NRP Post 2021 Issue 1

Total Page:16

File Type:pdf, Size:1020Kb

NRP Post 2021 Issue 1 National Aeronautics and Space Administration THE 2021 Issue 1 NRPA Publication of NASAP OSTResearch Park CMU Works on Wide Bandwidth to Avert Interference Full article on page 4 USGS & SSA Research Smaller Earthquakes “With Ambition” Full article on page 10 NRP Post IN THIS ISSUE 3 | Geoffrey Ament of STC Receives NASA Ames Contractor of the Year Award NASA recognizes Mr. Geoffrey Ament’s accomplish- ments at Ames Research Center 4 | CMU Reducing Interference ECE researchers were awarded a $1M NSF grant to investigate new ways to avert interference 6 | Breakthrough Initiatives Help to Look for Life in the Clouds of Venus Initiatives to fund study into search for primitive life in the clouds of Venus 8 |RMV’s Hands on Approach to Educa- tion on ESD RMV’s in person and virtual classes on electrostatic discharge by Bob Vermillion 10 |USGS’s Study on the Movements of Smaller Earthquakes Study by USGS on how smaller quakes can actually shake more aggressively 2 www.nasa.gov NRP Post Mr. Geoffrey Ament of STC Receives NASA Ames Contractor of the Year Award Moffett Field, California, Summer 2020 r. Geoffrey Ament, an STC employ- Francisco, CA, and subsequently led ee who works on the AEMMS con- to a NASA Contractor Report (NASA/ Mtract at NASA Ames in Mountain View, CR-2018-219736). Furthermore, as part CA, was recently awarded the NASA of the Mars Helicopter risk reduction Ames Contractor of the Year Award. effort, he designed and assembled the Mr. Ament is a Research Associatein test hardware for the rotor blade spin- the field of Mechatronics Engineering. up in the JPL Space Simulator, a re- The award citation reads, “Mr. Ament’s quirement for Mars Helicopter testing; desire to explore, design, and inno- moreover, he led efforts to build a dust vate embodies the true spirit of what chamber and coaxial rotor control sys- a NASA Engineer should be. He is ar- tem to perform dust studies in order to ticulate, meticulous with his work, and study saltation and the effects of dust strives for excellence.” In their nomi- on the helicopter’s on-board sensors. nation letter the nominators cited that, Currently, Mr. Ament is the lead for all “Since the start of his employment as rotorcraft testing performed at Martian a Science and Technology Corporation atmospheric densities in the Planetary (STC) research associate in August of Aeolian Laboratory (PAL), and he de- 2015, Mr. Ament has made substantial signed (and is currently assembling) a contributions to NASA’s RLVT mission 2-by-2 meter wind tunnel for rotor test- with respect to both terrestrial and Mar- ing at Martian atmospheric conditions tian flight. In 2017, he was part of the as well as terrestrial UAV testing.” Multicopter Unmanned Aerial Systems (UAS) performance test team, during STC would like to congratulate Mr. which he designed and manufactured Ament on this award and to thank him quadcopter mounting hardware for for the years of exceptional service that mounting to the 7-by-10 ft wind tunnel he has provided to NASA Ames through sting mount. He was the test director STC. for the first-ever wind tunnel test of a simulated rotorcraft in forward flight at Mars atmospheric condi- tions, which led to a data report that he present- ed at the 2018 AHS conference in San www.nasa.gov/researchpark 3 NRP Post Detecting Wireless Interference BY Krista Burns June 23, 2020 ECE researchers were awarded a $1M NSF grant to investigate a system that allows devices to scan wide bandwidths to avert interference. n a time where countless devic- er and simplicity of most IoT devic- es are connected to the Internet es,” said Swarun Kumar, assistant wirelessly, interference is inevita- professor and principal investigator. Ible. Spectrum pollution in the Inter- “They are narrowband and unable net-of-Things (IoT) era is something to sense and avoid incumbents on all users experience—a lag in con- shared spectrum.” necting to your favorite app, not be- ing able to sync to a wireless print- The proposal presents a system er, the dreaded loading circle when designed for low-power devices to trying to stream your favorite show. sense spectrum at minimal energy But what if IoT devices could detect and cost, allowing these devices to and respect the presence of other behave as low-cost and distributed devices on a shared spectrum? spectrum observatories. This would allow for devices and users to have a seamless wireless Much like land and water, radio experience. spectrum is a shared resource by many stakeholders; Wi-Fi routers, Swarun Kumar, Anthony Rowe, and cellular companies, AM/FM radio Robert Iannucci from Carnegie Mel- stations, television towers, etc. lon University’s Department of Elec- Companies lease spectrum use un- trical and Computer Engineering der multi-year contracts. However, in new window have been award- a lot of the spectrum is not used ed a $1 million National