Theoretical and Practical Application of These Scientific and Engineering Disciplines

Total Page:16

File Type:pdf, Size:1020Kb

Theoretical and Practical Application of These Scientific and Engineering Disciplines 1 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in INTRODUCTION TO DATA COMMUNICATIONS Topic Objective: At the end of the topic the students will be able: Explain RAD Data Communications Understand Computer networking device Elaborate Communications protocol Evaluate Networking Models Define OSI Layers Describe The TCP/IP Layers Examine Local area network Highlight Metropolitan area network Identify Wide area network Definition/Overview: Computer networking is the engineering discipline concerned with communication between computer systems or devices. Networking, routers, routing protocols, and networking over the public Internet have their specifications defined in documents called RFCs. Computer networking is sometimes considered a sub-discipline of telecommunications, computer science, information technology and/or computer engineering. Computer networks rely heavily upon theWWW.BSSVE.IN theoretical and practical application of these scientific and engineering disciplines. All networks are interconnected to allow communication with a variety of different kinds of media, including twisted-pair copper wire cable, coaxial cable, optical fiber, and various wireless technologies. The devices can be separated by a few meters (e.g. via Bluetooth) or nearly unlimited distances (e.g. via the interconnections of the Internet). Key Points: 1. RAD Data Communications www.bsscommunitycollege.in www.bssnewgeneration.in www.bsslifeskillscollege.in 2 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in RAD Data Communications (also known as "RAD") is a privately held corporation, based in Tel Aviv, Israel, that designs and manufacturers specialized networking equipment. It was founded in 1981 by Zohar Zisapel and his brother, Yehuda. RAD's research, development and engineering includes TDM, Ethernet, MPLS, IP, ATM, Frame Relay, E1/T1, E3/T3, xDSL, SDH/SONET, pseudowire circuit emulation and service emulation, clock synchronization, voice compression, wireless, mobile and satellite connectivity, fiber optics, SFPs (small form-factor pluggable) and ASICs(application- specific integrated circuit), and integrated network management. In 1998, RAD invented TDMoIP (TDMover IP) technology. The company's installed base exceeds 10,000,000 units and includes more than 150 telecommunications carriers and operators. RAD products are sold by distributors in 164 countries. RAD Data Communications is a member of the RAD Group of companies. 2. Computer networking device Computer networking devices are units that mediate data in a computer network. Computer networking devices are also called network equipment, Intermediate Systems (IS) or InterWorking Unit (IWU). Units which are the last receiver or generate data are called hosts or data terminal equipment. List of computer networking devices o Common basic network devices: WWW.BSSVE.IN▪ Gateway: device sitting at a network node for interfacing with another network that uses different protocols. Works on OSI layers 4 to 7. ▪ Router: a specialized network device that determines the next network point to which to forward a data packet toward its destination. Unlike a gateway, it cannot interface different protocols. Works on OSI layer 3. ▪ Bridge: a device that connects multiple network segments along the data link layer. Works on OSI layer 2. ▪ Switch: a device that allocates traffic from one network segment to certain lines (intended destination(s)) which connect the segment to another network segment. So unlike a hub a switch splits the network www.bsscommunitycollege.in www.bssnewgeneration.in www.bsslifeskillscollege.in 3 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in traffic and sends it to different destinations rather than to all systems on the network. Works on OSI layer 2. ▪ Hub: connects multiple Ethernet segments together making them act as a single segment. When using a hub, every attached device shares the same broadcast domain and the same collision domain. Therefore, only one computer connected to the hub is able to transmit at a time. Depending on the network topology, the hub provides a basic level 1 OSI model connection among the network objects (workstations, servers, etc). It provides bandwidth which is shared among all the objects, compared to switches, which provide a dedicated connection between individual nodes. Works on OSI layer 1. ▪ Repeater: device to amplify or regenerate digital signals received while setting them from one part of a network into another. Works on OSI layer 1. o Some hybrid network devices: ▪ Multilayer Switch: a switch which, in addition to switching on OSI layer 2, provides functionality at higher protocol layers. ▪ Protocol Converter: a hardware device that converts between two WWW.BSSVE.INdifferent types of transmissions, such as asynchronous and synchronous transmissions. ▪ BridgeRouter(Brouter): Combine router and bridge functionality and are therefore working on OSI layers 2 and 3. ▪ Digital media receiver: Connects a computer network to a home theatre o Hardware or software components that typically sit on the connection point of different networks, e.g. between an internal network and an external network: ▪ Proxy: computer network service which allows clients to make indirect network connections to other network services www.bsscommunitycollege.in www.bssnewgeneration.in www.bsslifeskillscollege.in 4 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in ▪ Firewall: a piece of hardware or software put on the network to prevent some communications forbidden by the network policy ▪ Network Address Translator: network service provide as hardware or