Ebook Download Proxima Centauri Ebook Free Download

Total Page:16

File Type:pdf, Size:1020Kb

Ebook Download Proxima Centauri Ebook Free Download PROXIMA CENTAURI PDF, EPUB, EBOOK Farel Dalrymple | 160 pages | 29 Jan 2019 | Image Comics | 9781534310292 | English | Fullerton, United States Proxima Centauri PDF Book Proxima Centauri by admin July 6, August 30, Terrestrial sources will also have to be ruled out, along with orbiting satellites, as Seth Shostak, senior scientist with the SETI institute, explained in a recent post :. It is possible there are other planets, slightly further from the star, that have yet to be discovered by astronomers, but they are likely too far away for liquid water to form. To illustrate what this means from our perspective: the Voyager 1 spacecraft is currently travelling away from Earth at a speed of The Planetary Science Journal Tag: Science. It was discovered by the Scottish astronomer Robert Innes in Except… in August astronomers announced they had confirmed the presence of a planet orbiting the diminutive star , and moreover it's very roughly the same mass as Earth , orbiting Proxima in its habitable zone. It's very hard to measure, because the shift is very small, and Proxima is very faint. Extended Data Table 1 Complete set of model parameters Full size table. To view the star, one needs a telescope with an aperture of at least 3. Kopparapu, R. According to Star Trek: Star Charts pp. When the star approaches the Earth in that little circle the wavelength of its light gets a little bit shorter we call that blushift , and when it heads away in the other half of its circle the wavelength gets longer redshift ; this is similar to the Doppler shift in sound. An activity catalogue of southern stars. With the cat comfortably out of the bag, details about the strange signal are now emerging, but the supporting data remains unavailable. Gomes da Silva, J. Proxima b is a rocky world that orbits in the habitable zone of its star allowing for the possibility of liquid water. II: activity and radial velocity. The system hosts two known exoplanets, one of which, Proxima Centauri b, resides inside the habitable zone. However, as Proxima Centauri is a red dwarf, the habitable zone is very close to the star, meaning the planet is likely tidally locked and exposed to intense radiation, making it unlikely any civilisation has been able to form — at least on the surface. In Contact , the movie, a signal from aliens contained engineering specifications on how to build a spaceship. The goal of this multiyear endeavor—which began in with a star-studded announcement attended by Stephen Hawking and other space-science luminaries—is to buy observing time on radio telescopes around the world to search the skies for evidence of technological civilizations. Though Sheikh and others strongly suspect that the signal is really human in origin, BLC-1 is the most tantalizing detection Breakthrough has made so far in its search for extraterrestrial intelligence, or SETI. In either case, the whole story is a fascinating study of how and why science works. Donati, J. If Proxima is not bound to the binary system, a stellar association like a moving group would explain its relative proximity to Alpha Centauri. Reprints and Permissions. In , the location of Proxima Centauri was labeled in a star chart of a stellar neighborhood with Sol at the center. Extended Data Figure 2 Signal searches on independent radial velocity data sets. The system hosts at least two worlds. The planet was discovered in August and is likely tidally locked. Haario, H. Very - Very deals. The telescope appears to have picked up a technological signal from our neighboring star system, Proxima Centauri in April and May Proxima Centauri lies in the constellation of Centaurus The Centaur , just over four light-years from Earth. Nature thanks A. Precision radial velocities of 15 M5—M9 dwarfs. Lomb, N. Such signals would cover a very narrow range of radio frequencies. While it's not possible to pin down exactly where the planet is in its orbit, the calculations do show where it's most likely to be, with some uncertainty. Alien hunters detect mysterious radio signal from nearby star It's almost certainly not an extraterrestrial telegram. Our message could potentially stimulate a response in less than a decade, starting an interstellar dialogue well within the lifetimes of most people alive today. Vidotto, A. Christensen, R. Proxima Centauri Writer Do they pose a threat? Proxima Centauri has been the closest star to the Sun for the last 32, years and will continue to the the nearest star for approximately 33, years. Edit: Additional source quotes added to the piece not available at original time of publication. Zkh From there, things happened fast—with good reason. Read more of his work at