Science consistently, leading to significant Foundation (NSF) grant to investi- wastage of a costly resource. What gate a system that allows teams of if there was a way to monitor the geo-distributed low-power devices spectrum and signal when it’s avail- to quickly and efficiently scan wide able at a given location so that it bandwidths to avert interference. could be leased on-the-fly when va- “The core challenge is the low-pow- cant? This would save companies 44 www.nasa.govwww.nasa.gov NRP Post “The core challenge is the low-power and sim- plicity of most IoT devices. They are narrowband and unable to sense and avoid incumbents on shared spectrum.” money, and increase the speed of “The testbed developed through the our devices. However, building such project will serve as a vehicle for a spectrum monitoring infrastruc- undergraduate and graduate-level ture can be costly. It would need projects as well as workshops for to be replicated all over the coun- K-12 students in the city of Pitts- try, and it would need to scan huge burgh,” said Kumar. “The team has swaths of spectrum, increasing the direct experience working with sen- cost further. sor deployments at Carnegie Mel- lon, the city of Pittsburgh, United Referred to as Swallow, this project States Geological Survey (USGS), explores the use of low-cost and and local industry partners and will low-power IoT devices to serve as leverage these connections to de- spectrum monitors that are cheap ploy Swallow at scale.” and can be placed anywhere. Glob- ally, IoT devices are projected to The project will be implemented and be deployed in tens of billions and evaluated on a large programmable be ubiquitous in the coming years. Low-Power Wide-Area Network- Rather than viewing these as yet ing testbed in the Carnegie Mellon another part of the spectrum shar- University campus that serves large ing problem, this project views them parts of the City of Pittsburgh. This as part of the solution in effectively award reflects NSF’s statutory mis- monitoring radio spectrum. sion and has been deemed worthy of support through evaluation using The project’s objective, if success- the Foundation’s intellectual merit ful, could pave a new way to man- and broader impacts review criteria. age, monitor, and better exploit spectrum—a valuable national re- source—as the world embarks on high-speed wireless beyond 5-G. www.nasa.gov/researchpark 5 NRP Post San Francisco – September 15, 2020 INITIATIVES TO FUND STUDY INTO SEARCH FOR PRIMITIVE LIFE IN THE CLOUDS OF VENUS ew evidence suggests presence of Discovery of Phosphine Npotential biosignature on closest planet to Earth. The new paper, from lead author Jane Greaves of Cardiff University, Seager and Breakthrough Initiatives, the privately-fund- their collaborators, demonstrates the pres- ed space science programs founded by sci- ence of phosphine (PH3) in the Venusian ence and technology investor and philan- atmosphere via an analysis of millime- thropist Yuri Milner, are funding a research ter-waveband observations by the Atacama study into the possibility of primitive life in Large Millimeter Array (ALMA) in Chile, with the clouds of Venus. The study is inspired additional evidence from the James Clerk by the discovery, announced yesterday, of Maxwell Telescope (JCMT in Hawai’i). the gas phosphine, considered a potential biosignature, in the planet’s atmosphere. The level of phosphine detected in the clouds of Venus – about 20 parts per billion The science team undertaking the research – is completely unexpected for a gas sus- will comprise of world-class physicists, as- ceptible to destruction by ultraviolet radia- tronomers, astrobiologists, chemists and tion, either directly or by ultraviolet-induced engineers, led by Sara Seager, Professor of radicals. This suggests that some process Planetary Science, Physics and Aerospace is replenishing the gas. But what process? Engineering at the Massachusetts Institute of Technology. The group will investigate Phosphine is a “biogenic” chemical: all the scientific case for life and analyze the samples encountered on Earth have been technical challenges of an exploratory mis- produced by biological or human-made sion in the event that such evidence proves processes requiring considerable ener- compelling. gy inputs. Although the precise biological mechanisms generating phosphine are un- 6 www.nasa.gov NRP Post known, they are associated with the break- nus atmosphere and what further evidence down of organic matter by bacteria, with for life a mission to Venus could search for.” the gas being found in oxygen-free environ- ments such as marshlands and swamps, as Project Leadership well as the guts of animals. While the pres- ence of phosphine on Venus may turn out Sara Seager – MIT – Principal Investigator to stem from a non-living process, no such Janusz Petkowski – MIT – Deputy PI process on a terrestrial planet is currently Chris Carr – Georgia Tech known to science.