software that converts internal to external network addresses and vice versa. o Other hardware for establishing networks or dial-up connections: ▪ Multiplexer: device that combines several electrical signals into a single signal ▪ Network Card: a piece of computer hardware to allow the attached computer to communicate by network ▪ Modem: device that modulates an analog "carrier" signal (such as sound), to encode digital information, and that also demodulates such a carrier signal to decode the transmitted information, as a computer communicating with another computer over the telephone network ▪ ISDN terminal adapter (TA): a specialized gateway for ISDN ▪ Line Driver: a device to increase transmission distance by amplifying WWW.BSSVE.INthe signal. Base-band networks only. 3. Communications protocol In the field of telecommunications, a communications protocol is the set of standard rules for data representation, signaling, authentication and error detection required to send information over a communications channel. An example of a simple communications protocol adapted to voice communication is the case of a radio dispatcher talking to mobile stations. Communication protocols for digital computer network communication have features intended to ensure reliable interchange of data over an imperfect communication channel. Communication protocol is basically following certain rules so that the system works properly. Most recent protocols are assigned by the IETF for Internet communications, and the IEEE, or the ISO for other types. The ITU-T handles www.bsscommunitycollege.in www.bssnewgeneration.in www.bsslifeskillscollege.in 5 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in telecommunications protocols and formats for the public switched telephone network (PSTN). The ITU-R handles protocols and formats for radio communications. As the PSTN. radio systems, and Internet converge, the different sets of standards are also being driven towards technological convergence. 4. Networking Models The network model is a database model conceived as a flexible way of representing objects and their relationships. The network model original inventor was Charles Bachman, and it was developed into a standard specification published in 1969 by the CODASYL Consortium. Where the hierarchical model structures data as a tree of records, with each record having one parent record and many children, the network model allows each record to have multiple parent and child records, forming a lattice structure. The chief argument in favour of the network model, in comparison to the hierarchic model, was that it allowed a more natural modeling of relationships between entities. Although the model was widely implemented and used, it failed to become dominant for two main reasons. Firstly, IBM chose to stick to the hierarchical model with semi- network extensions in their established products such as IMS and DL/I. Secondly, it was eventually displaced by the relational model, which offered a higher-level, more declarative interface. Until the early 1980s the performance benefits of the low-level navigationalWWW.BSSVE.IN interfaces offered by hierarchical and network databases were persuasive for many large-scale applications, but as hardware became faster, the extra productivity and flexibility of the relational model led to the gradual obsolescence of the network model in corporate enterprise usage. 5. OSI Layers The Open Systems Interconnection Reference Model (OSI Reference Model or OSI Model) is an abstract description for layered communications and computer network protocol design. It was developed as part of the Open Systems Interconnection (OSI) initiative. In its most basic form, it divides network architecture into seven layers which, from top to bottom, are the Application, Presentation, Session, Transport, Network, Data- www.bsscommunitycollege.in www.bssnewgeneration.in
Recommended publications
  • The Marriage That Almost Was Western Union Has Always Been R.Idiculed for Rejecting the All Telephone
    RETROSPECTIVE .Innovation The marriage that almost was Western Union has always been r.idiculed for rejecting the telephone. But what actually happened wasn't so ridiculous after all The hirth of the telephone.,-one hundred years ago railway and illuminating gas to Cambridge, Mass. this month-is a fascinating story of the geJ;Jius and Long intrigued by telegraphy, he decided to do persistence of on.e man. In addition, it is an instruc­ something about what he called "this monopoly tive demonstration of how an industrial giant, in with its inflated capital which serves its stockhold­ this case the Western Union Telegraph Co., can ers better than the 'public and whose:rates are ex­ miss its chance to foster an industry-creating orbitant and prohibiting of many kinds of busi­ breakthrough-something that has happened again ness." Between 1868 and 1874, he lobbied unceas­ and again in electronics and other fields. ingly, shuttling back and forth betweep. homes in Between ·1875 and 1879, Western Union's chiefs Boston and Washington. for a private "postal tele­ engaged in an intricate minuet with Alexander graph company" to be chartered by Congress but Graham Bell and his associates. On more than one with Hubbard and some of his friends among the occasion, the telegraph colossus came excruciating­ incorporators. As Hubbard envisioned it, the com­ ly close to absorbing the small group of ~ntre­ pany would build telegraph lines along the nation's preneurs, That the absorption was finally avoided rail and post roads and contract with the Post was probably the result of a technological gamble Office Department to send telegrams on its wires ~t that simply didn't payoff, as rates roughly half those being charged by Western ••• The place: the ollie of well as a clash of personali­ Union.