duluthnewstribune. This wiki. Alpha is overexposed the two individual stars blended together as well and appears blue instead of yellowish due to the way the image was processed. Other calculations suggest that it will come within 2. We do not sell, rent or trade our email lists. Sun-like star identified as the potential source of the Wow! Proxima Centauri lies in the constellation of Centaurus The Centaur , just over four light-years from Earth. To date, no such evidence has conclusively been found despite more than a half century of modest-but-steady SETI activity, with any potential signals almost always ruled out as originating from satellites orbiting Earth or other human-caused interference. However, the excitement did not last long. Skip to main content. The star is classified as a flare star, which means that it is a variable star that randomly undergoes sudden increases in brightness as a result of magnetic activity. Proxima Centauri is actually part of a triple star system — its two companions, Alpha Centauri A and B, lie out of frame. Naim's incredible Mu-So Qb takes you back to the good old days - where the music captivates and enthralls, rather that simply being something in the background. Proxima b is an Earth-like rocky world that orbits within the 'habitable zone' of Proxima Centauri — that is an area where liquid water could flow on the surface of the planet. I had the privilege of interviewing Jill Tarter last year and asked about that scene. Apple's new iPad is blazingly fast, gorgeous to look at, and quite simply the best tablet out there - and for a lot of people, probably the best computer out there. WDS JC. Alpha and Proxima Centauri as seen from Earth. Hybrid-electric plane that 'scrubs' exhaust before ejecting it into the atmosphere could reduce emissions of Recent studies have 'eliminated the possibility of an alien megastructure', and instead, suggests that a ring of dust could be causing the strange signals. While processing those observations this summer, Shane Smith, an undergraduate from Hillsdale College in Michigan working with Breakthrough, spotted BLC-1 apparently radiating from the star. Ci 20 Tag: Science. The best all in one wireless speaker you'll ever hear: Naim Mu-so review. Portrayed on the right, Proxima c orbits in about 5. RX J One of the other Breakthrough initiatives, Starshot , endeavors to actually send a probe to Proxima Centauri itself. It is in fact so faint that it would appear as a fifth magnitude star when observed from Alpha Centauri A or B. Astronomy for Kids. Dave's Universe Year of Pluto. And if two, why not more? Proxima Centauri Reviews Although Proxima is considered a moderately active star, its rotation period is about 83 days ref. ZIP 62 kb. Metropolis, N. Astro Bob Jan 14th - 12pm. There is also a theoretical mission to send a probe to the planet in to search for biosignatures. Rights and permissions Reprints and Permissions. Unfortunately, neither Proxima b nor c are known to transit the star, so their sizes are unknown. In February this year astronomers announced they had spotted a star system with planets that could support life just 39 light years away. Esposito , A. Validation of the new Hipparcos reduction. Astronomers investigate an unusual radio signal from the closest star beyond the sun. The star was located in the Alpha Quadrant. The green vertical lines mark the period of the planet candidate at Categories :. Smith began sifting through the data in June of this year, but it was not until late October that he stumbled upon the curious narrowband emission, needle-sharp at Least-squares frequency analysis of unequally spaced data. These signals are likely interference that we cannot yet fully explain. I hope this new planet candidate turns out to be real. Very - Very deals. This second candidate planet, called Proxima Centauri c or just Proxima c , was found using a combination of two methods : reflex velocity and astrometry. Arriagada, P. Proxima may even be off the hook as the source. Zuluaga, J. Pictured, a not-to-scale representation of how far away Proxima B is from Earth compared to Voyager 1, the farthest man-made object which was launched in This wiki. B 56 , 3—48 In the 22nd century, this system was a destination on the Earth trade routes and traded with Earth and Vulcan. Osorio , G. Extended Data Figure 6 Signal searches on the chromospheric S -index. Canto Martins , I. Alberdi , G. First, the signal bears no trace of modulation—tweaks to its properties that can be used to convey information. Further analysis is currently being undertaken. The way Proxima c was found was by combining extremely precise spectra and measurements of the star's motion through space. XXXI: the M-dwarf sample. It's very hard to measure, because the shift is very small, and Proxima is very faint.