Recommended publications
  • Topics for Students' Presentations Problems in Long Distance (Human) Space Travel New Propulsion Tech
    06/03/2019 Life in the Universe 2019 - Student talks - Google Docs Topics for students’ presentations ● Problems in long distance (human) space travel ○ New propulsion technologies Paul Richter ○ Social aspects? ○ life in zero‑gravity ○ communication ● Prospects for long‑term human missions within the Solar systems: ○ Elon Musk's plan to send humans to Mars F. Stabel ○ What would be the point of a lunar base? ● Testing extra‑terrestrial habitats on Earth ○ NEEMO, Mars500, Desert RATS experiments ● Future (and proposed) space missions and/or observational facilities to look for life‑/bio‑ signatures: Artem Mosienko ○ On Europa ○ on Exo‑planets ● Solar‑system bodies as potentially life‑bearing systems: B. Prinoth ○ Europa ○ Titan ○ Enceladus ○ Mars ● Experiments to search for Life on Mars: ○ Past and present (Viking missions to now) ○ Martian meteorites (ALH‑64?) 20 years on, include possibly media response at the time to idea of evidence for extraterrestrial life ○ Future in situ experiments on Mars ● SETI projects : ○ Breakthrough Initiatives ○ SETI@Home ○ What are the fundamental assumptions behind SETI experiments, and what do they imply (i.e., similar to Drake Eq.) Sven Kiefer ● Observational signatures of advanced civilizations Leon Raabe ● Remote detection of Life on Earth (How far away can we detect Human signals, e.g. TV) Yves Sibony ● Summary of what is known about the exosolar asteroid ( 'Oumuamua ) Andrea Weibel https://docs.google.com/document/d/1qZdVVX3bP5kyfftaQazeXs3l7sP3TQDq9mL9uGLHrjE/edit# 1/4 06/03/2019 Life in the Universe 2019 - Student talks - Google Docs ● How good is the evidence for an asymmetry of left‑ and right‑ handed organic molecules in nature and where could such an asymmetry come from? O.
    [Show full text]
  • Nasa and the Search for Technosignatures
    NASA AND THE SEARCH FOR TECHNOSIGNATURES A Report from the NASA Technosignatures Workshop NOVEMBER 28, 2018 NASA TECHNOSIGNATURES WORKSHOP REPORT CONTENTS 1 INTRODUCTION .................................................................................................................................................................... 1 What are Technosignatures? .................................................................................................................................... 2 What Are Good Technosignatures to Look For? ....................................................................................................... 2 Maturity of the Field ................................................................................................................................................... 5 Breadth of the Field ................................................................................................................................................... 5 Limitations of This Document .................................................................................................................................... 6 Authors of This Document ......................................................................................................................................... 6 2 EXISTING UPPER LIMITS ON TECHNOSIGNATURES ....................................................................................................... 9 Limits and the Limitations of Limits ...........................................................................................................................