    [Show full text]
  • A History of Audio Effects
    applied sciences Review A History of Audio Effects Thomas Wilmering 1,∗ , David Moffat 2 , Alessia Milo 1 and Mark B. Sandler 1 1 Centre for Digital Music, Queen Mary University of London, London E1 4NS, UK; [email protected] (A.M.); [email protected] (M.B.S.) 2 Interdisciplinary Centre for Computer Music Research, University of Plymouth, Plymouth PL4 8AA, UK; [email protected] * Correspondence: [email protected] Received: 16 December 2019; Accepted: 13 January 2020; Published: 22 January 2020 Abstract: Audio effects are an essential tool that the field of music production relies upon. The ability to intentionally manipulate and modify a piece of sound has opened up considerable opportunities for music making. The evolution of technology has often driven new audio tools and effects, from early architectural acoustics through electromechanical and electronic devices to the digitisation of music production studios. Throughout time, music has constantly borrowed ideas and technological advancements from all other fields and contributed back to the innovative technology. This is defined as transsectorial innovation and fundamentally underpins the technological developments of audio effects. The development and evolution of audio effect technology is discussed, highlighting major technical breakthroughs and the impact of available audio effects. Keywords: audio effects; history; transsectorial innovation; technology; audio processing; music production 1. Introduction In this article, we describe the history of audio effects with regards to musical composition (music performance and production). We define audio effects as the controlled transformation of a sound typically based on some control parameters. As such, the term sound transformation can be considered synonymous with audio effect.
    [Show full text]
  • Cit 305: Networking and Communication Technology
    CIT 305: NETWORKING AND COMMUNICATION TECHNOLOGY 1 NATIONAL OPEN UNIVERSITY OF NIGERIA FACULTY OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE COURSE CODE: CIT305 COURSE TITLE: NETWORKING AND COMMUNICATION TECHNOLOGY 2 COURSE GUIDE CIT305 NETWORKING AND COMMUNICATION TECHNOLOGY CourseTeam Prof A.S. Sodiya (Developer/Writer)–FUNAAB Dr. A. A. Afolorunso (Coordinator)-NOUN 3 CONTENTS PAGE Introduction........................................................................................ 1 WhatYouWillLearnin ThisCourse................................................ 1 Course Aims...................................................................................... 1 CourseObjectives…………………………………………….……. 1 WorkingthroughThisCourse............................................................ 2 CourseMaterials................................................................................. 2 2 StudyUnits........................................................................................ AssignmentFile.................................................................................. 3 Tutor-MarkedAssignments(TMAs)................................................. 3 ExaminationandGrading................................................................... 4 PresentationSchedule........................................................................ 4 CourseMarkingScheme.................................................................... 5 CourseOverview…………………………………………………… 5 Howto Getthe MostfromThisCourse...........................................
    [Show full text]
  • Telephone – Inventions That Revolutionized the World
    Telephone – Inventions that Revolutionized the World December 14, 2018 First Publication Date: 27th November 2010 The most common devices used for transmitting the voice signal over a greater distance are pipes and other physical mechanical media. All of us as a child must have used this form for communication. Another device used for centuries for voice communication is lover’s phone or tin can telephone. The classic example is the children’s toy made by connecting the bottoms of two paper cups, metal cans, or plastic bottles with string. But the invention which changed the entire scenario of the communication is the telephone. It revolutionized the entire communication system. People could hear the voice of their loved ones staying miles away. Telephone comes from the Greek word tele, meaning from afar, and phone, meaning voice or voiced sound. Generally, a telephone is any device which conveys sound over a distance During the second half of the 19th century many well-known inventors were trying to develop an acoustic telegraphy for economic telegraph messages which included Charles Bourseul, Thomas Edison, Antonio Meucci, Johann Philipp Reis, Elisha Gray, and Alexander Graham Bell. The ‘speaking telegraph’ or in simple terms ‘telephone’ emerged from the creation and gradual improvement of telegraph. The invention of telephone has been one of the most disputed facts of all time. Credit for the invention of the electric telephone is never an ending dispute and new controversies over the issue keeps arising from time-to-time. The Elisha Gray and Alexander Bell controversy raises the question of whether Bell and Gray invented the telephone independently and, if that’s not true, then whether Bell stole the invention from Gray.
