On Development of Information Communications in Human Society
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Engineering of Computer Networking Protocols : an Historical Perspective Gregor V
Engineering of computer networking protocols : an historical perspective Gregor v. Bochmann University of Ottawa with thanks to Colin West and Dave Rayner http://www.site.uottawa.ca/~bochmann/talks/history.ppt McNaughton Lecture 24th Canadian Conference on Electrical and Computer Engineering Niagara Falls, May 2011 Gregor v. Bochmann, University of Ottawa 1 Approximate time line 1960: first high-level programming languages 1965: time sharing operating systems and interactive terminals 1970: first experimental computer networks 1975: X.25 networking standard, proprietary networking architectures, e.g. IBM’s SNA 1980: experimental Internet, OSI standardization started, Teletex (a kind of Web service, Telidon in Canada) 1985: Formal Description Techniques (FDTs) developed, experimental tools 1990: commercial SDL tools, beginning of public use of the Internet and Web 1995: Java released, wide use of the Internet, digital wireless telephony spreads – UML (universal modeling language) 2000: XML and Web Services 2005: beginning integration of wireless services with the Internet 2011: there we are . Gregor v. Bochmann, University of Ottawa 2 Computer communications in the 1970ies Remote access to servers User terminals Batch entry terminals Line multiplexing line speed: 300 bps Link protocols (with sequence numbering) Alternating bit protocol (1969) Bisync, SDLC (IBM) Gregor v. Bochmann, University of Ottawa 3 Computer communications in the 1970ies Computer networks ARPANET (USA): first long distance computer network – first trial in 1969 NPL network (UK): first LAN Cyclade (France): introduced IP service at the network layer – around 1972 Donald Davies, NPL Leonard Kleinrock, UCLA Louis Pouzin with ARPAnet node INRIA (France) Gregor v. Bochmann, University of Ottawa 4 Computer communications in the 1970ies Protocol standards First network protocol standard: X.25 Vendor networking architectures IBM (SNA), DEC, Honeywell, etc. -
Growth of the Internet
Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] Preliminary version, July 6, 2001 Abstract The Internet is the main cause of the recent explosion of activity in optical fiber telecommunica- tions. The high growth rates observed on the Internet, and the popular perception that growth rates were even higher, led to an upsurge in research, development, and investment in telecommunications. The telecom crash of 2000 occurred when investors realized that transmission capacity in place and under construction greatly exceeded actual traffic demand. This chapter discusses the growth of the Internet and compares it with that of other communication services. Internet traffic is growing, approximately doubling each year. There are reasonable arguments that it will continue to grow at this rate for the rest of this decade. If this happens, then in a few years, we may have a rough balance between supply and demand. Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] 1. Introduction Optical fiber communications was initially developed for the voice phone system. The feverish level of activity that we have experienced since the late 1990s, though, was caused primarily by the rapidly rising demand for Internet connectivity. The Internet has been growing at unprecedented rates. Moreover, because it is versatile and penetrates deeply into the economy, it is affecting all of society, and therefore has attracted inordinate amounts of public attention. The aim of this chapter is to summarize the current state of knowledge about the growth rates of the Internet, with special attention paid to the implications for fiber optic transmission. -
Valentine from a Telegraph Clerk to a Telegraph Clerk
Science Museum Group Journal Technologies of Romance: Valentine from a Telegraph Clerk ♂ to a Telegraph Clerk ♀: the material culture and standards of early electrical telegraphy Journal ISSN number: 2054-5770 This article was written by Elizabeth Bruton 10-08-2019 Cite as 10.15180; 191201 Discussion Technologies of Romance: Valentine from a Telegraph Clerk ♂ to a Telegraph Clerk ♀: the material culture and standards of early electrical telegraphy Published in Autumn 2019, Issue 12 Article DOI: http://dx.doi.org/10.15180/191201 Keywords electrical telegraphy, poetry, scientific instruments, James Clerk Maxwell Valentine from A Telegraph Clerk ♂ to a Telegraph Clerk ♀, by JC Maxwell, 1860 The tendrils of my soul are twined With thine, though many a mile apart. And thine in close coiled circuits wind Around the needle of my heart. Constant as Daniell, strong as Grove. Ebullient throughout its depths like Smee, My heart puts forth its tide of love, And all its circuits close in thee. O tell me, when along the line From my full heart the message flows, What currents are induced in thine? One click from thee will end my woes. Through many an Ohm the Weber flew, And clicked this answer back to me; I am thy Farad staunch and true, Charged to a Volt with love for thee Component DOI: http://dx.doi.org/10.15180/191201/001 Introduction In 1860, renowned natural philosopher (now referred to as a ‘scientist’ or, more specifically in the case of Clerk Maxwell, a ‘physicist’) James Clerk Maxwell wrote ‘Valentine from a Telegraph Clerk ♂ [male] to a Telegraph Clerk ♀ [female]’ (Harman, 2001).[1] The short poem was a slightly tongue-in-cheek ode to the romance of the electric telegraph littered with references to manufacturers of batteries used in electrical telegraphy around this time such as John Daniell, Alfred Smee, and William Grove and electrical units (now SI derived units) such as Ohm, Weber, Farad and Volt (Mills, 1995). -