    [Show full text]
  • DIRECT FUSION DRIVE for Interstellar Exploration S.A
    Journal of the British Interplanetary Society VOLUME 72 NO.2 FEBRUARY 2019 General interstellar issue DIRECT FUSION DRIVE for Interstellar Exploration S.A. Cohen et al. INTERMEDIATE BEAMERS FOR STARSHOT: Probes to the Sun’s Inner Gravity Focus James Benford & Gregory Matloff REALITY, THE BREAKTHROUGH INITIATIVES and Prospects for Colonization of Space Edd Wheeler A GRAVITATIONAL WAVE TRANSMITTER A.A. Jackson and Gregory Benford CORRESPONDENCE www.bis-space.com ISSN 0007-084X PUBLICATION DATE: 29 APRIL 2019 Submitting papers International Advisory Board to JBIS JBIS welcomes the submission of technical Rachel Armstrong, Newcastle University, UK papers for publication dealing with technical Peter Bainum, Howard University, USA reviews, research, technology and engineering in astronautics and related fields. Stephen Baxter, Science & Science Fiction Writer, UK James Benford, Microwave Sciences, California, USA Text should be: James Biggs, The University of Strathclyde, UK ■ As concise as the content allows – typically 5,000 to 6,000 words. Shorter papers (Technical Notes) Anu Bowman, Foundation for Enterprise Development, California, USA will also be considered; longer papers will only Gerald Cleaver, Baylor University, USA be considered in exceptional circumstances – for Charles Cockell, University of Edinburgh, UK example, in the case of a major subject review. Ian A. Crawford, Birkbeck College London, UK ■ Source references should be inserted in the text in square brackets – [1] – and then listed at the Adam Crowl, Icarus Interstellar, Australia end of the paper. Eric W. Davis, Institute for Advanced Studies at Austin, USA ■ Illustration references should be cited in Kathryn Denning, York University, Toronto, Canada numerical order in the text; those not cited in the Martyn Fogg, Probability Research Group, UK text risk omission.
    [Show full text]
  • LPIB Issue 164 (April 2021)
    THE CHICXULUB IMPACT CRATER: Producing a Cradle of Life in the Midst of a Global Calamity Featured Story | From the Desk of Lori Glaze | Meeting Highlights | News from Space | Spotlight on Education In Memoriam | Milestones | New and Noteworthy | Calendar LUNAR AND PLANETARY INFORMATION BULLETIN April 2021 Issue 164 FEATURED STORY THE CHICXULUB IMPACT CRATER: Producing a Cradle of Life in the Midst of a Global Calamity DAVID A. KRING, LUNAR AND PLANETARY INSTITUTE Expedition 364 mission patch Introduction when the International Ocean Discov- an area that had been a stable sediment ery Program (IODP) and International catchment for over 100 million years? Strategically located scientific drilling Continental Scientific Drilling Program Clues began to emerge when the core can be used to tap the Earth for evi- (ICDP) initiated a new campaign with was analyzed. Logging revealed chem- dence of evolutionary upheavals that the call sign Expedition 364. Drilling ical and petrological variations on the transformed the planet. A good example from a marine platform a few meters granitic theme, plus felsite and dolerite is the Yucatán-6 borehole in Mexico above the sea surface, the new borehole intrusions, in a granitoid rock sequence that recovered rock samples from 1.2 reached a depth of 1335 meters be- that represented continental crust that and 1.3 kilometers beneath Earth’s neath the sea floor (mbsf). The borehole had been assembled through a series of surface. I used those samples 30 years penetrated seafloor sediments that bury tectonic events over more than a billion ago to show that a buried, geophysical- the crater, finally reaching impactites at years.
    [Show full text]
  • 1. National Affairs 2. Economy and Finance 3. Science and Technology 4. Environment and Ecology 5. International Affairs, Bilate
    TABLE OF CONTENTS 1. National Affairs 2. Economy and Finance 3. Science and Technology 4. Environment and Ecology 5. International Affairs, Bilateral Issues and Geopolitics 6. Miscellaneous Quick Revision For Prelims 2018 - Current Affairs From Jun to Nov 2017 Page 1 NATIONAL AFFAIRS ➢ Reliance Jio Infocomm Launches Asia-Africa-Europe (AAE-1) Submarine Cable System • A submarine cable system consists of telecom and internet cables on the seabed between land- based stations. These carry telecommunication and data signals across stretches of oceans. • AAE-1, the longest 100 Gbps (gigabits per second) technology-based submarine system, will stretch over 25,000 km from Marseille, France, to Hong Kong, with 21 cable landings across Asia and Europe. ➢ Government Launches Index To Rank 116 Cities On Quality Of Life • The first ‘City Liveability Index’, will cover cities with population above one million, including the capital cities, a total of 116 cities to be covered. • The cities will be assessed on a comprehensive set of 79 parameters, including availability of roads, education, healthcare, mobility, employment opportunities, emergency response, grievance redressal, pollution, availability of open and green spaces, cultural and entertainment opportunities. • The ranking will be released in 2018. ➢ West Bengal Govt's Kanyashree Scheme Bags UN Award The United Nations has awarded the West Bengal government the first place for Public Service for its “Kanyashree” scheme. The “Kanyashree Prakalpa” is a targeted conditional cash transfer scheme aimed at retaining girls in schools and other educational institutions. It also aims towards skill development and prevent child marriage. Over 4 million adolescent girls have already enrolled in the scheme and about $ 500 million handed over to the beneficiaries through their bank account.