Recommended publications
  • Arxiv:1910.11169V1 [Astro-Ph.EP] 24 Oct 2019 Metchev Et Al.(2004) Due to the Detection of a Strong Mid- Tinuum and at HCO+ and CO Gas Emission Lines
    Astronomy & Astrophysics manuscript no. PDS70_v2 c ESO 2019 October 25, 2019 VLT/SPHERE exploration of the young multiplanetary system PDS70? D. Mesa1, M. Keppler2, F. Cantalloube2, L. Rodet3, B. Charnay4, R. Gratton1, M. Langlois5; 6, A. Boccaletti4, M. Bonnefoy3, A. Vigan6, O. Flasseur7, J. Bae8, M. Benisty3; 9, G. Chauvin3; 9, J. de Boer10, S. Desidera1, T. Henning2, A.-M. Lagrange3, M. Meyer11, J. Milli12, A. Müller2, B. Pairet13, A. Zurlo14; 15; 6, S. Antoniucci16, J.-L. Baudino17, S. Brown Sevilla2, E. Cascone18, A. Cheetham19, R.U. Claudi1, P. Delorme3, V. D’Orazi1, M. Feldt2, J. Hagelberg19, M. Janson20, Q. Kral4, E. Lagadec21, C. Lazzoni1, R. Ligi22, A.-L. Maire2; 23, P. Martinez21, F. Menard3, N. Meunier3, C. Perrot4; 24; 25, S. Petrus3, C. Pinte26; 3, E.L. Rickman19, S. Rochat3, D. Rouan4, M. Samland2; 20, J.-F. Sauvage27; 6, T. Schmidt4; 28, S. Udry19, L. Weber19, F. Wildi19 (Affiliations can be found after the references) Received / accepted ABSTRACT Context. PDS 70 is a young (5.4 Myr), nearby (∼113 pc) star hosting a known transition disk with a large gap. Recent observations with SPHERE and NACO in the near-infrared (NIR) allowed us to detect a planetary mass companion, PDS 70 b, within the disk cavity. Moreover, observations in Hα with MagAO and MUSE revealed emission associated to PDS 70 b and to another new companion candidate, PDS 70 c, at a larger separation from the star. PDS 70 is the only multiple planetary system at its formation stage detected so far through direct imaging. Aims. Our aim is to confirm the discovery of the second planet PDS 70 c using SPHERE at VLT, to further characterize its physical properties, and search for additional point sources in this young planetary system.
    [Show full text]
  • The Nearest Stars: a Guided Tour by Sherwood Harrington, Astronomical Society of the Pacific
    www.astrosociety.org/uitc No. 5 - Spring 1986 © 1986, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. The Nearest Stars: A Guided Tour by Sherwood Harrington, Astronomical Society of the Pacific A tour through our stellar neighborhood As evening twilight fades during April and early May, a brilliant, blue-white star can be seen low in the sky toward the southwest. That star is called Sirius, and it is the brightest star in Earth's nighttime sky. Sirius looks so bright in part because it is a relatively powerful light producer; if our Sun were suddenly replaced by Sirius, our daylight on Earth would be more than 20 times as bright as it is now! But the other reason Sirius is so brilliant in our nighttime sky is that it is so close; Sirius is the nearest neighbor star to the Sun that can be seen with the unaided eye from the Northern Hemisphere. "Close'' in the interstellar realm, though, is a very relative term. If you were to model the Sun as a basketball, then our planet Earth would be about the size of an apple seed 30 yards away from it — and even the nearest other star (alpha Centauri, visible from the Southern Hemisphere) would be 6,000 miles away. Distances among the stars are so large that it is helpful to express them using the light-year — the distance light travels in one year — as a measuring unit. In this way of expressing distances, alpha Centauri is about four light-years away, and Sirius is about eight and a half light- years distant.