    [Show full text]
  • Entrepreneursh Entrepreneurship
    Entrepreneurship TiasNimbas Business School Int. MSc. in Business Administration Module Entrepreneurship Joris van Kreij 200952109 Individual assignment 6 June 2011 Prof. Shahid Rasul 2420 words Table of Contents 1 Gardiner Greene Hubbard 3 1.1 Background 3 1.2 Journey 3 1.3 Grabbing the opportunity 4 1.4 Factors for success 5 1.5 Legacy 6 2 Own Entrepreneurial Capabilities 7 2.1 General Enterprise Test 7 2.2 Applegate Entrepreneurial Mindset 8 2.3 Other tests and personal feedback 8 2.4 Analysis 9 3 Conclusion 10 Appendixes 11 References 13 Entrepreneurship 2 1 Gardiner Greene Hub bard Gardiner Greene Hubbard (August 25, 1822 – December 11, 1897) was a lawyer , financier, and philanthropist from the United States. Among other remarkable feats he was founder of the Bell Telephone Company and the first president of the National Geographic Society . This report will mainly focus on Hubbard’s contribution to the telephone services in t he United States. 1.1 Background Gardiner Greene Hubbard was born in Boston, Massachusetts in 1822. His father Samuel Hubbard was a Massachusetts Supreme Court justice. Hubbard was also a grandson of Boston merchant Gardiner Greene. He was further a descendant of Lion Gardiner, an early English settler and soldier in the New World who founded the first English settlement in what later became the State of New York. Hubbard attended the Phillips Academy in Andover, graduated from Dartmou th in 1841 and studied law at Harvard. 1.2 Journey Gardiner Greene Hubbard has been active in many different fields. The main events of his life have been listed below.
    [Show full text]
  • C.C.I.F. Plenary Session: Documents (Berlin, 1929)
    This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library & Archives Service from an original paper document in the ITU Library & Archives collections. La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections de ce service. Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del Servicio de Biblioteca y Archivos de la UIT. (ITU) ﻟﻼﺗﺼﺎﻻﺕ ﺍﻟﺪﻭﻟﻲ ﺍﻻﺗﺤﺎﺩ ﻓﻲ ﻭﺍﻟﻤﺤﻔﻮﻇﺎﺕ ﺍﻟﻤﻜﺘﺒﺔ ﻗﺴﻢ ﺃﺟﺮﺍﻩ ﺍﻟﻀﻮﺋﻲ ﺑﺎﻟﻤﺴﺢ ﺗﺼﻮﻳﺮ ﻧﺘﺎﺝ (PDF) ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ﺍﻟﻨﺴﺨﺔ ﻫﺬﻩ .ﻭﺍﻟﻤﺤﻔﻮﻇﺎﺕ ﺍﻟﻤﻜﺘﺒﺔ ﻗﺴﻢ ﻓﻲ ﺍﻟﻤﺘﻮﻓﺮﺓ ﺍﻟﻮﺛﺎﺋﻖ ﺿﻤﻦ ﺃﺻﻠﻴﺔ ﻭﺭﻗﻴﺔ ﻭﺛﻴﻘﺔ ﻣﻦ ﻧﻘﻼ ً◌ 此电子版(PDF版本)由国际电信联盟(ITU)图书馆和档案室利用存于该处的纸质文件扫描提供。 Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе Международного союза электросвязи путем сканирования исходного документа в бумажной форме из библиотечно-архивной службы МСЭ. © International Telecommunication Union OMITE CoNSULTATIF INTERNATIONAL DES COMMUNICATIONS TELEPHONIQUES A GRANDE DISTANCE Plenary Session, Berlin> yrd-ioth June3 1929 \ ENGLISH EDITION Issued by The International Standard Electric Corporation, London, 1930. PREFACE TO THE ENGLISH EDITION. This volume contains an unofficial translation of the official French text of the Proceedings of the CO MITE CONSULTATIF INTERNATIONAL DES C ommunications T elephoniques a G r a n d e D i s ­ t a n c e (c .c .i .) at its Plenary Session in Berlin, 3 rd -io th June, 1929. I nternational S t a n d a r d , E l e c t r i c C o r p o r a t io n .