    [Show full text]
  • Breakthrough Initiatives
    THE MAZE OF SPACE TO COME BREAKTHROUGH INITIATIVES JAMIE DREW, BREAKTHROUGH PRIZE FOUNDATION - [email protected] - Kerastari 20170529 FOUNDERS: Sergey Brin - Priscilla Chan – Jack Ma – Julia Milner – Yuri Milner - Anne Wojcicki - Cathy Zhang – Mark Zuckerberg. NOMINATIONS. LABYRINTH? SPACE EXPLORATION? 19571004 7 19610412 196907208 1610… 9 PHILANTHROPY & SPACE EXPLORATION. 2008 GDP Ratio Project Year Cost Equivalent Value University of North Carolina Observatory 1831 $6,4301 $89,000,000 Williams College Observatory 1836 $6,1002 $60,000,000 West Point Academy Observatory 1842 $5,0003 $45,000,000 U.S. Naval Observatory 1842 $25,0004 $225,000,000 Cincinnati Observatory 1843 $16,0005 $149,000,000 Harvard College Observatory 1843 $25,0006 $233,000,000 -Edward Phillips Endowment 1848 $100,0007 $601,000,000 Georgetown Observatory 1844 $18,0008 $154,000,000 Detroit Observatory 1852 $17,0009 $81,000,000 Shattuck Observatory 1852 $11,00010 $52,000,000 Hamilton College Observatory 1852 $15,00011 $71,000,000 Dudley Observatory 1852 $119,00012 $566,000,000 Dearborn Observatory 1865 $25,00013 $37,000,000 Transit of Venus Expedition 1872 $177,00014 $310,000,000 Lick Observatory 1876 $700,00015 $1,220,000,000 Warner Observatory 1880 $100,00016 $139,000,000 Transit of Venus Expedition 1882 $85,00017 $101,000,000 McCormick Observatory 1881 $135,00018 $168,000,000 Yerkes Observatory 1892 $500,00019 $441,000,000 Mt. Wilson Observatory 1910 $945,00020 $408,000,000 Mt. Palomar Observatory 1928 $6,550,00021 $972,000,000 McDonald Observatory 1939 $840,00022
    [Show full text]
  • Searches for Life and Intelligence Beyond Earth
    Technologies of Perception: Searches for Life and Intelligence Beyond Earth by Claire Isabel Webb Bachelor of Arts, cum laude Vassar College, 2010 Submitted to the Program in Science, Technology and Society in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in History, Anthropology, and Science, Technology and Society at the Massachusetts Institute of Technology September 2020 © 2020 Claire Isabel Webb. All Rights Reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: _____________________________________________________________ History, Anthropology, and Science, Technology and Society August 24, 2020 Certified by: ___________________________________________________________________ David Kaiser Germeshausen Professor of the History of Science (STS) Professor of Physics Thesis Supervisor Certified by: ___________________________________________________________________ Stefan Helmreich Elting E. Morison Professor of Anthropology Thesis Committee Member Certified by: ___________________________________________________________________ Sally Haslanger Ford Professor of Philosophy and Women’s and Gender Studies Thesis Committee Member Accepted by: ___________________________________________________________________ Graham Jones Associate Professor of Anthropology Director of Graduate Studies, History, Anthropology, and STS Accepted by: ___________________________________________________________________
    [Show full text]
  • Planet Searching from Ground and Space
    Planet Searching from Ground and Space Olivier Guyon Japanese Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan (NINS) University of Arizona Breakthrough Watch committee chair June 8, 2017 Perspectives on O/IR Astronomy in the Mid-2020s Outline 1. Current status of exoplanet research 2. Finding the nearest habitable planets 3. Characterizing exoplanets 4. Breakthrough Watch and Starshot initiatives 5. Subaru Telescope instrumentation, Japan/US collaboration toward TMT 6. Recommendations 1. Current Status of Exoplanet Research 1. Current Status of Exoplanet Research 3,500 confirmed planets (as of June 2017) Most identified by Jupiter two techniques: Radial Velocity with Earth ground-based telescopes Transit (most with NASA Kepler mission) Strong observational bias towards short period and high mass (lower right corner) 1. Current Status of Exoplanet Research Key statistical findings Hot Jupiters, P < 10 day, M > 0.1 Jupiter Planetary systems are common occurrence rate ~1% 23 systems with > 5 planets Most frequent around F, G stars (no analog in our solar system) credits: NASA/CXC/M. Weiss 7-planet Trappist-1 system, credit: NASA-JPL Earth-size rocky