Local-Loop and DSL REFERENCE GUIDE Table of Contents
Local-Loop and DSL REFERENCE GUIDE Table of Contents Prologue ............................................................................ 2 2.3.9.3 REIN ....................................................................32 2.3.9.4 SHINE..................................................................32 1. Introduction ................................................................. 5 2.3.9.5 PEIN ....................................................................32 2. What is DSL? ................................................................ 6 2.3.10 Bonding...............................................................33 2.3.11 Vectoring ............................................................35 2.1 Pre-DSL Delivery of Data ........................................................... 6 2.3.12 G.Fast ..................................................................36 2.1.1 Dial-Up ................................................................................ 6 2.1.2 ISDN .................................................................................... 7 3. DSL Deployment Issues ...........................................38 2.2 xDSL Overview ............................................................................. 8 3.1 Determining the Nature of the Problem ...............................39 2.3 DSL In-Depth .............................................................................12 3.2 Performing a Visual Inspection ..............................................44 2.3.1 ISDN ..................................................................................13 -
The Marriage That Almost Was Western Union Has Always Been R.Idiculed for Rejecting the All Telephone
RETROSPECTIVE .Innovation The marriage that almost was Western Union has always been r.idiculed for rejecting the telephone. But what actually happened wasn't so ridiculous after all The hirth of the telephone.,-one hundred years ago railway and illuminating gas to Cambridge, Mass. this month-is a fascinating story of the geJ;Jius and Long intrigued by telegraphy, he decided to do persistence of on.e man. In addition, it is an instruc something about what he called "this monopoly tive demonstration of how an industrial giant, in with its inflated capital which serves its stockhold this case the Western Union Telegraph Co., can ers better than the 'public and whose:rates are ex miss its chance to foster an industry-creating orbitant and prohibiting of many kinds of busi breakthrough-something that has happened again ness." Between 1868 and 1874, he lobbied unceas and again in electronics and other fields. ingly, shuttling back and forth betweep. homes in Between ·1875 and 1879, Western Union's chiefs Boston and Washington. for a private "postal tele engaged in an intricate minuet with Alexander graph company" to be chartered by Congress but Graham Bell and his associates. On more than one with Hubbard and some of his friends among the occasion, the telegraph colossus came excruciating incorporators. As Hubbard envisioned it, the com ly close to absorbing the small group of ~ntre pany would build telegraph lines along the nation's preneurs, That the absorption was finally avoided rail and post roads and contract with the Post was probably the result of a technological gamble Office Department to send telegrams on its wires ~t that simply didn't payoff, as rates roughly half those being charged by Western ••• The place: the ollie of well as a clash of personali Union. -
The Electric Telegraph
To Mark, Karen and Paul CONTENTS page ORIGINS AND DEVELOPMENTS TO 1837 13 Early experiments—Francis Ronalds—Cooke and Wheatstone—successful experiment on the London & Birmingham Railway 2 `THE CORDS THAT HUNG TAWELL' 29 Use on the Great Western and Blackwall railways—the Tawell murder—incorporation of the Electric Tele- graph Company—end of the pioneering stage 3 DEVELOPMENT UNDER THE COMPANIES 46 Early difficulties—rivalry between the Electric and the Magnetic—the telegraph in London—the overhouse system—private telegraphs and the press 4 AN ANALYSIS OF THE TELEGRAPH INDUSTRY TO 1868 73 The inland network—sources of capital—the railway interest—analysis of shareholdings—instruments- working expenses—employment of women—risks of submarine telegraphy—investment rating 5 ACHIEVEMENT IN SUBMARINE TELEGRAPHY I o The first cross-Channel links—the Atlantic cable— links with India—submarine cable maintenance com- panies 6 THE CASE FOR PUBLIC ENTERPRISE 119 Background to the nationalisation debate—public attitudes—the Edinburgh Chamber of Commerce— Frank Ives. Scudamore reports—comparison with continental telegraph systems 7 NATIONALISATION 1868 138 Background to the Telegraph Bill 1868—tactics of the 7 8 CONTENTS Page companies—attitudes of the press—the political situa- tion—the Select Committee of 1868—agreement with the companies 8 THE TELEGRAPH ACTS 154 Terms granted to the telegraph and railway companies under the 1868 Act—implications of the 1869 telegraph monopoly 9 THE POST OFFICE TELEGRAPH 176 The period 87o-1914—reorganisation of the -