    [Show full text]
  • Telephones and Economic Growth: a Worldwide Long-Term Comparison - with Emphasis on Latin America and Asia
    ACKNOWLEDGMENTS This research has been possible through the direct support of the Institute of Developing Economies, IDE-JETRO (アジア経済研究所), and part of METI in Japan. I sincerely owe a deep debt of gratitude to all the researchers, the librarians and the staff of IDE-JETRO that offered me an excellent working environment with an interdisciplinary background. I benefited greatly from the many formal and informal interactions with colleagues from Japan and many other countries. My first personal gratitude is towards my Japanese counterpart Aki Sakaguchi who convinced me to come to IDE-JETRO, where I was received very well by the complete Latin American team of IDE-JETRO, particularly Taeko Hoshino, Tatsuya Shimizu, Koichi Usami and Kanako Yamaoka, plus the Latin American librarians Tomoko Murai and Maho Kato. I am also grateful to all the team of Japanese experts on different parts of the world, from Africa to Asia in the Areas Study Center, particularly Nobuhiro Aizawa, Ke Ding, Mai Fujita, Takahiro Fukunishi, Azusa Harashima, Yasushi Hazama, Takeshi Kawanaka, Hisaya Oda, Hitoshi Ota, Yuichi Watanabe and Miwa Yamada. The researchers of the Development Studies Center and the Inter-disciplinary Studies Center were also very helpful to me, specially Satoshi Inomata, Koichiro Kimura, Masahiro Kodama, Kensuke Kubo, Satoru Kumagai, Ikuo Kuroiwa, Hiroshi Kuwamori, Hajime Sato, Katsuya Mochizuki, Junichi Uemura, and last but not least, Tatsufumi Yamagata. For my statistical analysis, I want to recognize the continuous support from Takeshi Inoue, Hisayuki Mitsuo and particularly Yosuke Noda, who were always very kind and patient with me. Yasushi Ueki of the Bangkok Research Center JETRO, and Mayumi Beppu, Naoyuki Hasegawa, Yasushi Ninomiya and Ryoji Watanabe of JETRO Headquarters, Takuya Morisihita of JETRO Venezuela, together with other personnel from JETRO and METI were very supportive as well.
    [Show full text]
  • Sixth Meeting of the CCIT
    This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library & Archives Service from an original paper document in the ITU Library & Archives collections. La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections de ce service. Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del Servicio de Biblioteca y Archivos de la UIT. (ITU) ﻟﻼﺗﺼﺎﻻﺕ ﺍﻟﺪﻭﻟﻲ ﺍﻻﺗﺤﺎﺩ ﻓﻲ ﻭﺍﻟﻤﺤﻔﻮﻇﺎﺕ ﺍﻟﻤﻜﺘﺒﺔ ﻗﺴﻢ ﺃﺟﺮﺍﻩ ﺍﻟﻀﻮﺋﻲ ﺑﺎﻟﻤﺴﺢ ﺗﺼﻮﻳﺮ ﻧﺘﺎﺝ (PDF) ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ﺍﻟﻨﺴﺨﺔ ﻫﺬﻩ .ﻭﺍﻟﻤﺤﻔﻮﻇﺎﺕ ﺍﻟﻤﻜﺘﺒﺔ ﻗﺴﻢ ﻓﻲ ﺍﻟﻤﺘﻮﻓﺮﺓ ﺍﻟﻮﺛﺎﺋﻖ ﺿﻤﻦ ﺃﺻﻠﻴﺔ ﻭﺭﻗﻴﺔ ﻭﺛﻴﻘﺔ ﻣﻦ ﻧﻘﻼ ً◌ 此电子版(PDF版本)由国际电信联盟(ITU)图书馆和档案室利用存于该处的纸质文件扫描提供。 Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе Международного союза электросвязи путем сканирования исходного документа в бумажной форме из библиотечно-архивной службы МСЭ. © International Telecommunication Union INTERNATIONAL TELEGRAPH CONSULTATIVE COMMITTEE (C. C. I. T.) DOCUMENTS O F T H E SIXTH MEETING AT BRUSSELS 'lOth—27th May, 1948 (GENEVA REVISION) March 1951 INTERNATIONAL TELECOMMUNICATION UNION OCTOBER 1951 INTERNATIONAL TELEGRAPH CONSULTATIVE COMMITTEE (C. C. I.T .) DOCUMENTS O F T H E SIXTH MEETING AT BRUSSELS 10th—27th May, 1948 (GENEVA REVISION) March 1951 INTERNATIONAL TELECOMMUNICATION UNION OCTOBER 1951 CONTENTS Page Extracts from Minutes of closing meeting of Brussels Meeting (27 May 1948) ...... 3 Postponement until 1953 of the next C. C. I. T. Plenary Meeting, and provisional arrange­ ments to prevent delay in the work of the C.