planets are ~10% of Sun-like stars and ~50% abundant of M-type stars have potentially habitable planets credits: NASA Ames/SETI Institute/JPL-Caltech Dressing & Charbonneau 2013 1. Current Status of Exoplanet Research Spectacular discoveries around M stars Trappist-1 system 7 planets ~3 in hab zone likely rocky 40 ly away Proxima Cen b planet Possibly habitable Closest star to our solar system Faint red M-type star 1. Current Status of Exoplanet Research Spectroscopic characterization limited to Giant young planets or close-in planets For most planets, only Mass, radius and orbit are constrained HR 8799 d planet (direct imaging) Currie, Burrows et al.
    [Show full text]
  • Is Anybody out There? Julia Bandura, Michael Chong, Ross Edwards
    Is Anybody Out There? Julia Bandura, Michael Chong, Ross Edwards ISCI 3A12 - LUE March 23rd, 2017 -graphic of scientists believe that with our rapid technological advancement, there may be ways to “We stand on a great communicate with them. This article will explore attempts to transmit threshold in the human messages to potential intelligent life forms, history of space attempts to search for incoming alien signals, and analyze explanations for the silence that we have exploration” (Sara Seager, 2014) insofar encountered. However, before considering any form of communication, whether receiving or radiation levels (since high UV radiation can be transmitting, we must first consider where to look. damaging to replication molecules like DNA), and Where is Life in the Universe? liquid water. Water is especially important: all known life on Earth requires liquid water to Logically, a scientist that hopes to communicate survive. As such, within a solar system, the with extraterrestrial beings must assume that: 1) traditional ‘habitable zone’ is defined as the extraterrestrial intelligent life exists in the universe, imaginary disc around the host star where water 2) it exists in high enough abundance that radio will remain in liquid form. A significant number of communication is possible, 3) a transmitted radio exoplanets have been discovered within this zone signal from Earth will be picked up by a receiver, around their host star, but only a fraction of them and 4) the message will be translated successfully. are considered ‘Earth-like’, meaning that their Each assumption comes with challenges that make surface conditions and sizes are similar to Earth’s the process of creating a radio message appropriate (Rekola, 2009).
    [Show full text]
  • Topics for Students' Presentations Problems in Long Distance (Human) Space Travel New Propulsion Technologies So
    Topics for students’ presentations ● Problems in long distance (human) space travel ○ New propulsion technologies ○ Social aspects? ○ life in zero-gravity ○ communication ● Prospects for long-term human missions within the Solar systems: ○ Elon Musk's plan to send humans to Mars ○ What would be the point of a lunar base? ● Testing extra-terrestrial habitats on Earth ○ NEEMO, Mars500, Desert RATS experiments ● Future (and proposed) space missions and/or observational facilities to look for life-/bio- signatures: ○ On Europa ○ on Exo-planets ● Solar-system bodies as potentially life-bearing systems: ○ Europa ○ Titan ○ Enceladus ○ Mars ● Experiments to search for Life on Mars: ○ Past and present (Viking missions to now) ○ Martian meteorites (ALH-64?) 20 years on, include possibly media response at the time to idea of evidence for extraterrestrial life ○ Future in situ experiments on Mars ● SETI projects : ○ Breakthrough Initiatives ○ SETI@Home ○ What are the fundamental assumptions behind SETI experiments, and what do they imply (i.e., similar to Drake Eq.) ● Observational signatures of advanced civilizations ● Remote detection of Life on Earth (How far away can we detect Human signals, e.g. TV) ● Summary of what is known about the exosolar asteroid ('Oumuamua) ​ ​ ● How good is the evidence for an asymmetry of left- and right- handed organic molecules in nature and where could such an asymmetry come from? ● General physical/planetary processes in the context of life: ○ Terrestrial impacts as a driver of evolutionary change in terrestrial Life vs. other causes of mass extinctions. ○ How dynamically stable are planetary systems - our own and in general? what are the implications (c.f. Drake Eq.