Kew Observatory and the Evolution of Victorian Science, 1840–1910
introduction Kew Observatory, Victorian Science, and the “Observatory Sciences” One more recent instance of the operations of this Society in this respect I may mention, in addition to those I have slightly enumerated. I mean the important accession to the means of this Society of a fixed position, a place for deposit, regula- tion, and comparison of instruments, and for many more purposes than I could name, perhaps even more than are yet contemplated, in the Observatory at Kew. Address by Lord Francis Egerton to British Association for the Advancement of Science, June 1842 When in 1842 Lord Egerton, president of the British Association for the Advancement of Science (BAAS), announced the association’s acquisition of Kew Observatory (figure I.1), he heralded the inaugura- tion of what would become one of the major institutions of nineteenth- century British—indeed international—science. Originally built as a pri- vate observatory for King George III and long in a moribund state, after 1842 the Kew building would, as Egerton predicted, become a multi- functional observatory, put to more purposes than were even imagined in 1842. It became distinguished in several sciences: geomagnetism, me- teorology, solar astronomy, and standardization—the latter term being used in this book to refer to testing scientific instruments and develop- ing prototypes of instruments to be used elsewhere, as well as establish- ing and refining constants and standards of measurement. Many of the major figures in the physical sciences of the nineteenth century were in some way involved with Kew Observatory. For the first twenty months of the twentieth century, Kew was the site of the National Physical Labora- 3 © 2018 University of Pittsburgh Press. -
The Evolution of Internet Evidence 1
Name: Sam Kavande Rocha Enrollment: 2777582 Nombre del curso: Name of professor: Information technologies Tania Zertuche Module: Activity: 1 Evidence 1 Date: 8 / September / 2015 References: The evolution of Internet Evidence 1 1 Table of contents: Introduction Page 2 Topic explanation Page 2 to 3 Conclusions Page 4 Bibliography Page 5 references 2 Introduction: The Internet is evolving. The majority of end-users perceive this evolution in the form of changes and updates to the software and networked applications that they are familiar with, or with the arrival of entirely new applications that change the way they communicate, do business, entertain themselves, and so on. Evolution is a constant feature throughout the network Topic explanation: The history of the Internet begins with the development of electronic computers in the 1950s. Initial concepts of packet networking originated in several computer science laboratories in the United States, Great Britain, and France. The US Department of Defense awarded contracts as early as the 1960s for packet network systems, including the development of the ARPANET (which would become the first network to use the Internet Protocol.) The first message was sent over the ARPANET from computer science Professor Leonard Kleinrock's laboratory at University of California, Los Angeles (UCLA) to the second network node at Stanford Research Institute (SRI). Packet switching networks such as ARPANET, NPL network, CYCLADES, Merit Network, Tymnet, and Telnet, were developed in the late 1960s and early 1970s using a variety of communications protocols. Donald Davies was the first to put theory into practice by 3 designing a packet-switched network at the National Physics Laboratory in the UK, the first of its kind in the world and the cornerstone for UK research for almost two decades. -
Methods of Social Reform
METHODS OF SOCIAL REFORM. METHODS OF SOCIAL REFORM AND OTHER PAPERS BY W. STANLEY JEVONS, M.A., LL.D., F.R.S. &mbm MACMILLAN AND CO. 1883 [All sightr rW.1 PREFACE. A FEW words will explain that this volume is a collection of the Essays published under the title of Methods of Social Reform” in The Contemporary Rcckw, and of otherpapers and addresses on kindredsubjects. They extend over a period of fifteen years, and I have given at the commencement of eachpaper the date at which it was written, 89 I have thought it better to arrange them as far &9 I Could according to subjects rather than by date. It was my husband’s inten- tion to have republished these Essays himself, and with this view hehad already revised two of them--“ Experimental Legislation and the Drink Traffic,” and “Amusements of the People ;” to the latter he had added several new paragraphs, He would, I am sure, have carefully edited and revised the others in the same way, but they are now republished just as theywere originally written. The Essay on “The Use and Abnse of Museums ’’ has not before been published. It was chie0y written in 1881, for Contemporary Reuieu~,but wm laid aside from the pressure of other work, and I am unable to say the exact time at which it waa hished. It still the halrevision which he wodd have given before sending it vi PREFACE. to Prerre. The Lecture on rr Industrial Partnerships" ie m- fedto by Mr. Jevona in his book on Ir The State in Relation to Labour,'' * p. -