    [Show full text]
  • Indecs 17(3-B)
    17(3-B), pp.520-697, 2019 ISSN 1334-46844 INTERDISCIPLINARY DESCRIPTION OF COMPLEX SYSTEMS Scientific Journal B. Zhang 520 On Development of Information Communications in Human Society W. Akram, 546 Towards Agent-Based Model Specification of Smart M. Niazi, Grid: A Cognitive Agent-Based Computing Approach L.B. Iantovics and A.V. Vasilakos A.F. Barišić, 586 The Intensity of Human Resources Information J. Poór and Systems usage and Organizational Performance M. Pejić Bach S. Banerjee 598 Towards a Quantitative Model of Epidemics during Conflicts D. Šoštarić, 615 ECG Simulation and Integration of Kalman Filter in Gy. Mester and Cardio Pediatric Cases S. Dorner D. Šoštarić, 629 Mobile ECG and SPO2 Chest Pain Subjective Gy. Mester and Indicators of Patient with GPS Location in Smart S. Dorner Cities N. Dubreta and 640 Subjectivity and Technology in Work of Technicians I. Mikulić in Periodical Technical Inspection Stations Maroje Višić 659 Renaissance of Herbert Marcuse: A Study on Present Interest iin Marcuse’s Interdisciplinary Critical Theory T. Krajna and 684 Croatian Highly Cited Papers J. Petrak 697 Palić, I.; Banić, F. and Matić, L.: The Analysis of the Impact of Depreciation on External Debt in Long-Run: Evidence from Croatia. Interdisciplinary Description of Complex Systems 16(1), 186-193, 2018. http://dx.doi.org/indecs.16.1.15. Scientific Journal INTERDISCIPLINARY DESCRIPTION OF COMPLEX SYSTEMS INDECS, volume 17, issue 3, part B, pages 520-697, year 2019 Published 30th September 2019 in Zagreb, Croatia Released online 30th September 2019 Office Croatian Interdisciplinary Society c/o Faculty of Mechanical Engineering & Naval Architecture I.
    [Show full text]
  • On Development of Information Communications in Human Society
    Interdisciplinary Description of Complex Systems 17(3-B), 520-545, 2019 ON DEVELOPMENT OF INFORMATION COMMUNICATIONS IN HUMAN SOCIETY Bangwei Zhang* Hunan University, College of Physics Changsha, People’s Republic of China DOI: 10.7906/indecs.17.3.13 Received: 21 May 2019. Regular article Accepted: 27 September 2019. ABSTRACT Information is very important. Information is also very complicated, making that people have no common understanding and conclusion for the nature of it up today. There are too many papers and some books to describe information; however it is rather difficult to find the description and analysing for the whole history of information from the advent of human beings to the present day. Two parts of information in prehistoric period and the time interred divinization are described. Every part is separated according to several succeeded stages for description. It is near impossible to describe in detail such entire historical facts of information in human society in a paper, so the description and discussion is focused on their comprehensiveness and integrity. By knowing and analysing all these solid historical facts of information, some relative issues e.g. “did information age really exist in the development of material civilization in human society” can be recognized easily. KEY WORDS information, history of information, information communication, matter, substance civilization, six-stage theory CLASSIFICATION JEL: B10, D83 *Corresponding author, : [email protected]; +0731 88822715; *College of Physics, Hunan University, Changsha 410 082, People’s Republic of China * On development of information communications in human society INTRODUCTION Near everybody knows the importance of information because nobody can leave the information and it communications.