    [Show full text]
  • Ebook Download Proxima Centauri Ebook Free Download
    PROXIMA CENTAURI PDF, EPUB, EBOOK Farel Dalrymple | 160 pages | 29 Jan 2019 | Image Comics | 9781534310292 | English | Fullerton, United States Proxima Centauri PDF Book Proxima Centauri by admin July 6, August 30, Terrestrial sources will also have to be ruled out, along with orbiting satellites, as Seth Shostak, senior scientist with the SETI institute, explained in a recent post :. It is possible there are other planets, slightly further from the star, that have yet to be discovered by astronomers, but they are likely too far away for liquid water to form. To illustrate what this means from our perspective: the Voyager 1 spacecraft is currently travelling away from Earth at a speed of The Planetary Science Journal Tag: Science. It was discovered by the Scottish astronomer Robert Innes in Except… in August astronomers announced they had confirmed the presence of a planet orbiting the diminutive star , and moreover it's very roughly the same mass as Earth , orbiting Proxima in its habitable zone. It's very hard to measure, because the shift is very small, and Proxima is very faint. Extended Data Table 1 Complete set of model parameters Full size table. To view the star, one needs a telescope with an aperture of at least 3. Kopparapu, R. According to Star Trek: Star Charts pp. When the star approaches the Earth in that little circle the wavelength of its light gets a little bit shorter we call that blushift , and when it heads away in the other half of its circle the wavelength gets longer redshift ; this is similar to the Doppler shift in sound.
    [Show full text]
  • General Interstellar Issue
    Journal of the British Interplanetary Society VOLUME 73 NO.7 JULY 2020 General Interstellar Issue PROTOCOLS FOR ENCOUNTER WITH EXTRATERRESTRIALS: lessons from the Covid-19 Pandemic John W. Traphagan & Ken Wisian WATER AND AIR CONSUMPTION ABOARD INTERSTELLAR ARKS Frédéric Marin & Camille Beluffi HABITABILITY OF M DWARFS: a problem for the traditional SETI Milan M. Cirkovic & Branislav Vukotic ON A SPECTRAL PATTERN OF THE VON NEUMANN PROBES Z. Osmanov REWORKING THE SETI PARADOX: METI’s Place on the Continuum of Astrobiological Signaling Thomas Cortellesi DYNAMIC VACUUM MODEL and Casimir Cavity Experiments Harold White, Paul Bailey, James Lawrence, Jeff George & Jerry Vera www.bis-space.com ISSN 0007-084X PUBLICATION DATE: 31 JULY 2020 Submitting papers International Advisory Board to JBIS JBIS welcomes the submission of technical Rachel Armstrong, Newcastle University, UK papers for publication dealing with technical Peter Bainum, Howard University, USA reviews, research, technology and engineering in astronautics and related fields. Stephen Baxter, Science & Science Fiction Writer, UK James Benford, Microwave Sciences, California, USA Text should be: James Biggs, The University of Strathclyde, UK ■ As concise as the content allows – typically 5,000 to 6,000 words. Shorter papers (Technical Notes) Anu Bowman, Foundation for Enterprise Development, California, USA will also be considered; longer papers will only Gerald Cleaver, Baylor University, USA be considered in exceptional circumstances – for Charles Cockell, University of Edinburgh, UK example, in the case of a major subject review. Ian A. Crawford, Birkbeck College London, UK ■ Source references should be inserted in the text in square brackets – [1] – and then listed at the Adam Crowl, Icarus Interstellar, Australia end of the paper.
    [Show full text]