is held together by the aurae· tive force between equal numbers of negatively charged elec· trons and positively charged protons. The early researchers in the 1700s discovered the existence of these two species of charges by performing experiments like those in Figures 2·1 to 2·4. When a glass rod is rubbed by a dry doth, as in Figure 2-1, some of the electrons in the glass are rubbed off onto the doth. The doth then becomes negatively charged because it now has more electrons than protons. The glass rod becomes • • • • • • • • • • • • • • • • • • • • • , • • , ~ ,., ,» Figure 2·1 A glass rod rubbed with a dry doth loses some of iu electrons to the doth. The glau rod then has a net positive charge while the doth has acquired an equal amount of negative charge. The total charge in the system remains zero. £kctric Charge 51 positively charged as it has lost electrons leaving behind a surplus number of protons. If the positively charged glass rod is brought near a metal ball that is free to move as in Figure 2-2a, the electrons in the ball nt~ar the rod are attracted to the surface leaving uncovered positive charge on the other side of the ball. -
Optimal Design of the Magnet Profile for a Compact Quadrupole on Storage Ring at the Canadian Synchrotron Facility
OPTIMAL DESIGN OF THE MAGNET PROFILE FOR A COMPACT QUADRUPOLE ON STORAGE RING AT THE CANADIAN SYNCHROTRON FACILITY A Thesis Submitted to the College of Graduate and Postdoctoral Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Mechanical Engineering, University of Saskatchewan, Saskatoon By MD Armin Islam ©MD Armin Islam, December 2019. All rights reserved. Permission to Use In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of the material in this thesis in whole or part should be addressed to: Dean College of Graduate and Postdoctoral Studies University of Saskatchewan 116 Thorvaldson Building, 110 Science Place Saskatoon, Saskatchewan, S7N 5C9, Canada Or Head of the Department of Mechanical Engineering College of Engineering University of Saskatchewan 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada i Abstract This thesis concerns design of a quadrupole magnet for the next generation Canadian Light Source storage ring. -
Chapter 5 Capacitance and Dielectrics
Chapter 5 Capacitance and Dielectrics 5.1 Introduction...........................................................................................................5-3 5.2 Calculation of Capacitance ...................................................................................5-4 Example 5.1: Parallel-Plate Capacitor ....................................................................5-4 Interactive Simulation 5.1: Parallel-Plate Capacitor ...........................................5-6 Example 5.2: Cylindrical Capacitor........................................................................5-6 Example 5.3: Spherical Capacitor...........................................................................5-8 5.3 Capacitors in Electric Circuits ..............................................................................5-9 5.3.1 Parallel Connection......................................................................................5-10 5.3.2 Series Connection ........................................................................................5-11 Example 5.4: Equivalent Capacitance ..................................................................5-12 5.4 Storing Energy in a Capacitor.............................................................................5-13 5.4.1 Energy Density of the Electric Field............................................................5-14 Interactive Simulation 5.2: Charge Placed between Capacitor Plates..............5-14 Example 5.5: Electric Energy Density of Dry Air................................................5-15 -
Chapter 4. Electric Fields in Matter 4.4 Linear Dielectrics 4.4.1 Susceptibility, Permittivity, Dielectric Constant
Chapter 4. Electric Fields in Matter 4.4 Linear Dielectrics 4.4.1 Susceptibility, Permittivity, Dielectric Constant PE 0 e In linear dielectrics, P is proportional to E, provided E is not too strong. e : Electric susceptibility (It would be a tensor in general cases) Note that E is the total field from free charges and the polarization itself. If, for instance, we put a piece of dielectric into an external field E0, we cannot compute P directly from PE 0 e ; EE 0 E0 produces P, P will produce its own field, this in turn modifies P, which ... Breaking where? To calculate P, the simplest approach is to begin with the displacement D, at least in those cases where D can be deduced directly from the free charge distribution. DEP001 e E DE 0 1 e : Permittivity re1 : Relative permittivity 0 (Dielectric constant) Susceptibility, Permittivity, Dielectric Constant Problem 4.41 In a linear dielectric, the polarization is proportional to the field: P = 0e E. If the material consists of atoms (or nonpolar molecules), the induced dipole moment of each one is likewise proportional to the field p = E. What is the relation between atomic polarizability and susceptibility e? Note that, the atomic polarizability was defined for an isolated atom subject to an external field coming from somewhere else, Eelse p = Eelse For N atoms in unit volume, the polarization can be set There is another electric field, Eself , produced by the polarization P: Therefore, the total field is The total field E finally produce the polarization P: or Clausius-Mossotti formula Susceptibility, Permittivity, Dielectric Constant Example 4.5 A metal sphere of radius a carries a charge Q. -
Measurement of Dielectric Material Properties Application Note
with examples examples with solutions testing practical to show written properties. dielectric to the s-parameters converting for methods shows Italso analyzer. a network using materials of properties dielectric the measure to methods the describes note The application | | | | Products: Note Application Properties Material of Dielectric Measurement R&S R&S R&S R&S ZNB ZNB ZVT ZVA ZNC ZNC Another application note will be will note application Another <Application Note> Kuek Chee Yaw 04.2012- RAC0607-0019_1_4E Table of Contents Table of Contents 1 Overview ................................................................................. 3 2 Measurement Methods .......................................................... 3 Transmission/Reflection Line method ....................................................... 5 Open ended coaxial probe method ............................................................ 7 Free space method ....................................................................................... 8 Resonant method ......................................................................................... 9 3 Measurement Procedure ..................................................... 11 4 Conversion Methods ............................................................ 11 Nicholson-Ross-Weir (NRW) .....................................................................12 NIST Iterative...............................................................................................13 New non-iterative .......................................................................................14 -
Physics 115 Lightning Gauss's Law Electrical Potential Energy Electric
Physics 115 General Physics II Session 18 Lightning Gauss’s Law Electrical potential energy Electric potential V • R. J. Wilkes • Email: [email protected] • Home page: http://courses.washington.edu/phy115a/ 5/1/14 1 Lecture Schedule (up to exam 2) Today 5/1/14 Physics 115 2 Example: Electron Moving in a Perpendicular Electric Field ...similar to prob. 19-101 in textbook 6 • Electron has v0 = 1.00x10 m/s i • Enters uniform electric field E = 2000 N/C (down) (a) Compare the electric and gravitational forces on the electron. (b) By how much is the electron deflected after travelling 1.0 cm in the x direction? y x F eE e = 1 2 Δy = ayt , ay = Fnet / m = (eE ↑+mg ↓) / m ≈ eE / m Fg mg 2 −19 ! $2 (1.60×10 C)(2000 N/C) 1 ! eE $ 2 Δx eE Δx = −31 Δy = # &t , v >> v → t ≈ → Δy = # & (9.11×10 kg)(9.8 N/kg) x y 2" m % vx 2m" vx % 13 = 3.6×10 2 (1.60×10−19 C)(2000 N/C)! (0.01 m) $ = −31 # 6 & (Math typos corrected) 2(9.11×10 kg) "(1.0×10 m/s)% 5/1/14 Physics 115 = 0.018 m =1.8 cm (upward) 3 Big Static Charges: About Lightning • Lightning = huge electric discharge • Clouds get charged through friction – Clouds rub against mountains – Raindrops/ice particles carry charge • Discharge may carry 100,000 amperes – What’s an ampere ? Definition soon… • 1 kilometer long arc means 3 billion volts! – What’s a volt ? Definition soon… – High voltage breaks down air’s resistance – What’s resistance? Definition soon..