    [Show full text]
  • Identify the Following
    1. This planet appears to be lying on its side. A. Jupiter B. Saturn C. Neptune D. Uranus E. none of these 2. This planet is the hottest on the solar system. This is due to the swirling clouds pf sulfur and sulfuric acid that obscure its surface making its atmosphere heavy and dense. A. Mercury B. Venus C. Earth D. Mars E. none of these 3. The only asteroid known to have a satellite. A. Ceres B. Eris C. Makemake D. Ida E. none of these 4. It is an anticyclonic storm on Jupiter that has been existing for 180 years and it is expected to last for another 345 years. A. GDS B. GBS C. GSS D. SSS E. none of these 5. It is the second largest planet and it has spectacular rings that can be seen on Earth by telescope. A. Jupiter B. Saturn C. Neptune D. Uranus E. none of these 6. It divides the planets into Inner Planets and Outer Planets. A. Kuiper Belt B. Asteroid Belt C. Oort Cloud D. heliopause E. none of these 7. Pluto is now considered a ____. A. Giant Planet B. Dwarf Planet C. Elf Planet D. Little Solar System E. none of these 8. It is made up of many small comets orbiting around the sun. It is the area wherein scientists believed Pluto to be a part of. A. Kuiper Belt B. Asteroid Belt C. Oort Cloud D. heliopause E. none of these 9. The belt in number 8 was discovered by ___. A. Nicolaus Copernicus B.
    [Show full text]
  • The Radio Continuum View of Centaurus Acentaurus A
    TheThe radioradio continuumcontinuum viewview ofof CentaurusCentaurus AA Ron Ekers CSIRO The Many Faces of Centaurus A Sydney, 29 June 2009 Ilana's composite Morganti et al. 1999 9° 10' Burns et al. xx image courtesy Norbert Junkes (MPIfR) WhyWhy CentaurusCentaurus AA isis specialspecial ■ the first extragalactic radio source ■ the brightest source in the Southern Hemisphere ■ the second double lobed source discovered ± after Cygnus A ■ the closest Radio Galaxy ■ the closest AGN ■ the closest SMBH ± VLBI resolution 0.01pc, 100 Rs ■ A spectacular galaxy EvolutionEvolution ofof thethe ModelsModels ■ Radio sources ± Static magnetic field 1960 ± Evolutionary sequence 1970 ± Continuous injection ± Continuous reacceleration ■ Energy source ± Galaxy collisions 1950's ± Nuclear accretions 1960- ± Accretion triggered by collisions 1980- CentaurusCentaurus AA thethe closestclosest AGNAGN ■ Distance 3.4Mpc ■ Next closest comparable AGN M87 17Mpc ! ■ Average distance to a L=1024 W Hz-1 radio galaxies ± 10Mpc ± So we are lucky (or influenced!) ■ Much easier to study at all wavelengths ■ Subtends a large angular size ± Good linear resolution ± Background probes SomeSome RadioRadio GalaxiesGalaxies Name Size Log Log (kpc) Luminosity Energy (ergs sec-1) (ergs) Centaurus A 470 41.7 59.9 Cygnus A 200 45.2 60.6 M87 80 42.0 58.6 M82 1 39.5 55.2 PolarizationPolarization inin CentaurusCentaurus AA Bracewell 1962 ■ April 1962 ■ Parkes 64m just completed ■ Discovered by Bracewell ± Published Cooper and Price ± Visitors Log ± Not a National Facilities yet! ■ Connie
    [Show full text]
  • TESS Discovery of a Super-Earth and Three Sub-Neptunes Hosted by the Bright, Sun-Like Star HD 108236