    [Show full text]
  • Director's Report
    Published by the Telecommunications History Group, Inc. DENVER, COLORADO (303) 296-1221 www.telcomhistory.org Autumn 2012, Vol. 16, no. 3 Jody Georgeson, editor Director’s Report by Jody Georgeson I thought you might like to know a little more about archives and museums and why we think it is important to preserve the history of our industry. History is important to all of us because it is the heritage that shaped the world we live in today. It helps us to understand the world, and how it became what we see today. It can help us to solve problems that we face today by seeing solutions that were tried, successfully or not, in the past. Authoritative historical work will always rely on oral tradition, personal memoirs, and other semi-official works, but it is doubtful that new history will be written without the cumulative and verifiable sources found in museums and in archival depositories. Besides the historical importance, an important reason for the existence of archives and museums is a cultural one. Our collections are as important a cultural resource as paintings and sculptures, monuments, landscapes, archaeological sites, buildings, and religious beliefs and practices. The mission of any historical institution is to identify artifacts and documents of enduring value; to preserve them; and to make them available to patrons. THG’s focus is to help our communities understand how telecommunications has shaped our lives and our world. In order to accomplish our mission, we rely on our wonderful volunteers and on our members. How can you help? Donate materials - Most of us have things in our home which we’ve saved as reminders of our careers in the telecom industry.
    [Show full text]
  • 1^3 £ <$5 MHI TM ^0-4851 JAPANESE-ENGLISH GLOSSARY
    1^3 £ <$5 MHI TM ^0-4851 WAR DEPARTMENT TECHNICAL MANUAL ^ JAPANESE-ENGLISH GLOSSARY TECHNICAL COMMUNICATION TERMS May 1, 1943 JAPANESE CHARACTERS ENGLISH EQUIVALENT PRONUNCIATION ^ ITSU. ICHI, BITOISU ONE. SINGLE, PRIMARY /£ J < /k ICHIJI KOIRU PRIMARY COIL >£ 7 1 y * -i -y-f ICHIJI RAIK SUVITCHI PRIMARY LINE SIIICH ;i ia f& ICHIJI KAIRO PRIMARY CIRCUIT -~;*3fc« ICHIJI HOSNA PRIMARY EMISSION -*©t£#*&%V ICHfjl INKYOKU AHBU PRIMARY DARK SPACE -©fctt ICHIJI DENSHI PRIMARY ELECTRON PRIMARY CELL. -©*t;t ICHIJI BENCH! PRIMARY BATTERY -;fct# ICHIJI DENATSU PRIMARY VOLTAGE -^*5IS ICHIJI SENRIN PRIMARY COIL - a£«3 a ISStNKA NAHARI LEAD MONOXIDE, LITHARGE -$ «*£ ISSEI YOB 1 DASH 1 SIMULTANEOUS CALLING j=- SAN, HI, HITTSU THREE ^tfia%- SANJI KAIRO TERTIARY CIRCUIT 5.ft*S*Si SANKAKU KESSEN DELTA CONNECTION 5-*tt**« SAN HAKISEN HENSEIKI THREE-KINDING TRANSFORMS i*S SAKSO THREE-PHASE TRIPLE-PETTICOAT (THREE- ^f*^ SANJU CAISHI SECTION) INSULATOR SANKTOKU SHIKKUKAK TRIODE, THREE-ELECTRODE ^-*4«f VACUUM TUBE TRIODE, THREE-ELECTRODE ^-ttf SANKTOKUKAN TUBE UP. UPPER. ABOVE. HIGH. i JO. UE, KAMI BETTER *i -;&f JO SOKUHATAI UPPER SIDE BAND -t--W JOBU SEN UPPER LI HE T GE. SHIT*. SHIHO, (A LOK, LOKR, OOKN fttri.y 1-ft$L GfDJK BURtNKU FUG8 LETTER-BLANK SIGNAL T ?(>.*? KtBU SEN DOKN-LIKE. LOKR-LINE Z- Zl), FU. BU NOH-, NEGATIVE. NOT *m FU BYO"S KAI NON-UNIFORM FIELD y-tto FU HE IKS UNBALANCE. UNBALANCED * £ T* FU KANRT9 TOBI INEFFECTIVE CALL T|U*tt FURTO D8TAI BAD CONDUCTOR *£ ;& FUKAI HA UNDISTORTED HAVE ^4fttdia>fr FU SHIHD5 KAIPO APERIODIC CIRCUIT *«#)#: FU SHINDO HODEN NON-OSCILLATORY DISCHARGE x&to-A® FU SHIND3 EEKPUKU APERIODIC DAMPING SERVICE INTERRUPTION, £ii FUTSU BROKEN COMMUNICATION TS-H&X&&.
    [Show full text]