ODNOS ČETRTOŠOLCEV DO MOBILNIH TELEFONOV Raziskovalna Naloga Področje: Sociologija
OŠ Brinje Grosuplje Ljubljanska cesta 40a ODNOS ČETRTOŠOLCEV DO MOBILNIH TELEFONOV Raziskovalna naloga Področje: Sociologija Avtorja: Lučka Perme, Liza Završan in Zoja Gal – Šehić; 4. b Mentorici: Vanja Resnik, Maja Zajec Grosuplje, marec 2020 1 KAZALO 1 UVOD _______________________________________________________________________ 3 2 TEORETIČNI DEL _______________________________________________________________ 4 2.1 KAJ JE TELEFON? __________________________________________________________ 4 2.2 ZGODOVINA TELEFONOV ___________________________________________________ 4 2. 3 SEVANJE MOBILNEGA TELEFONA _____________________________________________ 5 2. 4 MOBILNI TELEFONI V ŠOLI ___________________________________________________ 6 2. 5 ZASVOJENOST _____________________________________________________________ 7 2. 6 HIPOTEZE ________________________________________________________________ 8 3 EMPIRIČNI DEL ________________________________________________________________ 9 3. 1 METODA _________________________________________________________________ 9 3. 2 REZULTATI __________________________________________________________________ 9 4 ZAKLJUČEK __________________________________________________________________ 14 5 LITERATURA _________________________________________________________________ 15 6 PRILOGE ____________________________________________________________________ 16 2 POVZETEK To temo smo si izbrale, ker ima danes že praktično vsak človek svoj mobilni telefon, nas pa je zanimalo, kakšno je stanje pri učencih 4. razredov. V raziskavi -
History of Communication
History of Communication Animals have their own methods of communication. For example Dolphins use sound to communicate with other dolphins and to echolocate when hunting. From the early history of human existence there have been many ways of communicating each other. People from different parts of the world use a variety of languages to express their thoughts. Gradually civilization thrived and ways of communicating other continents became a general need to build up political and economical inter-relationships among them. We find many curious and interesting methods of communication in the history of the world. Sri Lankan history reveals that messages were sent by birds often. And some messages were named after the bird that carried it. The postal system was one of the early forms of communication. Chou Dynasty created his own postal system in 1000 B.C. The mail would travel on a horse to the next pass. Romans had their own system called the “Cursus Pubius”, they used foot messengers. Genghis Khan made an early postal system using homing pigeons. Middle Age in European history is a very important period. After the invention of the printing machine people in Europe gathered knowledge by reading. They started thinking. Hence, many inventions and theories came forward. Among them were telegraph, telephone, television and radio. British inventors Sir Charles Wheatstone and William F. Cook invented the telegraph in 1837. Samuel Morse invented the telegraph communication system called the Morse code. It had long and short electrical impulses referring as dots and dashes. Each impulse is either a letter or number. -
A History of Audio Effects
applied sciences Review A History of Audio Effects Thomas Wilmering 1,∗ , David Moffat 2 , Alessia Milo 1 and Mark B. Sandler 1 1 Centre for Digital Music, Queen Mary University of London, London E1 4NS, UK; [email protected] (A.M.); [email protected] (M.B.S.) 2 Interdisciplinary Centre for Computer Music Research, University of Plymouth, Plymouth PL4 8AA, UK; [email protected] * Correspondence: [email protected] Received: 16 December 2019; Accepted: 13 January 2020; Published: 22 January 2020 Abstract: Audio effects are an essential tool that the field of music production relies upon. The ability to intentionally manipulate and modify a piece of sound has opened up considerable opportunities for music making. The evolution of technology has often driven new audio tools and effects, from early architectural acoustics through electromechanical and electronic devices to the digitisation of music production studios. Throughout time, music has constantly borrowed ideas and technological advancements from all other fields and contributed back to the innovative technology. This is defined as transsectorial innovation and fundamentally underpins the technological developments of audio effects. The development and evolution of audio effect technology is discussed, highlighting major technical breakthroughs and the impact of available audio effects. Keywords: audio effects; history; transsectorial innovation; technology; audio processing; music production 1. Introduction In this article, we describe the history of audio effects with regards to musical composition (music performance and production). We define audio effects as the controlled transformation of a sound typically based on some control parameters. As such, the term sound transformation can be considered synonymous with audio effect.