    Swarthmore College Works Physics & Astronomy Faculty Works Physics & Astronomy 2-1-2021 TESS Discovery Of A Super-Earth And Three Sub-Neptunes Hosted By The Bright, Sun-Like Star HD 108236 T. Daylan K. Pinglé J. Wright M. N. Günther K. G. Stassun Follow this and additional works at: https://works.swarthmore.edu/fac-physics See P nextart of page the forAstr additionalophysics andauthors Astr onomy Commons Let us know how access to these works benefits ouy Recommended Citation T. Daylan, K. Pinglé, J. Wright, M. N. Günther, K. G. Stassun, S. R. Kane, A. Vanderburg, D. Jontof-Hutter, J. E. Rodriguez, A. Shporer, C. X. Huang, T. Mikal-Evans, M. Badenas-Agusti, K. A. Collins, B. V. Rackham, S. N. Quinn, R. Cloutier, K. I. Collins, P. Guerra, Eric L.N. Jensen, J. F. Kielkopf, B. Massey, R. P. Schwarz, D. Charbonneau, J. J. Lissauer, J. M. Irwin, Ö Baştürk, B. Fulton, A. Soubkiou, B. Zouhair, S. B. Howell, C. Ziegler, C. Briceño, N. Law, A. W. Mann, N. Scott, E. Furlan, D. R. Ciardi, R. Matson, C. Hellier, D. R. Anderson, R. P. Butler, J. D. Crane, J. K. Teske, S. A. Shectman, M. H. Kristiansen, I. A. Terentev, H. M. Schwengeler, G. R. Ricker, R. Vanderspek, S. Seager, J. N. Winn, J. M. Jenkins, Z. K. Berta-Thompson, L. G. Bouma, W. Fong, G. Furesz, C. E. Henze, E. H. Morgan, E. Quintana, E. B. Ting, and J. D. Twicken. (2021). "TESS Discovery Of A Super-Earth And Three Sub-Neptunes Hosted By The Bright, Sun-Like Star HD 108236".
    [Show full text]
  • Gli Ammassi Di Galassie
    Universo in Fiore 2017 CORSO BASE I GIGANTI DEL COSMO: GLI AMMASSI DI GALASSIE Sabrina De Grandi [email protected] Organizzazione spaziale delle galassie Ammassi Gruppi Galassie 100 mila a.l. ~30 kpc 3 milioni a.l. ~ 103 kpc 20 milioni a.l. ~ 7x103 kpc I primi cataloghi di ammassi Fino agli anni ’80: ispezione visuale di lastre fotografiche alla ricerca di sovradensita` di galassie. Es. di lastre fotografiche: • PSS: National Geographic Society-Palomar Observatory Sky Survey (Telescopio 5m Hale, Mt. Wilson US) • UKST: Schmidt telescope IIIa-J plates (Telescopio 1.2m, UK-Australia),… I cataloghi di Abell (1958) e Zwicky (1961-1968) Il catalogo piu` usato: Abell (1958) Emisfero Nord (2712) e A.C.O. (1989) Emisfero Sud (1364). 1958: Abell ispeziono` di 104 deg2 di lastre PSS (Luna ~0.25 deg2) Criteri principali: • almeno 30 galassie • compatto (0.02<z<0.2) • piano galattico escluso Dagli anni ’90: • algoritmi automatici di identificazione al posto dell’occhio umano. • Non più lastre fotografiche, ma immagini digitali (CCD) • SDSS (Sloan Digital Sky Survey), iniziata nel 2000 e tutt’ora in atto (35% del cielo osservato, 500 milioni di oggetti, catalogo di ammassi • Accesso libero ai dati (nel Telescopio dedicato ad 2015: 13o Data Release) Apache Point 2.5m (US) Immagine SDSS dell’ammasso A2142 MACS J1206.2-0847 DIAMETRO tipico di un ammasso di galassie ~ 20 milioni anni luce ~ 7 Mpc SPICA (훼 costellazione della Vergine) MACS J1206.2-0847 DIAMETRO tipico di un ammasso di galassie ~ 20 milioni anni luce ~ 7 Mpc ma… DISTANZA di MACS J1206 ~ 4.5 miliardi di anni luce ~ 1500 Mpc Dove si trova la Via Lattea in questa struttura universale? ovvero Noi ci troviamo in un Ammasso di galassie? Il Gruppo Locale 100.000 a.l.
    [Show full text]
  • The Sky This Week
    The sky this week April 20 to April 26, 2020 By Joe Grida, Technical Informaon Officer, ASSA ([email protected]) elcome to the fourth edion of The Sky this Week. It is designed to keep you looking up during these rather uncertain mes. We can’t get together for Members’ Viewing Nights, so I thought I’d write this W to give you some ideas of observing targets that you can chase on any clear night this coming week. As I said in my recent Starwatch* column in The Adverser newspaper: “Even with the restricons in place, stargazing is something that you can do easily on your own. It helps to relieve stress and will keep your sense of perspecve. It’s prey hard to walk away from a night under the stars without a jusfiable sense of awe. And also without sensing a real, albeit tenuous, connecon with the cosmos at large”. * Published on the last Friday of each month Naked eye star walk Over in the eastern late evening sky, Scorpius, the Scorpion (one of the few constellaons in our sky that actually resembles what it is supposed to represent) is difficult to miss. He will keep us company over the coming chilly winter months. Its brightest star, Antares, is a huge star of gargantuan proporons. If we replaced our Sun with it, then all the planets from Mercury through to Jupiter would all find themselves engulfed within it! Just below the tail of Scorpius, you can find the star clusters designated M6 and M7. Take the trouble to observe these with binoculars.
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • Astronomical Distances
    The Act of Measurement I: Astronomical Distances B. F. Riley The act of measurement causes astronomical distances to adopt discrete values. When measured, the distance to the object corresponds through an inverse 5/2 power law – the Quantum/Classical connection – to a sub-Planckian mass scale on a level or sub-level of one or both of two geometric sequences, of common ratio 1/π and 1/e, that descend from the Planck mass and may derive from the geometry of a higher-dimensional spacetime. The distances themselves lie on the levels and sub-levels of two sequences, of common ratio π and e, that ascend from the Planck length. Analyses have been performed of stellar distances, the semi-major axes of the planets and planetary satellites of the Solar System and the distances measured to quasars, galaxies and gamma-ray bursts. 1 Introduction Using Planck units the Quantum/Classical connection, characterised by the equation (1) maps astronomical distances R – in previous papers only the radii of astronomical bodies [1, 2] – onto sub-Planckian mass scales m on the mass levels and sub-levels1 of two geometric sequences that descend from the Planck mass: Sequence 1 of common ratio 1/π and Sequence 3 of common ratio 1/e.2 The sequences may derive from the geometry of a higher-dimensional spacetime [3]. First, we show that several distances associated with the Alpha Centauri system correspond through (1) to the mass scales of principal levels3 in Sequences 1 and 3. We then show that the mass scales corresponding through (1) to the distances from both Alpha Centauri and the Sun to the other stars lie on the levels and sub-levels of Sequences 1 and 3.
    [Show full text]
  • Topics for Students' Presentations Problems in Long Distance (Human) Space Travel New Propulsion Tech
    06/03/2019 Life in the Universe 2019 - Student talks - Google Docs Topics for students’ presentations ● Problems in long distance (human) space travel ○ New propulsion technologies Paul Richter ○ Social aspects? ○ life in zero‑gravity ○ communication ● Prospects for long‑term human missions within the Solar systems: ○ Elon Musk's plan to send humans to Mars F. Stabel ○ What would be the point of a lunar base? ● Testing extra‑terrestrial habitats on Earth ○ NEEMO, Mars500, Desert RATS experiments ● Future (and proposed) space missions and/or observational facilities to look for life‑/bio‑ signatures: Artem Mosienko ○ On Europa ○ on Exo‑planets ● Solar‑system bodies as potentially life‑bearing systems: B. Prinoth ○ Europa ○ Titan ○ Enceladus ○ Mars ● Experiments to search for Life on Mars: ○ Past and present (Viking missions to now) ○ Martian meteorites (ALH‑64?) 20 years on, include possibly media response at the time to idea of evidence for extraterrestrial life ○ Future in situ experiments on Mars ● SETI projects : ○ Breakthrough Initiatives ○ SETI@Home ○ What are the fundamental assumptions behind SETI experiments, and what do they imply (i.e., similar to Drake Eq.) Sven Kiefer ● Observational signatures of advanced civilizations Leon Raabe ● Remote detection of Life on Earth (How far away can we detect Human signals, e.g. TV) Yves Sibony ● Summary of what is known about the exosolar asteroid ( 'Oumuamua ) Andrea Weibel https://docs.google.com/document/d/1qZdVVX3bP5kyfftaQazeXs3l7sP3TQDq9mL9uGLHrjE/edit# 1/4 06/03/2019 Life in the Universe 2019 - Student talks - Google Docs ● How good is the evidence for an asymmetry of left‑ and right‑ handed organic molecules in nature and where could such an asymmetry come from? O.
    [Show full text]
  • Nasa and the Search for Technosignatures
    NASA AND THE SEARCH FOR TECHNOSIGNATURES A Report from the NASA Technosignatures Workshop NOVEMBER 28, 2018 NASA TECHNOSIGNATURES WORKSHOP REPORT CONTENTS 1 INTRODUCTION .................................................................................................................................................................... 1 What are Technosignatures? .................................................................................................................................... 2 What Are Good Technosignatures to Look For? ....................................................................................................... 2 Maturity of the Field ................................................................................................................................................... 5 Breadth of the Field ................................................................................................................................................... 5 Limitations of This Document .................................................................................................................................... 6 Authors of This Document ......................................................................................................................................... 6 2 EXISTING UPPER LIMITS ON TECHNOSIGNATURES ....................................................................................................... 9 Limits and the Limitations of Limits ...........................................................................................................................
    [Show full text]
  • DIRECT FUSION DRIVE for Interstellar Exploration S.A
    Journal of the British Interplanetary Society VOLUME 72 NO.2 FEBRUARY 2019 General interstellar issue DIRECT FUSION DRIVE for Interstellar Exploration S.A. Cohen et al. INTERMEDIATE BEAMERS FOR STARSHOT: Probes to the Sun’s Inner Gravity Focus James Benford & Gregory Matloff REALITY, THE BREAKTHROUGH INITIATIVES and Prospects for Colonization of Space Edd Wheeler A GRAVITATIONAL WAVE TRANSMITTER A.A. Jackson and Gregory Benford CORRESPONDENCE www.bis-space.com ISSN 0007-084X PUBLICATION DATE: 29 APRIL 2019 Submitting papers International Advisory Board to JBIS JBIS welcomes the submission of technical Rachel Armstrong, Newcastle University, UK papers for publication dealing with technical Peter Bainum, Howard University, USA reviews, research, technology and engineering in astronautics and related fields. Stephen Baxter, Science & Science Fiction Writer, UK James Benford, Microwave Sciences, California, USA Text should be: James Biggs, The University of Strathclyde, UK ■ As concise as the content allows – typically 5,000 to 6,000 words. Shorter papers (Technical Notes) Anu Bowman, Foundation for Enterprise Development, California, USA will also be considered; longer papers will only Gerald Cleaver, Baylor University, USA be considered in exceptional circumstances – for Charles Cockell, University of Edinburgh, UK example, in the case of a major subject review. Ian A. Crawford, Birkbeck College London, UK ■ Source references should be inserted in the text in square brackets – [1] – and then listed at the Adam Crowl, Icarus Interstellar, Australia end of the paper. Eric W. Davis, Institute for Advanced Studies at Austin, USA ■ Illustration references should be cited in Kathryn Denning, York University, Toronto, Canada numerical order in the text; those not cited in the Martyn Fogg, Probability Research Group, UK text risk omission.
    [Show full text]